Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.943
Filter
1.
Nature ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39322691
2.
STAR Protoc ; 5(4): 103312, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39298322

ABSTRACT

Here, we present a protocol for staining murine skin innervation by either a pan-axonal marker or a genetic tracer of sensory neuron subtypes using floating sections. We also describe steps for using a new MATLAB-based semiautomated routine that facilitates the quantification of innervation density. This protocol can also be applied to other organs, such as the mouse's spinal cord and tongue. For complete details on the use and execution of this protocol, please refer to Dey et al.1.

3.
Cell Rep ; 43(9): 114762, 2024 09 24.
Article in English | MEDLINE | ID: mdl-39321020

ABSTRACT

Adult mammary stem cells (aMaSCs) are vital to tissue expansion and remodeling during the process of postnatal mammary development. The protein C receptor (Procr) is one of the well-identified surface markers of multipotent aMaSCs. However, an understanding of the regulatory mechanisms governing Procr's protein stability remains incomplete. In this study, we identified Glycoprotein m6a (Gpm6a) as a critical protein for aMaSC activity modulation by using the Gpm6a knockout mouse model. Interestingly, we determined that Gpm6a depletion results in a reduction of Procr protein stability. Mechanistically, Gpm6a regulates Procr protein stability by mediating the formation of lipid rafts, a process requiring Zdhhc1 and Zdhhc2 to palmitate Gpm6a at Cys17,18 and Cys246 sites. Our findings highlight an important mechanism involving Zdhhc1- and Zdhhc2-mediated Gpm6a palmitoylation for the regulation of Procr stability, aMaSC activity, and postnatal mammary development.


Subject(s)
Acyltransferases , Lipoylation , Mammary Glands, Animal , Animals , Acyltransferases/metabolism , Acyltransferases/genetics , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Mice , Female , Mice, Knockout , Humans , Membrane Microdomains/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Protein Stability
4.
iScience ; 27(10): 110893, 2024 Oct 18.
Article in English | MEDLINE | ID: mdl-39328932

ABSTRACT

DDI2 is an aspartic protease that cleaves polyubiquitinated substrates. Upon proteotoxic stress, DDI2 activates the transcription factor TCF11/NRF1 (NFE2L1), crucial for maintaining proteostasis in mammalian cells, enabling the expression of rescue factors, including proteasome subunits. Here, we describe the consequences of DDI2 ablation in vivo and in cells. DDI2 knock-out (KO) in mice caused embryonic lethality at E12.5 with severe developmental failure. Molecular characterization of embryos showed insufficient proteasome expression with proteotoxic stress, accumulation of high molecular weight ubiquitin conjugates and induction of the unfolded protein response (UPR) and cell death pathways. In DDI2 surrogate KO cells, proteotoxic stress activated the integrated stress response (ISR) and induced a type I interferon (IFN) signature and IFN-induced proliferative signaling, possibly ensuring survival. These results indicate an important role for DDI2 in the cell-tissue proteostasis network and in maintaining a balanced immune response.

5.
STAR Protoc ; 5(4): 103342, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39331499

ABSTRACT

Appendage regeneration occurs within the opaque exoskeleton in arthropods, making it challenging to visualize the regenerative processes dynamically. In this protocol, we present a strategy to scan and capture the high-resolution details of microstructural tissues at certain regeneration points through micro-computed tomography (micro-CT). We describe steps for tissue preparation, fixation, critical point drying, micro-CT scanning, and 3D visualization. This approach promises significant utility in the field of regeneration, particularly in studies involving arthropods such as insects and crustaceans. For complete details on the use and execution of this protocol, please refer to Ren et al.1.

6.
Cell Rep ; 43(10): 114781, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39331503

ABSTRACT

Animal development is dictated by the selective and timely decay of mRNAs in developmental transitions, but the impact of mRNA decapping scaffold proteins in development is unclear. This study unveils the roles and interactions of the DCAP-2 decapping scaffolds EDC-3 and EDC-4 in the embryonic development of C. elegans. EDC-3 facilitates the timely removal of specific embryonic mRNAs, including cgh-1, car-1, and ifet-1 by reducing their expression and preventing excessive accumulation of DCAP-2 condensates in somatic cells. We further uncover a role for EDC-3 in defining the boundaries between P bodies, germ granules, and stress granules. Finally, we show that EDC-4 counteracts EDC-3 and engenders the assembly of DCAP-2 with the GID (CTLH) complex, a ubiquitin ligase involved in maternal-to-zygotic transition (MZT). Our findings support a model where multiple RNA decay mechanisms temporally clear maternal and zygotic mRNAs throughout embryonic development.

