Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Sensors (Basel) ; 23(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37631654

ABSTRACT

Distributed optical fiber sensors (DOFSs) are a promising technology for their unique advantage of long-distance distributed measurements in industrial applications. In recent years, modern industrial monitoring has called for comprehensive multi-parameter measurements to accurately identify fault events. The hybrid DOFS technology, which combines the Rayleigh, Brillouin, and Raman scattering mechanisms and integrates multiple DOFS systems in a single configuration, has attracted growing attention and has been developed rapidly. Compared to a single DOFS system, the multi-parameter measurements based on hybrid DOFS offer multidimensional valuable information to prevent misjudgments and false alarms. The highly integrated sensing structure enables more efficient and cost-effective monitoring in engineering. This review highlights the latest progress of the hybrid DOFS technology for multi-parameter measurements. The basic principles of the light-scattering-based DOFSs are initially introduced, and then the methods and sensing performances of various techniques are successively described. The challenges and prospects of the hybrid DOFS technology are discussed in the end, aiming to pave the way for a vaster range of applications.

2.
Sensors (Basel) ; 22(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35957211

ABSTRACT

Changes in the geological environment and track wear, and deterioration of train bogies may lead to the looseness of subway fasteners. Identifying loose fasteners randomly distributed along the subway line is of great significance to avoid train derailment. This paper presents a convolutional autoencoder (CAE) network-based method for identifying fastener loosening features from the distributed vibration responses of track beds detected by an ultra-weak fiber Bragg grating sensing array. For an actual subway tunnel monitoring system, a field experiment used to collect the samples of fastener looseness was designed and implemented, where a crowbar was used to loosen or tighten three pairs of fasteners symmetrical on both sides of the track within the common track bed area and the moving load of a rail inspection vehicle was employed to generate 12 groups of distributed vibration signals of the track bed. The original vibration signals obtained from the on-site test were converted into two-dimensional images through the pseudo-Hilbert scan to facilitate the proposed two-stage CAE network with acceptable capabilities in feature extraction and recognition. The performance of the proposed methodology was quantified by accuracy, precision, recall, and F1-score, and displayed intuitively by t-distributed stochastic neighbor embedding (t-SNE). The raster scan and the Hilbert scan were selected to compare with the pseudo-Hilbert scan under a similar CAE network architecture. The identification performance results represented by the four quantification indicators (accuracy, precision, recall, and F1-score) based on the scan strategy in this paper were at least 23.8%, 9.5%, 20.0%, and 21.1% higher than those of the two common scan methods. As well as that, the clustering visualization by t-SNE further verified that the proposed approach had a stronger ability in distinguishing the feature of fastener looseness.


Subject(s)
Railroads , Technology
3.
Sensors (Basel) ; 22(5)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35271200

ABSTRACT

Distributed optical fiber vibration sensing (DVS) can measure vibration information along with an optical fiber. Accurate classification of vibration events is a key issue in practical applications of DVS. In this paper, we propose a convolutional neural network (CNN) to analyze DVS data and achieve high-accuracy event recognition fully. We conducted experiments outdoors and collected more than 10,000 sets of vibration data. Through training, the CNN acquired the features of the raw DVS data and achieved the accurate classification of multiple vibration events. The recognition accuracy reached 99.9% based on the time-space data, a higher than used time-domain, frequency-domain, and time-frequency domain data. Moreover, considering that the performance of the DVS and the testing environment would change over time, we experimented again after one week to verify the method's generalization performance. The classification accuracy using the previously trained CNN is 99.2%, which is of great value in practical applications.

