Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Forensic Sci Res ; 9(2): owae020, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38617445

ABSTRACT

The goal of the following study is to clarify whether the skeletal remains over 70 years old from missing persons and their alleged relatives shared identical Y-STR loci. Nowadays, advances in ancient DNA extraction techniques and approaches of using multiple different Y-STRs have significantly increased the possibility of obtaining DNA profiles from highly degraded skeletal remains. Given the ages and conditions of the skeletal remains, ancient DNA extraction methods can be used to maximize the probability of DNA recovery. Considering that information about distant relatives is more relevant for long-term missing persons and alleged family members are male, Y-STR loci analysis is considered the most appropriate and informative approach for determining paternal lineage relationship. In this study, Y-STR genotypes obtained from these alleged relatives were identical to each other and to the alleles of missing persons' consensus profiles at more than 22 loci examined, whilst not being found in Y-STR population database from Y-Chromosome STR Haplotype Reference Database. Therefore, Missing Person No.7 and Missing Person No.18 have a patrilineal relationship with reference samples from Family1 and Family2, respectively. In addition, the fact that Y-STR haplotypes obtained from skeletal remains of missing persons and reference samples are not found in the Han Chinese people from East Asian demonstrates its rarity and further supports a paternal lineage relationship amongst them.

2.
J Forensic Sci ; 69(3): 814-824, 2024 May.
Article in English | MEDLINE | ID: mdl-38291825

ABSTRACT

DNA analysis of forensic case samples relies on short tandem repeats (STRs), a key component of the combined DNA index system (CODIS) used to identify individuals. However, limitations arise when dealing with challenging samples, prompting the exploration of alternative markers such as single nucleotide polymorphisms (SNPs) and insertion/deletion (INDELs) polymorphisms. Unlike SNPs, INDELs can be differentiated easily by size, making them compatible with electrophoresis methods. It is possible to design small INDEL amplicons (<200 bp) to enhance recovery from degraded samples. To this end, a set of INDEL Human Identification Markers (HID) was curated from the 1000 Genomes Project, employing criteria including a fixation index (FST) ≤ 0.06, minor allele frequency (MAF) >0.2, and high allele frequency divergence. A panel of 33 INDEL-HIDs was optimized and validated following the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines, utilizing a five-dye multiplex electrophoresis system. A small sample set (n = 79 unrelated individuals) was genotyped to assess the assay's performance. The validation studies exhibited reproducibility, inhibition tolerance, ability to detect a two-person mixture from a 4:1 to 1:6 ratio, robustness with challenging samples, and sensitivity down to 125 pg of DNA. In summary, the 33-loci INDEL-HID panel exhibited robust recovery with low-template and degraded samples and proved effective for individualization within a small sample set.


Subject(s)
DNA Fingerprinting , Gene Frequency , INDEL Mutation , Humans , DNA Fingerprinting/methods , Reproducibility of Results , Genetic Markers , Genotype , Fluorescent Dyes , Polymerase Chain Reaction , Polymorphism, Genetic , Electrophoresis, Capillary , Microsatellite Repeats
3.
Forensic Sci Int Genet ; 69: 102995, 2024 03.
Article in English | MEDLINE | ID: mdl-38065030

ABSTRACT

Massively parallel sequencing (MPS) techniques were developed approximately 15 years ago. Meanwhile, several MPS kits for forensic identification, phenotypic information, ancestry, and mitochondrial DNA analysis have been developed and their use has been established. Sequencing short tandem repeats (STRs) has certain advantages over the currently used length-based genotyping methods, which are based on PCR amplification followed by capillary electrophoresis (CE). MPS is more discriminative and includes the possibility of testing high numbers of targets (> 100), different types of markers [STRs and single nucleotide polymorphisms (SNPs)], as well as the use of smaller amplicons (< 300 bp). This study evaluated in 24 experimental runs the Precision ID GlobalFiler™ NGS STR panel v2 from ThermoFisher, which targets 31 autosomal STRs, amelogenin, and three Y-markers (one STR, SRY, and Yindel). Single-source samples were used in 18 experimental runs, for systematic evaluation. These included assessing library preparation benchmark conditions, limited DNA input, as well as testing repeatability, number of samples per run, and degraded DNA samples. Full profiles were consistently obtained from as little as 50 pg DNA input. Using the optional recovery PCR method improved outcomes for samples with low DNA input. Full profiles were also obtained from severely degraded DNA samples with degradation indices (DI) of > 60. In addition, six experimental runs were performed testing various two-person mixtures with mixture ratios ranging from 1:20 to 20:1. Major and minor contributors were distinguishable by their read counts (coverage), because less DNA input yielded lower read counts, analogous to the traditional CE technology, where less DNA produces lower peak heights. Mixture ratios of approximately 1:1 were indistinguishable, while a greater imbalance, i.e., higher mixture ratios, made the mixture more distinguishable between major and minor contributors. Based on this information, the highest success rate of correctly deconvoluted four-allelic loci was from mixtures with 1:3 ratios. At higher mixture ratios, the drop-out rate of the minor contributor increased, reducing the number of four-allelic loci.


Subject(s)
DNA Fingerprinting , High-Throughput Nucleotide Sequencing , Humans , DNA Fingerprinting/methods , Sequence Analysis, DNA , Genotyping Techniques , DNA, Mitochondrial/genetics , Microsatellite Repeats , Polymorphism, Single Nucleotide
4.
Electrophoresis ; 45(5-6): 489-504, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38037290

ABSTRACT

The continual investigation of novel genetic markers has yielded promising solutions for addressing the challenges encountered in forensic DNA analysis. In this study, we have introduced a custom-designed panel capable of simultaneously amplifying 41 novel Multi-insertion/deletion (Multi-InDel) markers and an amelogenin locus using the capillary electrophoresis platform. Through a developmental validation study conducted in accordance with guidelines recommended by the Scientific Working Group on DNA Analysis Methods, we demonstrated that the new Multi-InDel system exhibited the sensitivity to produce reliable genotyping profiles with as little as 62.5 pg of template DNA. Accurate and complete genotyping profiles could be obtained even in the presence of specific concentrations of PCR inhibitors. Furthermore, the maximum amplicon size for this system was limited to under 220 bp in the genotyping profile, resulting in its superior efficiency compared to commercially available short tandem repeat kits for both naturally and artificially degraded samples. In the context of mixed DNA analysis, the Multi-InDel system was proved informative in the identification of two-person DNA mixture, even when the template DNA of the minor contributor was as low as 50 pg. In conclusion, a series of performance evaluation studies have provided compelling evidence that the new Multi-InDel system holds promise as a valuable tool for forensic DNA analysis.


Subject(s)
DNA Fingerprinting , DNA , Humans , Genotype , DNA/genetics , Microsatellite Repeats/genetics , DNA Primers , Forensic Genetics/methods , Multiplex Polymerase Chain Reaction/methods
5.
AoB Plants ; 15(6): plad074, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38130422

ABSTRACT

High-throughput sequencing of herbarium specimens' DNA with short-read platforms has helped explore many biological questions. Here, for the first time, we investigate the potential of using herbarium specimens as a resource for long-read DNA sequencing technologies. We use target capture of 48 low-copy nuclear loci in 12 herbarium specimens of Silene as a basis for long-read sequencing using SMRT PacBio Sequel. The samples were collected between 1932 and 2019. A simple optimization of size selection protocol enabled the retrieval of both long DNA fragments (>1 kb) and long on-target reads for nine of them. The limited sampling size does not enable statistical evaluation of the influence of specimen age to the DNA fragmentation, but our results confirm that younger samples, that is, collected after 1990, are less fragmented and have better sequencing success than specimens collected before this date. Specimens collected between 1990 and 2019 yield between 167 and 3403 on-target reads > 1 kb. They enabled recovering between 34 loci and 48 (i.e. all loci recovered). Three samples from specimens collected before 1990 did not yield on-target reads > 1 kb. The four other samples collected before this date yielded up to 144 reads and recovered up to 25 loci. Young herbarium specimens seem promising for long-read sequencing. However, older ones have partly failed. Further exploration would be necessary to statistically test and understand the potential of older material in the quest for long reads. We would encourage greatly expanding the sampling size and comparing different taxonomic groups.

