Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37895871

ABSTRACT

Ageratina pichinchensis (Kunth) R.M. King & H. Rob. belongs to the Asteraceae family and is a plant native to Mexico to which several biological properties are attributed. In this study, the cytotoxic effect of four extracts from the wild plants and two extracts from A. pichinchensis callus culture were evaluated against carcinogenic cell lines including prostate carcinoma, cervical cancer, hepatocellular carcinoma, hepatoma human, lung cancer, and cellular keratinocytes. The extracts were obtained with ethyl acetate and methanol using both leaves and stems or the callus. Only the ethyl acetate extract of the callus culture influenced the cervical cancer cell line (HeLa) with an IC50 of 94.79 ± 2.0 µg/mL. From the ethyl acetate callus extract, 2,3-dihydrobenzofuran was isolated and purified and also evaluated against cancer cells. The cytotoxic evaluation of this compound showed a significant effect against the HeLa cell line with an IC50 of 23.86 ± 2.5 µg/mL. Our results contribute to the development of biotechnological alternatives and extraction processes to produce compounds with possible potential against certain types of human cancer.

2.
Pharmaceutics ; 15(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36986617

ABSTRACT

Chagas disease is a neglected tropical disease that affects more than 8 million people. Although there are therapies against this disease, the search for new drugs is important because the current treatments show limited effectiveness and high toxicity. In this work, eighteen dihydrobenzofuran-type neolignans (DBNs) and two benzofuran-type neolignans (BNs) were synthesized and evaluated against amastigote forms of two Trypanosoma cruzi strains. The in vitro cytotoxicity and hemolytic activity of the most active compounds were also evaluated and their relationships with T. cruzi tubulin DBNs were investigated by an in silico approach. Four DBNs demonstrated activity against the T. cruzi Tulahuen lac-Z strain (IC50 from 7.96 to 21.12 µM), and DBN 1 exhibited the highest activity against the amastigote forms of the T. cruzi Y strain (IC50 3.26 µM). Compounds 1-4 showed CC50 values higher than antitrypanosomal activities, except for DBN 3. All DBNs with antitrypanosomal activity demonstrated CH50 higher than 100 µM. The in silico results indicated that DBNs 1, 2, and 4 are capable of destabilizing the dynamics of the tubulin-microtubule from the vinca site. These compounds displayed promising in vitro activity against T. cruzi, especially compound 1, and can be considered molecular prototypes for the development of new antiparasitic drugs.

3.
Bioorg Med Chem ; 30: 115924, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33333448

ABSTRACT

Histamine acts through four different receptors (H1R-H4R), the H3R and H4R being the most explored in the last years as drug targets. The H3R is a potential target to treat narcolepsy, Parkinson's disease, epilepsy, schizophrenia and several other CNS-related conditions, while H4R blockade leads to anti-inflammatory and immunomodulatory effects. Our group has been exploring the dihydrobenzofuranyl-piperazines (LINS01 series) as human H3R/H4R ligands as potential drug candidates. In the present study, a set of 12 compounds were synthesized from adequate (dihydro)benzofuran synthons through simple reactions with corresponding piperazines, giving moderate to high yields. Four compounds (1b, 1f, 1g and 1h) showed high hH3R affinity (pKi > 7), compound 1h being the most potent (pKi 8.4), and compound 1f showed the best efficiency (pKi 8.2, LE 0.53, LLE 5.85). BRET-based assays monitoring Gαi activity indicated that the compounds are potent antagonists. Only one compound (2c, pKi 7.1) presented high affinity for hH4R. In contrast to what was observed for hH3R, it showed partial agonist activity. Docking experiments indicated that bulky substituents occupy a hydrophobic pocket in hH3R, while the N-allyl group forms favorable interactions with hydrophobic residues in the TM2, 3 and 7, increasing the selectivity towards hH3R. Additionally, the importance of the indole NH in the interaction with Glu5.46 from hH4R was confirmed by the modeling results, explaining the affinity and agonistic activity of compound 2c. The data reported in this work represent important findings for the rational design of future compounds for hH3R and hH4R.


Subject(s)
Histamine Antagonists/pharmacology , Piperazines/pharmacology , Receptors, Histamine H3/metabolism , Receptors, Histamine H4/antagonists & inhibitors , Dose-Response Relationship, Drug , Histamine Antagonists/chemical synthesis , Histamine Antagonists/chemistry , Humans , Ligands , Models, Molecular , Molecular Structure , Piperazines/chemical synthesis , Piperazines/chemistry , Receptors, Histamine H4/metabolism , Structure-Activity Relationship
4.
Biol Res ; 52(1): 1, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30612577

ABSTRACT

BACKGROUND: Ethnomedicinally, the family Polygonaceae is famous for the management of cancer. Various species of this family have been reported with anticancer potentials. This study was designed to isolate anticancer compounds from ethnomedicinally important species Polygonum barbatum. METHODS: The column chromatography was used for the isolation of compounds from the solvent fraction of P. barbatum. The characterization of isolated compounds was performed by various spectroscopic techniques like UV, IR, mass spectrometry and 1D-2D NMR spectroscopy. Keeping in view the ethnomedicinal importance of the family, genus and species of P. barbatum, the isolated compounds (1-3) were screened for anticancer potentials against oral cancer (CAL-27) and lungs cancer (NCI H460) cell lines using MTT assay. Active compound was further investigated for apoptosis by using morphological changes and flow cytometry analysis. In vivo anti-angiogenic study of the isolated compounds was also carried using chorioallantoic membrane assay. Docking studies were carried out to explore the mechanism of anticancer activity. RESULTS: Three dihydrobenzofuran derivatives (1-3) have been isolated from the ethyl acetate fraction of P. barbatum. The structures of isolated compounds were elucidated as methyl (2S,3S)-2-(3,4-dimethoxyphenyl)-4-((E)-3-ethoxy-3-oxoprop-1-en-1-yl)-7-methoxy-2,3-dihydrobenzo-furan-3-carboxylate (1), (E)-3-((2S,3S)-2-(3,4-dimethoxyphenyl)-7-methoxy-3-(methoxy carbonyl)-2,3-dihydrobenzofuran-4-yl)acrylic acid (2) and (2S,3S)-4-((E)-2-carboxyvinyl)-2-(3,4-dimethoxyphenyl)-7-hydroxy-2,3-dihydrobenzofuran-3-carboxylic acid (3). The compound 1 was found to be more potent with IC50 of 48.52 ± 0.95 and 53.24 ± 1.49 against oral cancer cells as compared to standard drug (IC50 = 97.76 ± 3.44 µM). Both compound also inhibited lung cancer cells but at higher concentrations. Morphological and flow cytometry analysis further confirms that compound 1 induces apoptosis after 24 to 48 h treatment. In antiangiogenesis assay, compounds 1, 2 and 3 exhibited IC50 values of 8.2 ± 1.1, 13.4 ± 1.1 and 57.7 ± 0.3 µM respectively. The docking studies revealed that the compounds under study have the potential to target the DNA and thymidylate synthase (TS). CONCLUSION: Based on its overwhelming potency against the tested cell lines and in angiogenesis assay, compound 1 can be further evaluated mechanistically and can be developed as anticancer drug candidate.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Benzofurans/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Squamous Cell/drug therapy , Cell Proliferation/drug effects , Polygonum/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Benzofurans/chemistry , Benzofurans/isolation & purification , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Humans , Polygonum/classification
5.
J Mass Spectrom ; 54(1): 35-46, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30362641

ABSTRACT

We have investigated gas-phase fragmentation reactions of protonated benzofuran neolignans (BNs) and dihydrobenzofuran neolignans (DBNs) by accurate-mass electrospray ionization tandem and multiple-stage (MSn ) mass spectrometry combined with thermochemical data estimated by Computational Chemistry. Most of the protonated compounds fragment into product ions B ([M + H-MeOH]+ ), C ([B-MeOH]+ ), D ([C-CO]+ ), and E ([D-CO]+ ) upon collision-induced dissociation (CID). However, we identified a series of diagnostic ions and associated them with specific structural features. In the case of compounds displaying an acetoxy group at C-4, product ion C produces diagnostic ions K ([C-C2 H2 O]+ ), L ([K-CO]+ ), and P ([L-CO]+ ). Formation of product ions H ([D-H2 O]+ ) and M ([H-CO]+ ) is associated with the hydroxyl group at C-3 and C-3', whereas product ions N ([D-MeOH]+ ) and O ([N-MeOH]+ ) indicate a methoxyl group at the same positions. Finally, product ions F ([A-C2 H2 O]+ ), Q ([A-C3 H6 O2 ]+ ), I ([A-C6 H6 O]+ ), and J ([I-MeOH]+ ) for DBNs and product ion G ([B-C2 H2 O]+ ) for BNs diagnose a saturated bond between C-7' and C-8'. We used these structure-fragmentation relationships in combination with deuterium exchange experiments, MSn data, and Computational Chemistry to elucidate the gas-phase fragmentation pathways of these compounds. These results could help to elucidate DBN and BN metabolites in in vivo and in vitro studies on the basis of electrospray ionization ESI-CID-MS/MS data only.