7.
STAR Protoc ; 5(4): 103352, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342621

ABSTRACT

Generation of CRISPR-Cas9-edited cortical neurons from human pluripotent stem cells (hPSCs) enables the study of gene functions and neural disease mechanisms. Here, we present a protocol for developing iCas9-iNgn2 hPSC, an inducible cell line that allows the simultaneous induction of the neuralizing transcription factor Ngn2 and the Cas9 nuclease to rapidly generate edited human cortical neurons. We describe the steps of the protocol from transducing iCas9-iNgn2 with guide RNA-containing lentivirus to producing edited cortical neurons in about 2 weeks. For complete details on the use and execution of this protocol, please refer to Dhaliwal et al.1.

8.
BMC Biol ; 22(1): 221, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39343875

ABSTRACT

BACKGROUND: The growth factor receptor bound protein 7 (Grb7) family of signalling adaptor proteins comprises Grb7, Grb10 and Grb14. Each can interact with the insulin receptor and other receptor tyrosine kinases, where Grb10 and Grb14 inhibit insulin receptor activity. In cell culture studies they mediate functions including cell survival, proliferation, and migration. Mouse knockout (KO) studies have revealed physiological roles for Grb10 and Grb14 in glucose-regulated energy homeostasis. Both Grb10 KO and Grb14 KO mice exhibit increased insulin signalling in peripheral tissues, with increased glucose and insulin sensitivity and a modestly increased ability to clear a glucose load. In addition, Grb10 strongly inhibits fetal growth such that at birth Grb10 KO mice are 30% larger by weight than wild type littermates. RESULTS: Here, we generate a Grb7 KO mouse model. We show that during fetal development the expression patterns of Grb7 and Grb14 each overlap with that of Grb10. Despite this, Grb7 and Grb14 did not have a major role in influencing fetal growth, either alone or in combination with Grb10. At birth, in most respects both Grb7 KO and Grb14 KO single mutants were indistinguishable from wild type, while Grb7:Grb10 double knockout (DKO) were near identical to Grb10 KO single mutants and Grb10:Grb14 DKO mutants were slightly smaller than Grb10 KO single mutants. In the developing kidney Grb7 had a subtle positive influence on growth. An initial characterisation of Grb7 KO adult mice revealed sexually dimorphic effects on energy homeostasis, with females having a significantly smaller renal white adipose tissue depot and an enhanced ability to clear glucose from the circulation, compared to wild type littermates. Males had elevated fasted glucose levels with a trend towards smaller white adipose depots, without improved glucose clearance. CONCLUSIONS: Grb7 and Grb14 do not have significant roles as inhibitors of fetal growth, unlike Grb10, and instead Grb7 may promote growth of the developing kidney. In adulthood, Grb7 contributes subtly to glucose mediated energy homeostasis, raising the possibility of redundancy between all three adaptors in physiological regulation of insulin signalling and glucose handling.


Subject(s)
Fetal Development , GRB10 Adaptor Protein , GRB7 Adaptor Protein , Glucose , Mice, Knockout , Animals , GRB10 Adaptor Protein/genetics , GRB10 Adaptor Protein/metabolism , Mice , Female , GRB7 Adaptor Protein/metabolism , GRB7 Adaptor Protein/genetics , Glucose/metabolism , Male , Fetal Development/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Signal Transduction
9.
Cell Syst ; 15(9): 790-807, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39236709

ABSTRACT

The discovery of general principles underlying the complexity and diversity of cellular and developmental systems is a central and long-standing aim of biology. While new technologies collect data at an ever-accelerating rate, there is growing concern that conceptual progress is not keeping pace. We contend that this is due to a paucity of conceptual frameworks that support meaningful generalizations. This led us to develop the core and periphery (C&P) hypothesis, which posits that many biological systems can be decomposed into a highly versatile core with a large behavioral repertoire and a specific periphery that configures said core to perform one particular function. Versatile cores tend to be widely reused across biology, which confers generality to theories describing them. Here, we introduce this concept and describe examples at multiple scales, including Turing patterning, actomyosin dynamics, multi-cellular morphogenesis, and vertebrate gastrulation. We also sketch its evolutionary basis and discuss key implications and open questions. We propose that the C&P hypothesis could unlock new avenues of conceptual progress in mesoscale biology.