6.
Electrophoresis ; 44(19-20): 1559-1568, 2023 10.
Article in English | MEDLINE | ID: mdl-37469183

ABSTRACT

Skeletal remains are the only biological material that remains after long periods; however, environmental conditions such as temperature, humidity, and pH affect DNA preservation, turning skeletal remains into a challenging sample for DNA laboratories. Sample selection is a key factor, and femur and tooth have been traditionally recommended as the best substrate of genetic material. Recently, petrous bone (cochlear area) has been suggested as a better option due to its DNA yield. This research aims to evaluate the efficiency of petrous bone compared to other cranium samples (tooth) and postcranial long bones (femur and tibia). A total amount of 88 samples were selected from 38 different individuals. The samples were extracted by using an organic extraction protocol, DNA quantification by Quantifiler Trio kit and amplified with GlobalFiler kit. Results show that petrous bone outperforms other bone remains in quantification data, yielding 15-30 times more DNA than the others. DNA profile data presented likeness between petrous bone and tooth regarding detected alleles; however, the amount of DNA extracted in petrous bones allowed us to obtain more informative DNA profiles with superior quality. In conclusion, petrous bone or teeth sampling is recommended if DNA typing is going to be performed with environmentally degraded skeletal remains.


Subject(s)
Petrous Bone , Tooth , Humans , Tibia , Body Remains , DNA/genetics , Femur , DNA Fingerprinting/methods , Microsatellite Repeats
7.
Article in English | MEDLINE | ID: mdl-37266863

ABSTRACT

In recent years, the insertion/deletion (InDel) polymorphism has become a preferred genetic marker in forensic genetics due to its low mutation rates and small amplicon sizes. In this study, a 36-InDelplex identification panel, consisting of autosomal 34 InDel loci, 1 Y InDel locus, and amelogenin, was developed, and gene frequencies in the Turkish population were determined. The loci of the InDel panel with global minimum allele frequencies (MAF) ≥ 0.4 were selected from the 1000 Genomes Project Phase 3 data. The amplicon sizes of the loci were designed in the range of 69-252 bp. In the validation study of the developed panel, analysis threshold, dynamic range, sensitivity, stochastic threshold, inhibitor tolerance, and reproducibility parameters were studied by following the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines. The sensitivity studies indicated that complete and reliable InDel profiles could be obtained with 0.25 ng of DNA. A population study was evaluated using 250 samples from Turkey. The mean observed heterozygosity ratio (Ho) of all loci was 0.48. The combined discrimination power (CPD) is 0.999999999990867 and the combined exclusion probability (CPE) was 0.9930. The population comparison was also made using Turkish and the five major populations from the 1000 Genomes Phase 3 populations' data (Africa, Europe, East Asia, South Asia, and America). In conclusion, the results showed that the 36-InDelplex panel is a reliable, sensitive, and accurate system that is suitable for human identification and population genetics purposes.

8.
Forensic Sci Int Genet ; 65: 102885, 2023 07.
Article in English | MEDLINE | ID: mdl-37137205

ABSTRACT

Since the arrest of the Golden State Killer in the US in April 2018, forensic geneticists have been increasingly interested in the investigative genetic genealogy (IGG) method. While this method has already been in practical use as a powerful tool for criminal investigation, we have yet to know well the limitations and potential risks. In this current study, we performed an evaluation study focusing on degraded DNA using the Affymetrix Genome-Wide Human SNP Array 6.0 platform (Thermo Fisher Scientific). We revealed one of the potential problems that occur during SNP genotype determination using a microarray-based platform. Our analysis results indicated that the SNP profiles derived from degraded DNA contained many false heterozygous SNPs. In addition, it was confirmed that the total amount of probe signal intensity on microarray chips derived from degraded DNA decreased significantly. Because the conventional analysis algorithm performs normalization during genotype determination, we concluded that noise signals could be genotype-called. To address this issue, we proposed a novel microarray data analysis method without normalization (nMAP). Although the nMAP algorithm resulted in a low call rate, it substantially improved genotyping accuracy. Finally, we confirmed the usefulness of the nMAP algorithm for kinship inferences. These findings and the nMAP algorithm will make a contribution to the advance of the IGG method.