6.
Biol. Res ; 52: 1, 2019. tab, graf
Article in English | LILACS | ID: biblio-1011405

ABSTRACT

BACKGROUND: Ethnomedicinally, the family Polygonaceae is famous for the management of cancer. Various species of this family have been reported with anticancer potentials. This study was designed to isolate anticancer compounds from ethnomedicinally important species Polygonum barbatum. METHODS: The column chromatography was used for the isolation of compounds from the solvent fraction of P. barbatum. The characterization of isolated compounds was performed by various spectroscopic techniques like UV, IR, mass spectrometry and 1D-2D NMR spectroscopy. Keeping in view the ethnomedicinal importance of the family, genus and species of P barbatum, the isolated compounds (1-3) were screened for anticancer potentials against oral cancer (CAL-27) and lungs cancer (NCI H460) cell lines using MTT assay. Active compound was further investigated for apoptosis by using morphological changes and flow cytometry analysis. In vivo anti-angiogenic study of the isolated compounds was also carried using chorioallantoic membrane assay. Docking studies were carried out to explore the mechanism of anticancer activity. RESULTS: Three dihydrobenzofuran derivatives (1-3) have been isolated from the ethyl acetate fraction of P. barbatum. The structures of isolated compounds were elucidated as methyl (2S,3S)-2-(3,4-dimethoxyphenyl)-4-((E)-3-ethoxy-3-oxoprop-1-en-1-yl)-7-methoxy-2,3-dihydrobenzo-furan-3-carboxylate (1), (E)-3-((2S,3S)-2-(3,4-dimethoxyphenyl)-7-methoxy-3-(methoxy carbonyl)-2,3-dihydrobenzofuran-4-yl)acrylic acid (2) and (2S,3 S)-4-((E)-2-carboxyvinyl)-2-(3,4-dimethoxyphenyl)-7-hydroxy-2,3-dihydrobenzofuran-3-carboxylic acid (3). The compound 1 was found to be more potent with IC50 of 48.52 ± 0.95 and 53.24 ± 1.49 against oral cancer cells as compared to standard drug (IC50 = 97.76 ± 3.44 µM). Both compound also inhibited lung cancer cells but at higher concentrations. Morphological and flow cytometry analysis further confirms that compound 1 induces apoptosis after 24 to 48 h treatment. In antiangiogenesis assay, compounds 1, 2 and 3 exhibited IC50 values of 8.2 ± 1.1,13.4 ± 1.1 and 57.7 ± 0.3 µM respectively. The docking studies revealed that the compounds under study have the potential to target the DNA and thymidylate synthase (TS). CONCLUSION: Based on its overwhelming potency against the tested cell lines and in angiogenesis assay, compound 1 can be further evaluated mechanistically and can be developed as anticancer drug candidate.


Subject(s)
Humans , Benzofurans/pharmacology , Carcinoma, Squamous Cell/drug therapy , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Polygonum/chemistry , Cell Proliferation/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Benzofurans/isolation & purification , Benzofurans/chemistry , Carcinoma, Squamous Cell/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Polygonum/classification , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/isolation & purification
7.
Phytochemistry ; 156: 159-166, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30308383