Subject(s)
Developmental Biology , Developmental Biology/methods , Animals , Humans , Morphogenesis , Cell Biology , Gastrulation/physiology , Models, Biological , Biological Evolution
10.
Elife ; 132024 Sep 11.
Article in English | MEDLINE | ID: mdl-39259216

ABSTRACT

Multiple embryonic origins give rise to forebrain oligodendrocytes (OLs), yet controversies and uncertainty exist regarding their differential contributions. We established intersectional and subtractional strategies to genetically fate map OLs produced by medial ganglionic eminence/preoptic area (MGE/POA), lateral/caudal ganglionic eminences (LGE/CGE), and dorsal pallium in the mouse brain. We found that, contrary to the canonical view, LGE/CGE-derived OLs make minimum contributions to the neocortex and corpus callosum, but dominate piriform cortex and anterior commissure. Additionally, MGE/POA-derived OLs, instead of being entirely eliminated, make small but sustained contribution to cortex with a distribution pattern distinctive from those derived from the dorsal origin. Our study provides a revised and more comprehensive view of cortical and white matter OL origins, and established valuable new tools and strategies for future OL studies.


Subject(s)
Oligodendroglia , Prosencephalon , Animals , Oligodendroglia/metabolism , Oligodendroglia/cytology , Prosencephalon/embryology , Prosencephalon/cytology , Mice , Cell Lineage/genetics
11.
Elife ; 132024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283662

ABSTRACT

Over the past several decades, a trend toward delayed childbirth has led to increases in parental age at the time of conception. Sperm epigenome undergoes age-dependent changes increasing risks of adverse conditions in offspring conceived by fathers of advanced age. The mechanism(s) linking paternal age with epigenetic changes in sperm remain unknown. The sperm epigenome is shaped in a compartment protected by the blood-testes barrier (BTB) known to deteriorate with age. Permeability of the BTB is regulated by the balance of two mTOR complexes in Sertoli cells where mTOR complex 1 (mTORC1) promotes the opening of the BTB and mTOR complex 2 (mTORC2) promotes its integrity. We hypothesized that this balance is also responsible for age-dependent changes in the sperm epigenome. To test this hypothesis, we analyzed reproductive outcomes, including sperm DNA methylation in transgenic mice with Sertoli cell-specific suppression of mTORC1 (Rptor KO) or mTORC2 (Rictor KO). mTORC2 suppression accelerated aging of the sperm DNA methylome and resulted in a reproductive phenotype concordant with older age, including decreased testes weight and sperm counts, and increased percent of morphologically abnormal spermatozoa and mitochondrial DNA copy number. Suppression of mTORC1 resulted in the shift of DNA methylome in sperm opposite to the shift associated with physiological aging - sperm DNA methylome rejuvenation and mild changes in sperm parameters. These results demonstrate for the first time that the balance of mTOR complexes in Sertoli cells regulates the rate of sperm epigenetic aging. Thus, mTOR pathway in Sertoli cells may be used as a novel target of therapeutic interventions to rejuvenate the sperm epigenome in advanced-age fathers.


Subject(s)
DNA Methylation , Sertoli Cells , Spermatozoa , Male , Animals , Sertoli Cells/metabolism , Mice , Spermatozoa/metabolism , Spermatozoa/physiology , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , TOR Serine-Threonine Kinases/metabolism , Mice, Knockout , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Regulatory-Associated Protein of mTOR/metabolism , Regulatory-Associated Protein of mTOR/genetics , Mice, Transgenic , Aging/physiology , Aging/genetics , Signal Transduction , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Epigenesis, Genetic
12.
Elife ; 132024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269144

ABSTRACT

Chondrocyte columns, which are a hallmark of growth plate architecture, play a central role in bone elongation. Columns are formed by clonal expansion following rotation of the division plane, resulting in a stack of cells oriented parallel to the growth direction. In this work, we analyzed hundreds of Confetti multicolor clones in growth plates of mouse embryos using a pipeline comprising 3D imaging and algorithms for morphometric analysis. Surprisingly, analysis of the elevation angles between neighboring pairs of cells revealed that most cells did not display the typical stacking pattern associated with column formation, implying incomplete rotation of the division plane. Morphological analysis revealed that although embryonic clones were elongated, they formed clusters oriented perpendicular to the growth direction. Analysis of growth plates of postnatal mice revealed both complex columns, composed of ordered and disordered cell stacks, and small, disorganized clusters located in the outer edges. Finally, correlation between the temporal dynamics of the ratios between clusters and columns and between bone elongation and expansion suggests that clusters may promote expansion, whereas columns support elongation. Overall, our findings support the idea that modulations of division plane rotation of proliferating chondrocytes determines the formation of either clusters or columns, a multifunctional design that regulates morphogenesis throughout pre- and postnatal bone growth. Broadly, this work provides a new understanding of the cellular mechanisms underlying growth plate activity and bone elongation during development.