Subject(s)
DNA , Immunoglobulin G , Humans , Genotype , Oligonucleotide Array Sequence Analysis/methods , DNA/genetics , Immunoglobulin G/genetics , Polymorphism, Single Nucleotide
9.
Forensic Sci Int ; 348: 111730, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37224759

ABSTRACT

Extracting DNA from degraded human remains poses a challenge for any forensic genetics laboratory, as it requires efficient high-throughput methods. While little research has compared different techniques, silica in suspension has been identified in the literature as the best method for recovering small fragments, which are often present in these types of samples. In this study, we tested five DNA extraction protocols on 25 different degraded skeletal remains. Including the humerus, ulna, tibia, femur, and petrous bone. The five protocols were organic extraction by phenol/chloroform/isoamyl alcohol, silica in suspension, High Pure Nucleic Acid Large Volume silica columns (Roche), InnoXtract™ Bone (InnoGenomics), and PrepFiler™ BTA with AutoMate™ Express robot (ThermoFisher). We analysed five DNA quantification parameters (small human target quantity, large human target quantity, human male target quantity, degradation index, and internal PCR control threshold), and five DNA profile parameters (number of alleles with peak height higher than analytic and stochastic threshold, average relative fluorescence units (RFU), heterozygous balance, and number of reportable loci) were analysed. Our results suggest that organic extraction by phenol/chloroform/isoamyl alcohol was the best performing method in terms of both quantification and DNA profile results. However, Roche silica columns were found to be the most efficient method.


Subject(s)
Body Remains , Chloroform , Humans , Male , DNA Fingerprinting/methods , Microsatellite Repeats , DNA , Phenol , Silicon Dioxide
10.
Genomics ; 115(3): 110620, 2023 05.
Article in English | MEDLINE | ID: mdl-37037275

ABSTRACT

To assist in forensic DNA investigation, we developed a new panel capable of simultaneously amplifying 56 ancestry-informative InDels, three Y-InDels and the Amelogenin locus in one PCR reaction. The fragment lengths of the InDel amplicons in this panel were restricted to <200 bp to benefit degraded DNA analysis. In this study, we explored the efficiency of this new panel for forensic applications in the Han Chinese population, and further shed light on the genetic structures of Han populations. We showed that the new panel could be served as an efficient tool for ancestry inference of intercontinental populations. Especially, the Han individuals in different regions could be 100% correctly predicted to be of East Asian origin with this new panel. The Han populations in different regions shared similar ancestry components in their genetic structures. Besides, we also revealed that the new panle could be useful for individual identification in different Han Chinese populations. In conclusion, we have provided the necessary evidence that the self-constructed new panel could play an important role in forensic DNA investigation.


Subject(s)
East Asian People , Genetics, Population , Humans , DNA , Gene Frequency
11.
Methods Mol Biol ; 2621: 73-89, 2023.
Article in English | MEDLINE | ID: mdl-37041441

ABSTRACT

Understanding the impact of DNA methylation within different disease contexts often requires accurate assessment of these modifications in a genome-wide fashion. Frequently, patient-derived tissues stored in long-term hospital tissue banks have been preserved using formalin-fixation paraffin-embedding (FFPE). While these samples can comprise valuable resources for studying disease, the fixation process ultimately compromises the DNA's integrity and leads to degradation. Degraded DNA can complicate CpG methylome profiling using traditional techniques, particularly when performing methylation-sensitive restriction enzyme sequencing (MRE-seq), yielding high backgrounds and resulting in lowered library complexity. Here, we describe Capture MRE-seq, a new MRE-seq protocol tailored to preserving unmethylated CpG information when using samples with highly degraded DNA. The results using Capture MRE-seq correlate well (0.92) with traditional MRE-seq calls when profiling non-degraded samples, and can recover unmethylated regions in highly degraded samples when traditional MRE-seq fails, which we validate using bisulfite sequencing-based data (WGBS) as well as methylated DNA immunoprecipitation followed by sequencing (MeDIP-seq).


Subject(s)
DNA Methylation , DNA , Humans , CpG Islands , DNA/genetics , Sequence Analysis, DNA/methods , Genome
12.
J Forensic Sci ; 68(3): 1020-1035, 2023 May.
Article in English | MEDLINE | ID: mdl-36959718

