Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
GeoJournal ; 88(3): 2775-2785, 2023.
Article in English | MEDLINE | ID: mdl-36340743

ABSTRACT

The new Acute Respiratory Syndrome, COVID-19, has affected the health and the economy worldwide. Therefore, scientists have been looking for ways to understand this disease. In this context, the main objective of this study was the spatialization of COVID-19, thinking in distinguishing areas with high transmissibility yet, verifying if these areas were associated with the elderly population occurrence. The work was delineated, supposing that spatialization could support the decision-making to combat the outbreak and that the same method could be used for spatialization and prevent other diseases. The study area was a municipality near Sao Paulo Metropolis, one of Brazil's main disease epicenters. Using official data and an empirical Bayesian model, we spatialized people infected by region, including older people, obtaining reasonable adjustment. The results showed a weak correlation between regions infected and older adults. Thus, we define a robust model that can support the definition of actions aiming to control the COVID-19 spread.

2.
J Math Biol ; 85(4): 32, 2022 09 17.
Article in English | MEDLINE | ID: mdl-36114922

ABSTRACT

The SIR (susceptible-infectious-recovered) model is a well known method for predicting the number of people (or animals) in a population who become infected by and then recover from a disease. Modifications can include categories such people who have been exposed to the disease but are not yet infectious or those who die from the disease. However, the model has nearly always been applied to the entire population of a country or state but there is considerable observational evidence that diseases can spread at different rates in densely populated urban regions and sparsely populated rural areas. This work presents a new approach that applies a SIR type model to a country or state that has been divided into a number of geographical regions, and uses different infection rates in each region which depend on the population density in that region. Further, the model contains a simple matrix based method for simulating the movement of people between different regions. The model is applied to the spread of disease in the United Kingdom and the state of Rio Grande do Sul in Brazil.


Subject(s)
Models, Theoretical , Animals , Brazil/epidemiology , Humans , Population Density , United Kingdom
3.
Front Plant Sci ; 12: 710707, 2021.
Article in English | MEDLINE | ID: mdl-34367228

ABSTRACT

Wheat blast (WB) caused by Magnaporthe oryzae pathotype Triticum (MoT) is an important fungal disease in tropical and subtropical wheat production regions. The disease was initially identified in Brazil in 1985, and it subsequently spread to some major wheat-producing areas of the country as well as several South American countries such as Bolivia, Paraguay, and Argentina. In recent years, WB has been introduced to Bangladesh and Zambia via international wheat trade, threatening wheat production in South Asia and Southern Africa with the possible further spreading in these two continents. Resistance source is mostly limited to 2NS carriers, which are being eroded by newly emerged MoT isolates, demonstrating an urgent need for identification and utilization of non-2NS resistance sources. Fungicides are also being heavily relied on to manage WB that resulted in increasing fungal resistance, which should be addressed by utilization of new fungicides or rotating different fungicides. Additionally, quarantine measures, cultural practices, non-fungicidal chemical treatment, disease forecasting, biocontrol etc., are also effective components of integrated WB management, which could be used in combination with varietal resistance and fungicides to obtain reasonable management of this disease.

4.
Article in English | MEDLINE | ID: mdl-34071047

ABSTRACT

This paper studies the interplay between social distancing and the spread of the COVID-19 disease-a global pandemic that has affected most of the world's population. Our goals are to (1) to observe the correlation between the strictness of social distancing policies and the spread of disease and (2) to determine the optimal adoption level of social distancing policies. The earliest instances of the virus were found in China, and the virus has reached the United States with devastating consequences. Other countries severely affected by the pandemic are Brazil, Russia, the United Kingdom, Spain, India, Italy, and France. Although it is impossible to stop it, it is possible to slow down its spread to reduce its impact on the society and economy. Governments around the world have deployed various policies to reduce the virus spread in response to the pandemic. To assess the effectiveness of these policies, the system's dynamics of the society needs to be analyzed, which is generally not possible with mathematical linear equations or Monte Carlo methods because human society is a complex adaptive system with continuous feedback loops. Because of the challenges with the other methods, we chose agent-based methods to conduct our study. Moreover, recent agent-based modeling studies for the COVID-19 pandemic show significant promise in assisting decision-makers in managing the crisis by applying policies such as social distancing, disease testing, contact tracing, home isolation, emergency hospitalization, and travel prevention to reduce infection rates. Based on modeling studies conducted in Imperial College, increasing levels of interventions could slow the spread of disease and infection. We ran the model with six different percentages of social distancing while keeping the other parameters constant. The results show that social distancing affects the spread of COVID-19 significantly, in turn decreasing the spread of disease and infection rates when implemented at higher levels. We also validated these results by using the behavior space tool with ten experiments with varying social distancing levels. We conclude that applying and increasing social distancing policy levels leads to a significant reduction in infection spread and the number of deaths. Both experiments show that infection rates are reduced drastically when social distancing intervention is implemented between 80% to 100%.


Subject(s)
COVID-19 , Pandemics , Brazil , China/epidemiology , France , Humans , India/epidemiology , Italy , Physical Distancing , Russia , SARS-CoV-2 , Spain , United Kingdom , United States
5.
Int J Biostat ; 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32246754

ABSTRACT

In this work, we propose a spatio-temporal Markovian-like model for ordinal observations to predict in time the spread of disease in a discrete rectangular grid of plants. This model is constructed from a logistic distribution and some simple assumptions that reflect the conditions present in a series of studies carried out to understand the dissemination of a particular infection in plants. After constructing the model, we establish conditions for the existence and uniqueness of the maximum likelihood estimator (MLE) of the model parameters. In addition, we show that, under further restrictions based on Partially Ordered Markov Models (POMMs), the MLE of the model is consistent and normally asymptotic. We then employ the MLE's asymptotic normality to propose methods for testing spatio-temporal and spatial dependencies. The model is estimated from the real data on plants that inspired the model, and we used its results to construct prediction maps to better understand the transmission of plant illness in time and space.

6.
G3 (Bethesda) ; 10(6): 2117-2126, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32327452

ABSTRACT

Despite its peculiar distribution, the biology of the southernmost bat species in the world, the Chilean myotis (Myotis chiloensis), has garnered little attention so far. The species has a north-south distribution of c. 2800 km, mostly on the eastern side of the Andes mountain range. Use of extended torpor occurs in the southernmost portion of the range, putting the species at risk of bat white-nose syndrome, a fungal disease responsible for massive population declines in North American bats. Here, we examined how geographic distance and topology would be reflected in the population structure of M. chiloensis along the majority of its range using a double digestion RAD-seq method. We sampled 66 individuals across the species range and discovered pronounced isolation-by-distance. Furthermore, and surprisingly, we found higher degrees of heterozygosity in the southernmost populations compared to the north. A coalescence analysis revealed that our populations may still not have reached secondary contact after the Last Glacial Maximum. As for the potential spread of pathogens, such as the fungus causing WNS, connectivity among populations was noticeably low, especially between the southern hibernatory populations in the Magallanes and Tierra del Fuego, and more northerly populations. This suggests the probability of geographic spread of the disease from the north through bat-to-bat contact to susceptible populations is low. The study presents a rare case of defined population structure in a bat species and warrants further research on the underlying factors contributing to this. See the graphical abstract here. https://doi.org/10.25387/g3.12173385.


Subject(s)
Ascomycota , Chiroptera , Mycoses , Animals , Ascomycota/genetics , Chiroptera/genetics , Genomics , Mycoses/genetics , Mycoses/veterinary , Nose
7.
Transbound Emerg Dis ; 66(2): 715-728, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30427593

ABSTRACT

Glanders is a highly infectious zoonotic disease caused by Burkholderia mallei. The transmission of B. mallei occurs mainly by direct contact, and horses are the natural reservoir. Therefore, the identification of infection sources within horse populations and animal movements is critical to enhance disease control. Here, we analysed the dynamics of horse movements from 2014 to 2016 using network analysis in order to understand the flow of animals in two hierarchical levels, municipalities and farms. The municipality-level network was used to investigate both community clustering and the balance between the municipality's trades and the farm-level network associations between B. mallei outbreaks and the network centrality measurements, analysed by spatio-temporal generalized additive model (GAM). Causal paths were established for the dispersion of B. mallei outbreaks through the network. Our approach captured and established a direct relationship between movement of infected equines and predicted B. mallei outbreaks. The GAM model revealed that the parameters in degree and closeness centrality out were positively associated with B. mallei. In addition, we also detected 10 communities with high commerce among municipalities. The role of each municipality within the network was detailed, and significant changes in the structures of the network were detected over the course of 3 years. The results suggested the necessity to focus on structural changes of the networks over time to better control glanders disease. The identification of farms with a putative risk of B. mallei infection using the horse movement network provided a direct opportunity for disease control through active surveillance, thus minimizing economic losses and risks for human cases of B. mallei.


Subject(s)
Burkholderia mallei/physiology , Disease Outbreaks/veterinary , Glanders/epidemiology , Glanders/transmission , Animals , Brazil/epidemiology , Horses , Models, Theoretical , Transportation
SELECTION OF CITATIONS
SEARCH DETAIL