13.
Cell Rep ; 43(10): 114770, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39321021

ABSTRACT

Functional refinement of neural circuits is a crucial developmental process in the brain. However, how synaptic maturation and axon wiring proceed cooperatively to establish reliable signal transmission is unclear. Here, we combined nanotopography of release machinery at the active zone (AZ), nanobiophysics of neurotransmitter release, and single-neuron reconstruction of axon arbors of lemniscal fibers (LFs) in the developing mouse somatosensory thalamus. With development, the cluster of Cav2.1 enlarges and translocates closer to vesicle release sites inside the bouton, and LFs drastically shrink their arbors and form larger boutons on the perisomatic region of target neurons. Experimentally constrained simulations show that the nanotopography of mature synapses enables not only rapid vesicular release but also reliable transmission following repetitive firing. Sensory deprivation impairs the developmental shift of molecular nanotopography and axon wiring. Thus, we uncovered the cooperative nanotopographical and morphological mechanisms underlying the developmental establishment of reliable synaptic transmission.

14.
Cell Rep ; 43(10): 114771, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39325624

ABSTRACT

Pial collaterals provide protection from ischemic damage and improve the prognosis of stroke patients. The origin or precise sequence of events underlying pial collateral development is unclear and has prevented clinicians from adapting new vascularization and regeneration therapies. We use genetic lineage tracing and intravital imaging of mouse brains at cellular resolution to show that during embryogenesis, pial collateral arteries develop from extension and anastomoses of pre-existing artery tips in a VegfR2-dependent manner. This process of artery tip extension occurs on pre-determined microvascular tracks. Our data demonstrate that an arterial receptor, Cxcr4, earlier shown to drive artery cell migration and coronary collateral development, is dispensable for the formation and maintenance of pial collateral arteries. Our study shows that collateral arteries of the brain are built by a mechanism distinct from that of the heart.

15.
Cell Rep ; 43(10): 114789, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39325622

ABSTRACT

Offspring growth requires establishing maternal behavior associated with the maternal endocrine profile. Placentae support the adaptations of the mother, producing bioactive molecules that affect maternal organs. We recently reported that placentae produce superoxide dismutase 3 (SOD3) that exerts sustained effects on the offspring liver via epigenetic modifications. Here, we demonstrate that placenta-specific Sod3 knockout (Sod3-/-) dams exhibited impaired maternal behavior and decreased prolactin levels. Most fibroblast growth factor (FGF)-regulated pathways were downregulated in the pituitary tissues from Sod3-/- dams. FGF1-, FGF2-, and FGF4-induced prolactin expression and signaling via the phosphoinositide 3-kinase (PI3K)-phospholipase C-γ1 (PLCγ1)-protein kinase-Cδ (PKC)δ axis were reduced in primary pituitary cells from Sod3-/- dams. Mechanistically, FGF1/FGF receptor (FGFR)2 expressions were inhibited by the suppression of the ten-eleven translocation (TET)/isocitrate dehydrogenase (IDH)/α-ketoglutarate pathway and DNA demethylation levels at the zinc finger and BTB domain containing 18 (ZBTB18)-targeted promoters of Fgf1/Fgfr2. Importantly, offspring from Sod3-/- dams also showed impaired nurturing behavior to their grandoffspring. Collectively, placenta-derived SOD3 promotes maternal behavior via epigenetic programming of the FGF/FGFR-prolactin axis.

16.
Cell Rep ; 43(9): 114698, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39226174

ABSTRACT

Sperm small RNAs have emerged as important non-genetic contributors to embryogenesis and offspring health. A subset of sperm small RNAs is thought to be acquired during epididymal transit. However, the identity of the specific small RNAs transferred remains unclear. Here, we employ Cre/Lox genetics to generate germline- and epididymal-specific Dgcr8 knockout (KO) mice to investigate the dynamics of sperm microRNAs (miRNAs) and their functions post-fertilization. Testicular sperm from germline Dgcr8 KO mice has reduced levels of 116 miRNAs. Enthrallingly, following epididymal transit, the abundance of 72% of these miRNAs is restored. Conversely, sperm from epididymal Dgcr8 KO mice displayed reduced levels of 27 miRNAs. This loss of epididymal miRNAs in sperm was accompanied by transcriptomic changes in embryos fertilized by this sperm, which was rescued by microinjection of epididymal miRNAs. These findings ultimately demonstrate the acquisition of miRNAs from the soma by sperm during epididymal transit and their subsequent regulation of embryonic gene expression.


