Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 14(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35808727

ABSTRACT

The fabrication of various micro-patterns on polymer insulating substrates is a current requirement in micro-electromechanical system (MEMS) and packaging sectors. In this paper, we use electrohydrodynamic jet (E-Jet) printing to create multifaceted and stable micro-patterns on a polyethylene terephthalate (PET) substrate. Initially, simulation was performed to investigate optimized printing settings in phase field physics for the usage of two distinct functional inks. A series of simulation experiments was conducted, and it was determined that the following parameters are optimised: applied pressure of 40 kPa, high pulse voltage of 1.95 kV, low dc voltage of 1.60 kV, duty cycle of 80%, pulse frequency of 60 Hz, printing height of 0.25 mm, and printing speed of 1 mm/s. Then, experiments showed that adjusting a pressure value of 40 kPa and regulating the SEMICOSIL988/1 K ink to print micro-drops on a polymer substrate with a thickness of 1 mm prevents coffee staining. The smallest measured droplet size was 200 µm. Furthermore, underfill (UF 3808) ink was driven with applied pressure to 50 kPa while other parameters were left constant, and the minimum size of linear patterns was printed to 105 µm on 0.5-mm-thick PET substrate. During the micro-drip and cone-jet regimes, the consistency and diameter of printed micro-structures were accurately regulated at a pulse frequency of 60 Hz and a duty cycle of 80%.

2.
Micromachines (Basel) ; 10(5)2019 Apr 27.
Article in English | MEDLINE | ID: mdl-31035628

ABSTRACT

A micro pattern is a key component of various functional devices. In the present study, using the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) mixed material as the direct-writing solution and photographic paper as the flexible insulating substrate, the organic micro patterns of various shapes, such as the curve of the second-order self-similar structure, the helical curve, and the wave curve, were fabricated on the flexible insulating substrate by using the near-field electrohydrodynamic direct-writing method. The effects of process parameters, such as the applied voltage, direct-writing height, flow rate of the injection system, and moving velocity of the substrate, on the width and the conductivity of the organic micro patterns were studied in the near-field electrohydrodynamic direct-writing process. The results show that the width of an organic micro pattern increases with the increase of the applied voltage of the high-voltage power supplier and the flow rate of the injection system under the condition where the three other process parameters remained constant, respectively, while the width of an organic micro pattern decreases with the increase of the direct-writing height and the moving velocity of the flexible substrate, respectively. The fabricated organic microcircuit patterns of the natural drying in air at room temperature were tested by a thin film thermoelectric tester at a detection temperature. The results show that the conductivity of a fabricated organic micro pattern decreases with the increase of the electric field intensity, while the effect of moving velocity and the flow rate on the conductivity is small under the condition where the three other process parameters remained constant.

SELECTION OF CITATIONS
SEARCH DETAIL