ABSTRACT

Forensic casework samples often include human hairs, teeth, and bones. Hairs with roots are routinely processed for DNA analysis, while rootless hairs are either not tested or processed using mitochondrial DNA. Bones and teeth are submitted for human remains identifications for missing persons and mass disaster cases. DNA extraction from these low templates and degraded samples is challenging. The new InnoXtract DNA extraction method utilizes magnetic beads that are optimized to bind small DNA fragments, as small as 100 base pairs, to purify high-yield DNA from compromised samples. This validation study evaluates InnoXtract's ability to obtain amplifiable DNA from samples such as rootless hairs and skeletal remains. Studies performed include sensitivity, stability, repeatability, reproducibility, non-probative samples, and comparison to standard organic extractions. Sensitivity studies demonstrate average yield recoveries ranging from 53% to 100% and 73% to 85% for the InnoXtract hair and bone methods, respectively. Studies demonstrate consistent results across a range of sample types, such as insulted and un-insulted bone and teeth, as well as hair shafts from donors of various ages, gender, race, and hair characteristics. The InnoXtract bone method outperformed organic extraction. The method was successfully automated on a MagMAX™ Express-96, with recoveries over 70% relative to the manual version. InnoXtract has the potential as an automated high-throughput, high-yield bone extraction method with 6 h of total extraction time for up to 96 samples. The validation study results demonstrate that the InnoXtract kits produce high-yield and high-quality DNA from compromised bone, teeth, and hair shaft samples.


Subject(s)
DNA Fingerprinting , Hair , Humans , Reproducibility of Results , Polymerase Chain Reaction , DNA Fingerprinting/methods , DNA, Mitochondrial/genetics
13.
Int J Mol Sci ; 24(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36834791

ABSTRACT

Forensic DNA profiles are established by multiplex PCR amplification of a set of highly variable short tandem repeat (STR) loci followed by capillary electrophoresis (CE) as a means to assign alleles to PCR products of differential length. Recently, CE analysis of STR amplicons has been supplemented by high-throughput next generation sequencing (NGS) techniques that are able to detect isoalleles bearing sequence polymorphisms and allow for an improved analysis of degraded DNA. Several such assays have been commercialised and validated for forensic applications. However, these systems are cost-effective only when applied to high numbers of samples. We report here an alternative, cost-efficient shallow-sequence output NGS assay called maSTR assay that, in conjunction with a dedicated bioinformatics pipeline called SNiPSTR, can be implemented with standard NGS instrumentation. In a back-to-back comparison with a CE-based, commercial forensic STR kit, we find that for samples with low DNA content, with mixed DNA from different individuals, or containing PCR inhibitors, the maSTR assay performs equally well, and with degraded DNA is superior to CE-based analysis. Thus, the maSTR assay is a simple, robust and cost-efficient NGS-based STR typing method applicable for human identification in forensic and biomedical contexts.


Subject(s)
DNA Fingerprinting , High-Throughput Nucleotide Sequencing , Humans , DNA Fingerprinting/methods , High-Throughput Nucleotide Sequencing/methods , Cost-Benefit Analysis , Microsatellite Repeats , DNA/genetics , Multiplex Polymerase Chain Reaction , Sequence Analysis, DNA
14.
Ecol Evol ; 13(1): e9745, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36644701

ABSTRACT

A combination of short-insert paired-ended and mate-pair libraries of large insert sizes is used as a standard method to generate genome assemblies with high contiguity. The third-generation sequencing techniques also are used to improve the quality of assembled genomes. However, both mate-pair libraries and the third-generation libraries require high-molecular-weight DNA, making the use of these libraries inappropriate for samples with only degraded DNA. An in silico method that generates mate-pair libraries using a reference genome was devised for the task of assembling target genomes. Although the contiguity and completeness of assembled genomes were significantly improved by this method, a high level of errors manifested in the assembly, further to which the methods for using reference genomes, was not optimized. Here, we tested different strategies for using reference genomes to generate in silico mate-pairs. The results showed that using a closely related reference genome from the same genus was more effective than using divergent references. Conservation of in silico mate-pairs by comparing two references and using those to guide genome assembly reduced the number of misassemblies (18.6%-46.1%) and increased the contiguity of assembled genomes (9.7%-70.7%), while maintaining gene completeness at a level that was either similar or marginally lower than that obtained via the current method. Finally, we developed a pipeline of the optimized in silico method and compared it with another reference-guided assembler, RagTag. We found that RagTag produced longer scaffolds (17.8 Mbp vs 3.0 Mbp), but resulted in a much higher misassembly rate (85.68%) than our optimized in silico mate-pair method. This optimized in silico pipeline developed in this study should facilitate further studies on genomics, population genetics, and conservation of endangered species.

