Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612521

ABSTRACT

The beneficial effects of increasing histamine levels on memory have acquired special interest due to their applicability to psychiatric conditions that cause memory impairments. In addition, by employing drug repurposing approaches, it was demonstrated that dihydroergotamine (DHE), an FDA drug approved to treat migraines, inhibits Histamine N Methyl Transferase (HNMT), the enzyme responsible for the inactivation of histamine in the brain. For this reason, in the present work, the effect of DHE on histamine levels in the hippocampus and its effects on memory was evaluated, employing the scopolamine-induced amnesia model, the Novel Object Recognition (NOR) paradigm, and the Morris Water Maze (MWM). Furthermore, the role of histamine 1 receptor (H1R) and histamine 2 receptor (H2R) antagonists in the improvement in memory produced by DHE in the scopolamine-induced amnesia model was evaluated. Results showed that the rats that received DHE (10 mg/kg, i.p.) showed increased histamine levels in the hippocampus after 1 h of administration but not after 5 h. In behavioral assays, it was shown that DHE (1 mg/kg, i.p.) administered 20 min before the training reversed the memory impairment produced by the administration of scopolamine (2 mg/kg, i.p.) immediately after the training in the NOR paradigm and MWM. Additionally, the effects in memory produced by DHE were blocked by pre-treatment with pyrilamine (20 mg/kg, i.p.) administered 30 min before the training in the NOR paradigm and MWM. These findings allow us to demonstrate that DHE improves memory in a scopolamine-induced amnesia model through increasing histamine levels at the hippocampus due to its activity as an HNMT inhibitor.


Subject(s)
Dihydroergotamine , Scopolamine , Animals , Rats , Histamine , Amnesia/chemically induced , Amnesia/drug therapy , Brain , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Histamine H2 Antagonists
2.
J Headache Pain ; 18(1): 104, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-29022279

ABSTRACT

BACKGROUND: Dihydroergotamine (DHE) is an acute antimigraine agent that displays affinity for dopamine D2-like receptors, serotonin 5-HT1/2 receptors and α1/α2-adrenoceptors. Since activation of vascular α1/α2-adrenoceptors results in systemic vasopressor responses, the purpose of this study was to investigate the specific role of α1- and α2-adrenoceptors mediating DHE-induced vasopressor responses using several antagonists for these receptors. METHODS: For this purpose, 135 male Wistar rats were pithed and divided into 35 control and 100 pretreated i.v. with ritanserin (100 µg/kg; to exclude the 5-HT2 receptor-mediated systemic vasoconstriction). Then, the vasopressor responses to i.v. DHE (1-3100 µg/kg, given cumulatively) were determined after i.v. administration of some α1/α2-adrenoceptor antagonists. RESULTS: In control animals (without ritanserin pretreatment), the vasopressor responses to DHE were: (i) unaffected after prazosin (α1; 30 µg/kg); (ii) slightly, but significantly, blocked after rauwolscine (α2; 300 µg/kg); and (iii) markedly blocked after prazosin (30 µg/kg) plus rauwolscine (300 µg/kg). In contrast, after pretreatment with ritanserin, the vasopressor responses to DHE were: (i) attenuated after prazosin (α1; 10 and 30 µg/kg) or rauwolscine (α2; 100 and 300 µg/kg); (ii) markedly blocked after prazosin (30 µg/kg) plus rauwolscine (300 µg/kg); (iii) attenuated after 5-methylurapidil (α1A; 30-100 µg/kg), L-765,314 (α1B; 100 µg/kg), BMY 7378 (α1D; 30-100 µg/kg), BRL44408 (α2A; 100-300 µg/kg), imiloxan (α2B; 1000-3000 µg/kg) or JP-1302 (α2C; 1000 µg/kg); and (iv) unaffected after the corresponding vehicles (1 ml/kg). CONCLUSION: These results suggest that the DHE-induced vasopressor responses in ritanserin-pretreated pithed rats are mediated by α1- (probably α1A, α1B and α1D) and α2- (probably α2A, α2B and α2C) adrenoceptors. These findings could shed light on the pharmacological profile of the vascular side effects (i.e. systemic vasoconstriction) produced by DHE and may lead to the development of more selective antimigraine drugs devoid vascular side effects.


Subject(s)
Dihydroergotamine/pharmacology , Receptors, Adrenergic, alpha-1/physiology , Receptors, Adrenergic, alpha-2/physiology , Ritanserin/pharmacology , Vasoconstriction/physiology , Vasoconstrictor Agents/pharmacology , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Dose-Response Relationship, Drug , Male , Rats , Rats, Wistar , Serotonin Antagonists/pharmacology , Vasoconstriction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL