ABSTRACT
Pesticides are chemicals used in agriculture, forestry, and, to some extent, public health. As effective as they can be, due to the limited biodegradability and toxicity of some of them, they can also have negative environmental and health impacts. Pesticide biodegradation is important because it can help mitigate the negative effects of pesticides. Many types of microorganisms, including bacteria, fungi, and algae, can degrade pesticides; microorganisms are able to bioremediate pesticides using diverse metabolic pathways where enzymatic degradation plays a crucial role in achieving chemical transformation of the pesticides. The growing concern about the environmental and health impacts of pesticides is pushing the industry of these products to develop more sustainable alternatives, such as high biodegradable chemicals. The degradative properties of microorganisms could be fully exploited using the advances in genetic engineering and biotechnology, paving the way for more effective bioremediation strategies, new technologies, and novel applications. The purpose of the current review is to discuss the microorganisms that have demonstrated their capacity to degrade pesticides and those categorized by the World Health Organization as important for the impact they may have on human health. A comprehensive list of microorganisms is presented, and some metabolic pathways and enzymes for pesticide degradation and the genetics behind this process are discussed. Due to the high number of microorganisms known to be capable of degrading pesticides and the low number of metabolic pathways that are fully described for this purpose, more research must be conducted in this field, and more enzymes and genes are yet to be discovered with the possibility of finding more efficient metabolic pathways for pesticide biodegradation.
Subject(s)
Pesticides , Humans , Pesticides/toxicity , Biodegradation, Environmental , Bacteria/metabolism , Fungi/metabolism , AgricultureABSTRACT
Fibrosis is a condition characterized by the excessive accumulation of extracellular matrix proteins in tissues, leading to organ dysfunction and failure. Recent studies have identified EP300, a histone acetyltransferase, as a crucial regulator of the epigenetic changes that contribute to fibrosis. In fact, EP300-mediated acetylation of histones alters global chromatin structure and gene expression, promoting the development and progression of fibrosis. Here, we review the role of EP300-mediated epigenetic regulation in multi-organ fibrosis and its potential as a therapeutic target. We discuss the preclinical evidence that suggests that EP300 inhibition can attenuate fibrosis-related molecular processes, including extracellular matrix deposition, inflammation, and epithelial-to-mesenchymal transition. We also highlight the contributions of small molecule inhibitors and gene therapy approaches targeting EP300 as novel therapies against fibrosis.
Subject(s)
Epigenesis, Genetic , Histones , Humans , Fibrosis , Histones/metabolism , Extracellular Matrix/metabolism , Histone Acetyltransferases/metabolism , E1A-Associated p300 Protein/genetics , E1A-Associated p300 Protein/metabolismABSTRACT
Background: Anaerobic digestion is an alternative bioprocess used to treat effluents containing toxic compounds such as phenol and p-cresol. Selection of an adequate sludge as inoculum containing an adapted microbial consortium is a relevant factor to improve the removal of these pollutants. The objective of this study is to identify the key microorganisms involved in the anaerobic digestion of phenol and p-cresol and elucidate the relevance of the bamA gene abundance (a marker gene for aromatic degraders) in the process, in order to establish new strategies for inocula selection and improve the system's performance. Results: Successive batch anaerobic digestion of phenol and p-cresol was performed using granular or suspended sludge. Granular sludge in comparison to suspended sludge showed higher degradation rates both for phenol (11.3 ± 0.7 vs 8.1 ± 1.1 mg l-1 d-1) and p-cresol (7.8 ± 0.4 vs 3.7 ± 1.0 mg l-1 d-1). After three and four re-feedings of phenol and p-cresol, respectively, the microbial structure from both sludges was clearly different from the original sludges. Anaerobic digestion of phenol and p-cresol generated an abundance increase in Syntrophorhabdus genus and bamA gene, together with hydrogenotrophic and aceticlastic archaea. Analysis of results indicates that differences in methanogenic pathways and levels of Syntrophorhabdus and bamA gene in the inocula, could be the causes of dissimilar degradation rates between each sludge. Conclusions: Syntrophorhabdus and bamA gene play relevant roles in anaerobic degradation of phenolics. Estimation of these components could serve as a fast screening tool to find the most acclimatized sludge to efficiently degrade mono-aromatic compounds.
Subject(s)
Bacteria/metabolism , Anaerobic Digestion , Phenol/metabolism , Cresols/metabolism , Phenols/metabolism , Sewage , Biodegradation, Environmental , Deltaproteobacteria , Microbial Consortia , Real-Time Polymerase Chain ReactionABSTRACT
ABSTRACT The goal of this investigation was to isolate competent polynuclear aromatic hydrocarbons degraders that can utilize polynuclear aromatic hydrocarbons of former industrial sites at McDoel Switchyard in Bloomington, Indiana. Using conventional enrichment method based on soil slurry, we isolated, screened and purified two bacterial species strains PB1 and PB2. Applying the ribotyping technique using the 16S rRNA gene analysis, the strains were assigned to the genus Pseudomonas (Pseudomonas plecoglossicida strain PB1 and Pseudomonas sp. PB2). Both isolates showed promising metabolic capacity on pyrene sprayed MS agar plates during the preliminary investigations. Using time course studies in the liquid cultures at calculated concentrations 123, 64, 97 and 94 ppm for naphthalene, chrysene, fluroanthene and pyrene, P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 showed partial utilization of the polynuclear aromatic hydrocarbons. Naphthalene was degraded between 26% and 40%, chrysene 14% and 16%, fluroanthene 5% and 7%; pyrene 8% and 13% by P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 respectively. Based on their growth profile, we developed a model R2 = 1 to predict the degradation rate of slow polynuclear aromatic hydrocarbon-degraders where all the necessary parameters are constant. From this investigation, we confirm that the former industrial site soil microbial communities may be explored for the biorestoration of the industrial site.
Subject(s)
Polycyclic Aromatic Hydrocarbons/metabolism , Pseudomonas/metabolism , Phylogeny , Pseudomonas/classification , Pseudomonas/genetics , Pyrenes/metabolism , Soil/chemistry , Soil Microbiology , Biodegradation, Environmental , Carbon/chemistry , RNA, Ribosomal, 16S/genetics , Chrysenes/metabolism , Naphthalenes/metabolism , Nitrogen/chemistryABSTRACT
The goal of this investigation was to isolate competent polynuclear aromatic hydrocarbons degraders that can utilize polynuclear aromatic hydrocarbons of former industrial sites at McDoel Switchyard in Bloomington, Indiana. Using conventional enrichment method based on soil slurry, we isolated, screened and purified two bacterial species strains PB1 and PB2. Applying the ribotyping technique using the 16S rRNA gene analysis, the strains were assigned to the genus Pseudomonas (Pseudomonas plecoglossicida strain PB1 and Pseudomonas sp. PB2). Both isolates showed promising metabolic capacity on pyrene sprayed MS agar plates during the preliminary investigations. Using time course studies in the liquid cultures at calculated concentrations 123, 64, 97 and 94 ppm for naphthalene, chrysene, fluroanthene and pyrene, P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 showed partial utilization of the polynuclear aromatic hydrocarbons. Naphthalene was degraded between 26% and 40%, chrysene 14% and 16%, fluroanthene 5% and 7%; pyrene 8% and 13% by P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 respectively. Based on their growth profile, we developed a model R2 = 1 to predict the degradation rate of slow polynuclear aromatic hydrocarbon-degraders where all the necessary parameters are constant. From this investigation, we confirm that the former industrial site soil microbial communities may be explored for the biorestoration of the industrial site.(AU)
Subject(s)
Pseudomonas/chemistry , Pseudomonas/cytology , Biodegradation, Environmental , Hydrocarbons, AromaticABSTRACT
The goal of this investigation was to isolate competent polynuclear aromatic hydrocarbons degraders that can utilize polynuclear aromatic hydrocarbons of former industrial sites at McDoel Switchyard in Bloomington, Indiana. Using conventional enrichment method based on soil slurry, we isolated, screened and purified two bacterial species strains PB1 and PB2. Applying the ribotyping technique using the 16S rRNA gene analysis, the strains were assigned to the genus Pseudomonas (Pseudomonas plecoglossicida strain PB1 and Pseudomonas sp. PB2). Both isolates showed promising metabolic capacity on pyrene sprayed MS agar plates during the preliminary investigations. Using time course studies in the liquid cultures at calculated concentrations 123, 64, 97 and 94ppm for naphthalene, chrysene, fluroanthene and pyrene, P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 showed partial utilization of the polynuclear aromatic hydrocarbons. Naphthalene was degraded between 26% and 40%, chrysene 14% and 16%, fluroanthene 5% and 7%; pyrene 8% and 13% by P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 respectively. Based on their growth profile, we developed a model R(2)=1 to predict the degradation rate of slow polynuclear aromatic hydrocarbon-degraders where all the necessary parameters are constant. From this investigation, we confirm that the former industrial site soil microbial communities may be explored for the biorestoration of the industrial site.
Subject(s)
Polycyclic Aromatic Hydrocarbons/metabolism , Pseudomonas/metabolism , Biodegradation, Environmental , Carbon/chemistry , Chrysenes/metabolism , Hydrogen/chemistry , Naphthalenes/metabolism , Nitrogen/chemistry , Phylogeny , Pseudomonas/classification , Pseudomonas/genetics , Pyrenes/metabolism , RNA, Ribosomal, 16S/genetics , Soil/chemistry , Soil MicrobiologyABSTRACT
Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review.