15.
J Fish Biol ; 102(3): 619-627, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36602189

ABSTRACT

The authors used museomics to reconstruct the mitochondrial genome from two individuals of the Moroccan, endemic and extinct trout, Salmo pallaryi. They further obtained partial data from 21 nuclear genes previously used for trout phylogenetic analyses. Phylogenetic analyses, including publicly available data from the mitochondrial control region and the cytochrome b gene, and the 21 nuclear genes, place S. pallaryi among other North African trouts. mtDNA places S. pallaryi close to Salmo macrostigma within a single North African clade. Although the nuclear coverage of the genome was low, both specimens were independently positioned as sisters to one of two distantly related North African clades, viz. the Atlas clade with the Dades trout, Salmo multipunctatus. Phylogenetic discordance between mtDNA and nuclear DNA phylogenies is briefly discussed. As several specimens that were extracted failed to produce DNA of sufficient quality, the authors discuss potential reasons for the failure. They suggest that museum specimens in poor physical condition may be better for DNA extraction compared to better-preserved ones, possibly related to the innovation of formalin as a fixative before ethanol storage in the early 20th century.


Subject(s)
DNA, Mitochondrial , Trout , Animals , Phylogeny , Trout/genetics , DNA, Mitochondrial/genetics , Mitochondria/genetics , Sequence Analysis, DNA
16.
Forensic Sci Int ; 341: 111502, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36371979

ABSTRACT

In forensic crime scene investigations, biological fluids such as blood are commonly found in soil. However, the analysis of blood-stained soil can be challenging due to the presence of inhibitors which limit the effective extraction and amplification of the deoxyribonucleic acid (DNA) required to produce a reportable DNA profile. There are some extraction methods that have been applied to blood-stained soil in forensic science, but these have produced sporadic results. This research has taken a number of different extraction methods from the fields of ancient DNA and environmental DNA and broken them down into the individual steps of pre-treatment, incubation, separation and purification. These steps were assessed independently then combined into various extraction methods to determine the best technique that can effectively and reliably profile human DNA from blood-stained soil. Testing involved assessment of three extraction buffers, (cetyltrimethylammonium bromide, guanidine thiocyanate, and proteinase K), four pre-treatment methods, (polyvinylpyrrolidone, ethylenediaminetetraacetic acid, hydrochloric acid, and sodium hydroxide), three separation steps, (centrifugation, phenol chloroform, and chloroform) and four purification steps, (size exclusion chromatography, bind elute columns, isopropanol precipitation and silica magnetic beads). The most effective procedure was found to be a polyvinylpyrrolidone pre-treatment with a proteinase K extraction buffer followed by magnetic silica bead purification with or without centrifugation. However, centrifugation separation was found to be equally effective after the pre-treatment step as after the incubation step. Our results shows that most of the current forensic procedures would benefit from the addition of a pre-treatment step prior to processing through the automated DNA profiling pipeline.


Subject(s)
Blood Stains , Soil , Humans , Polymerase Chain Reaction/methods , DNA/analysis , Chloroform/analysis , Povidone , Endopeptidase K , Silicon Dioxide
17.
Genes (Basel) ; 13(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36292573

ABSTRACT

Forensic DNA phenotyping (FDP) provides the ability to predict the human external traits from unknown sample donors, directly from minute amounts of DNA found at the crime scene. We developed a MPS multiplex assay, with the aim of genotyping all 41 DNA markers included in the HIrisPlex-S system for simultaneous prediction of eye, hair and skin colours. Forensic samples such as blood, skeletal remains, touch DNA, saliva swab, artificially degraded samples together with individuals with known phenotypes and a set of 2800 M control DNA were sequenced on the Ion Torrent platform in order to evaluate the concordance testing results and the forensic suitability of the 41-plex MPS assay. The panel was evaluated by testing a different number of PCR cycles and the volume of reagents for library preparation. The study demonstrated that full and reliable profiles were obtained with 0.1-5 ng, even with high degraded DNA. The increment of the number of PCR cycles results in an improvement of correctly genotyping and phenotyping for samples with low amounts of degraded DNA but higher frequencies of artefacts were found. The high DNA degradation level did not influence the correct genotyping and phenotyping and the critical parameter affecting the result is the quantity of input DNA. Eye and hair colour was predicted in 92.60% of individuals and skin colour in 85.15% of individuals. The results suggest that this MPS assay is robust, highly sensitive and useful for human pigmentation prediction in the forensic genetic field.