ABSTRACT

Brasilanones A-F and asperterreusines A-C, undescribed brasilane sesquiterpenoids and dihydrobenzofuran derivatives, were isolated from the marine-derived fungus Aspergillus terreus [CFCC 81836]. Their structures with absolute configurations were elucidated on the basis of spectroscopic data, X-ray crystallographic analyses, and electronic circular dichroism (ECD) calculations. Brasilanones A-F are unusual brasilane sesquiterpenoids with an α,ß-unsaturated ketone unit, interestingly, brasilanones B-D are stereo isomers. All of the isolates were evaluated for their inhibitory activities against NO production and cytotoxic activities against five human cancer cell lines (HL-60, SW-480, A-549, MCF-7, and SMMC-7721). Brasilanones A and E showed moderate inhibitory effect with NO inhibition rates of 47.7% (p < 0.001) and 37.3% (p < 0.001) at the concentration of 40 µM. Asperterreusines A showed cytotoxicity against HL-60 and SW-480 cell lines with IC50 values of 15.3 and 25.7 µM, respectively.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Aspergillus/chemistry , Benzofurans/pharmacology , Nitric Oxide/antagonists & inhibitors , Sesquiterpenes/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Benzofurans/chemistry , Benzofurans/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Mice , Models, Molecular , Molecular Conformation , Nitric Oxide/biosynthesis , RAW 264.7 Cells , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Structure-Activity Relationship
8.
Molecules ; 23(6)2018 May 25.
Article in English | MEDLINE | ID: mdl-29799442

ABSTRACT

A protocol was established to produce bioactive compounds in a callus culture of Ageratina pichinchensis by using 1 mg L-1 NAA with 0.1 mg L-1 KIN. The phytochemical study of the EtOAc extract obtained from the callus biomass, allowed the isolation and characterization of eleven secondary metabolites, of which dihydrobenzofuran (5) and 3-epilupeol (7), showed important anti-inflammatory activity. Compound 5 inhibits in vitro the secretion of NO (IC50 = 36.96 ± 1.06 µM), IL-6 (IC50 = 73.71 ± 3.21 µM), and TNF-α (IC50 = 73.20 ± 5.99 µM) in RAW (Murine macrophage cells) 264.7 macrophages, as well as the activation of NF-κB (40% at 150 µM) in RAW-blue macrophages, while compound 7 has been described that inhibit the in vivo TPA-induced ear edema, and the in vitro production of NO, and the PLA2 enzyme activity. In addition, quantitative GC-MS analysis showed that the anti-inflammatory metabolites 5 and 7 were not detected in the wild plant. Overall, our results indicated that A. pichinchensis can be used as an alternative biotechnological resource for obtaining anti-inflammatory compounds. This is the first report of the anti-inflammatory activity of compound 5 and its production in a callus culture of A. pichinchensis.


Subject(s)
Ageratina/chemistry , Anti-Inflammatory Agents/pharmacology , Benzofurans/pharmacology , Edema/drug therapy , Pentacyclic Triterpenes/pharmacology , Animals , Anti-Inflammatory Agents/isolation & purification , Benzofurans/isolation & purification , Culture Techniques , Ear , Edema/chemically induced , Edema/immunology , Edema/pathology , Ethanol/chemistry , Interleukin-6/antagonists & inhibitors , Interleukin-6/biosynthesis , Kinetin/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Male , Mice , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Naphthaleneacetic Acids/pharmacology , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Pentacyclic Triterpenes/isolation & purification , Phospholipases A2/metabolism , Plant Extracts/chemistry , Plant Leaves/chemistry , RAW 264.7 Cells , Secondary Metabolism/drug effects , Solvents/chemistry , Tetradecanoylphorbol Acetate/administration & dosage , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/biosynthesis
9.
Front Pharmacol ; 8: 825, 2017.
Article in English | MEDLINE | ID: mdl-29184503

ABSTRACT

The histamine receptors (HRs) are traditional G protein-coupled receptors of extensive therapeutic interest. Recently, H3R and H4R subtypes have been targeted in drug discovery projects for inflammation, asthma, pain, cancer, Parkinson's, and Alzheimer's diseases, which includes searches for dual acting H3R/H4R ligands. In the present work, nine 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazine (LINS01 series) molecules were synthesized and evaluated as H3R and H4R ligands. Our data show that the N-allyl-substituted compound LINS01004 bears the highest affinity for H3R (pKi 6.40), while the chlorinated compound LINS01007 has moderate affinity for H4R (pKi 6.06). In addition, BRET assays to assess the functional activity of Gi1 coupling indicate that all compounds have no intrinsic activity and act as antagonists of these receptors. Drug-likeness assessment indicated these molecules are promising leads for further improvements. In vivo evaluation of compounds LINS01005 and LINS01007 in a mouse model of asthma showed a better anti-inflammatory activity of LINS01007 (3 g/kg) than the previously tested compound LINS01005. This is the first report with functional data of these compounds in HRs, and our results also show the potential of their applications as anti-inflammatory.

SELECTION OF CITATIONS
SEARCH DETAIL