Subject(s)
Epididymis , Gene Expression Regulation, Developmental , Mice, Knockout , MicroRNAs , Spermatozoa , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Male , Epididymis/metabolism , Spermatozoa/metabolism , Mice , Female , Fertilization/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Embryo, Mammalian/metabolism
17.
Cell Rep ; 43(9): 114750, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39283743

ABSTRACT

Mir483 is a conserved and highly expressed microRNA in placental mammals, embedded within the Igf2 gene. Its expression is dysregulated in a number of human diseases, including metabolic disorders and certain cancers. Here, we investigate the developmental regulation and function of Mir483 in vivo. We find that Mir483 expression is dependent on Igf2 transcription and the regulation of the Igf2/H19 imprinting control region. Transgenic Mir483 overexpression in utero causes fetal, but not placental, growth restriction through insulin-like growth factor 1 (IGF1) and IGF2 and also causes cardiovascular defects leading to fetal death. Overexpression of Mir483 post-natally results in growth stunting through IGF1 repression, increased hepatic lipid production, and excessive adiposity. IGF1 infusion rescues the post-natal growth restriction. Our findings provide insights into the function of Mir483 as a growth suppressor and metabolic regulator and suggest that it evolved within the INS-IGF2-H19 transcriptional region to limit excessive tissue growth through repression of IGF signaling.


Subject(s)
Insulin-Like Growth Factor II , Insulin-Like Growth Factor I , MicroRNAs , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Insulin-Like Growth Factor II/metabolism , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics , Mice , Female , Pregnancy , Gene Expression Regulation, Developmental , Mice, Transgenic , Humans , Genomic Imprinting , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/genetics , Fetal Growth Retardation/pathology , Mice, Inbred C57BL , RNA, Long Noncoding
18.
Cell Rep ; 43(9): 114760, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39299236

ABSTRACT

The composition and cellular heterogeneity of the corpus cavernosum (CC) microenvironment have been characterized, but the spatial heterogeneity at the molecular level remains unexplored. In this study, we integrate single-cell RNA sequencing (scRNA-seq) and spatial transcriptome sequencing to comprehensively chart the spatial cellular landscape of the human and rat CC under normal and disease conditions. We observe differences in the proportions of cell subtypes and marker genes between humans and rats. Based on the analysis of the fibroblast (FB) niche, we also find that the enrichment scores of mechanical force signaling vary across different regions and correlate with the spatial distribution of FB subtypes. In vitro, the soft and hard extracellular matrix (ECM) induces the differentiation of FBs into apolipoprotein (APO)+ FBs and cartilage oligomeric matrix protein (COMP)+ FBs, respectively. In summary, our study provides a cross-species and physiopathological transcriptomic atlas of the CC, contributing to a further understanding of the molecular anatomy and regulation of penile erection.


Subject(s)
Penis , Single-Cell Analysis , Animals , Humans , Male , Penis/metabolism , Rats , Extracellular Matrix/metabolism , Transcriptome/genetics , Fibroblasts/metabolism , Cell Differentiation , Rats, Sprague-Dawley
19.
STAR Protoc ; 5(4): 103347, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39340775

ABSTRACT

Mouse gastrulation entails concomitant changes in cell fate, tissue shape, and embryo size. The use of a reproducible in vitro system is crucial for dissecting the mechanisms that coordinate these events. Here, we present a protocol for generating a 3D culture of epiblast stem cells (3D EpiSCs), which grow as epithelial spheroids mimicking key features of the gastrulating mouse embryonic epiblast. We describe steps for spheroid formation, growth, and passaging, followed by imaging or further downstream analyses. For complete details on the use and execution of this protocol, please refer to Sato et al.1.

20.
Cell Rep ; 43(10): 114722, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39302834

ABSTRACT

Fat and Dachsous are evolutionarily conserved atypical cadherins that regulate polarized cell behaviors. In the Drosophila wing, they interact heterophilically between neighboring cells, localize asymmetrically to opposite cell ends, and control wing shape by regulating oriented cell rearrangements and divisions. Fat and Dachsous have 34 and 27 cadherin repeats, respectively, and previous work has identified trans interactions between their first four cadherin repeats. Here, we identify a second heterophilic binding site in their C-terminal cadherin repeats and show the conservation of this binding site in human Fat4 and Dachsous1. We provide evidence that both N- and C-terminal binding sites regulate the stability of Fat-Dachsous binding interactions and show that the N-terminal binding sites are partly dispensable for Fat-Dachsous function in vivo. Finally, we provide in vivo confirmation that the N-terminal repeats interact in an anti-parallel manner. We propose that multiple binding sites promote the clustering of Fat and Dachsous into a lattice-like array.

SELECTION OF CITATIONS
SEARCH DETAIL