Subject(s)
Eye Color , Polymorphism, Single Nucleotide , Humans , Eye Color/genetics , Genetic Markers , Hair Color/genetics , DNA/genetics
18.
Mol Biol Rep ; 49(8): 7753-7763, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35670929

ABSTRACT

BACKGROUND: Ensuring the authenticity of raw materials is a key step prior to producing Chinese patent medicines. Pinellia ternata (Thunb.) Breit. is the botanical origin of Pinelliae Rhizoma (Banxia), a traditional Chinese medicine used to treat cough, insomnia, nausea, inflammation, epilepsy, and so on. Unfortunately, authentic Pinelliae Rhizoma is often adulterated by morphologically indistinguishable plant material due to the insufficient regulatory procedures of processed medicinal plant products. Thus, it is important to develop a molecular assay based on species-specific nucleotide signatures and primers to efficiently distinguish authentic Pinelliae Rhizoma from its adulterants. METHODS AND RESULTS: The ITS2 region of 67 Pinelliae Rhizoma and its common adulterants were sequenced. Eight single nucleotide polymorphisms within a 28-43 bp stretch of ITS2 were used to develop six primer pairs to amplify these species-specific regions. We assayed 56 Pinelliae Rhizoma products sold on the Chinese market, including medicinal slices, powder and Chinese patent medicines, which revealed that about 66% of products were adulterated. The most common adulterants were Pinellia pedatisecta (found in 57% of the assayed products), Arisaema erubescens (9%), Typhonium giganteum (2%) and Typhonium flagelliforme (2%). CONCLUSIONS: A severe adulteration condition was revealed in the traditional medicine market. The species-specific nucleotide assays developed in this study can be applied to reliably identify Pinelliae Rhizoma and its adulterants, aiding in the authentication and quality control of processed products on the herbal market.


Subject(s)
Drugs, Chinese Herbal , Pinellia , Nonprescription Drugs , Nucleotides , Pinellia/genetics , Rhizome/genetics
19.
Int J Legal Med ; 136(5): 1255-1260, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35333964

ABSTRACT

The availability of a reliable molecular assay in species recognition in forensic cases is of paramount importance when visual inspection or morphological methods are not exhaustive, especially from challenging samples. Here, two different caseworks involving bone samples founded during medico-legal outdoor investigations are presented. In order to exclude the human nature of the specimens and to determine the exact species they belong to, we proceeded with the molecular approach trying to generate sequences from the classical mtDNA markers cyt b and COI. However, they both gave critical results. For this reason, a short amplicon of ~ 150 bp of the 12S rRNA gene was used as an alternative.This short fragment was sufficient to identify the biological origin of the bone specimens with a high degree of certainty leading to the exclusion of their human nature. This work highlights the utility of the 12S rRNA and underlines the importance of deepen the choice of alternative shorter markers with respect to the classical ones, in order to achieve species identification even from challenging and degraded material in forensic criminal and wildlife caseworks.


Subject(s)
DNA, Mitochondrial , RNA, Ribosomal , DNA Primers/genetics , DNA, Mitochondrial/genetics , Humans , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal/genetics
20.
Genes (Basel) ; 13(1)2022 01 11.
Article in English | MEDLINE | ID: mdl-35052469

ABSTRACT

The integration of massively parallel sequencing (MPS) technology into forensic casework has been of particular benefit to the identification of unknown military service members. However, highly degraded or chemically treated skeletal remains often fail to provide usable DNA profiles, even with sensitive mitochondrial (mt) DNA capture and MPS methods. In parallel, the ancient DNA field has developed workflows specifically for degraded DNA, resulting in the successful recovery of nuclear DNA and mtDNA from skeletal remains as well as sediment over 100,000 years old. In this study we use a set of disinterred skeletal remains from the Korean War and World War II to test if ancient DNA extraction and library preparation methods improve forensic DNA profiling. We identified an ancient DNA extraction protocol that resulted in the recovery of significantly more human mtDNA fragments than protocols previously used in casework. In addition, utilizing single-stranded rather than double-stranded library preparation resulted in increased attainment of reportable mtDNA profiles. This study emphasizes that the combination of ancient DNA extraction and library preparation methods evaluated here increases the success rate of DNA profiling, and likelihood of identifying historical remains.


Subject(s)
Body Remains/metabolism , DNA Fingerprinting/methods , DNA, Ancient/analysis , Forensic Genetics , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods , DNA, Ancient/isolation & purification , Humans , Korean War , World War II
SELECTION OF CITATIONS
SEARCH DETAIL
...