4.
Sensors (Basel) ; 20(8)2020 Apr 12.
Article in English | MEDLINE | ID: mdl-32290572

ABSTRACT

Quantifying structural status and locating structural anomalies are critical to tracking and safeguarding the safety of long-distance underground structures. Given the dynamic and distributed monitoring capabilities of an ultra-weak fiber Bragg grating (FBG) array, this paper proposes a method combining the stacked denoising autoencoder (SDAE) network and the improved dynamic time wrapping (DTW) algorithm to quantify the similarity of vibration responses. To obtain the dimensionality reduction features that were conducive to distance measurement, the silhouette coefficient was adopted to evaluate the training efficacy of the SDAE network under different hyperparameter settings. To measure the distance based on the improved DTW algorithm, the one nearest neighbor (1-NN) classifier was utilized to search the best constraint bandwidth. Moreover, the study proposed that the performance of different distance metrics used to quantify similarity can be evaluated through the 1-NN classifier. Based on two one-dimensional time-series datasets from the University of California, Riverside (UCR) archives, the detailed implementation process for similarity measure was illustrated. In terms of feature extraction and distance measure of UCR datasets, the proposed integrated approach of similarity measure showed improved performance over other existing algorithms. Finally, the field-vibration responses of the track bed in the subway detected by the ultra-weak FBG array were collected to determine the similarity characteristics of structural vibration among different monitoring zones. The quantitative results indicated that the proposed method can effectively quantify and distinguish the vibration similarity related to the physical location of structures.

5.
Sensors (Basel) ; 19(19)2019 Sep 23.
Article in English | MEDLINE | ID: mdl-31547600

ABSTRACT

We present results demonstrating several beneficial effects on distributed fiber optic vibration sensing (DVS) functionality and performance resulting from utilizing standard single mode optical fiber (SMF) with femtosecond laser-inscribed equally-spaced simple scattering dots. This modification is particularly useful when using traditional single-wavelength amplitude-based coherent optical time domain reflectometry (C-OTDR) as sensing method. Local sensitivity is increased in quasi-distributed interferometric sensing zones which are formed by the fiber segments between subsequent pairs of the scattering dots. The otherwise nonlinear transfer function is overwritten with that of an ordinary two-beam interferometer. This linearizes the phase response to monotonous temperature variations. Furthermore, sensitivity fading is mitigated and the demodulation of low-frequency signals is enabled. The modification also allows for the quantitative determination of local temperature gradients directly from the C-OTDR intensity traces. The dots' reflectivities and thus the induced attenuation can be tuned via the inscription process parameters. Our approach is a simple, robust and cost-effective way to gain these sensing improvements without the need for more sophisticated interrogator technology or more complex fiber structuring, e.g., based on ultra-weak FBG arrays. Our claims are substantiated by experimental evidence.

6.
Sensors (Basel) ; 19(12)2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31200466

ABSTRACT

Tracking operating trains and identifying illegal intruders are two important and critical issues in subway safety management. One challenge is to find a reliable methodology that would enable these two needs to be addressed with high sensitivity and spatial resolution over a long-distance range. This paper proposes a novel monitoring approach based on distributed vibration, which is suitable for both train tracking and incursion detection. For an actual subway system, ultra-weak fiber Bragg grating (FBG) sensing technology was applied to collect the distributed vibration responses from moving trains and intruders. The monitoring data from the subway operation stage were directly utilized to evaluate the feasibility of the proposed method for tracking trains. Moreover, a field simulation experiment was performed to validate the possibility of detecting human intrusion. The results showed that the diagonal signal pattern in the distributed vibration response can be used to reveal the location and speed of the moving loads (e.g., train and intruders). Other train parameters, such as length and the number of compartments, can also be obtained from the vibration responses through cross-correlation and envelope processing. Experimental results in the time and frequency domains within the selected intrusion range indicated that the proposed method can distinguish designed intrusion cases in terms of strength and mode.

7.
Sensors (Basel) ; 19(9)2019 May 09.
Article in English | MEDLINE | ID: mdl-31075963

ABSTRACT

It is challenging for engineers to timely identify illegal ground intrusions in underground systems such as subways. In order toprevent the catastrophic collapse of subway tunnels from intrusion events, this paper investigated the capability of detecting the ground intrusion of underground structures based on dynamic measurement of distributed fiber optic sensing. For an actual subway tunnel monitored by the ultra-weak fiber optic Bragg grating (FBG)sensing fiber with a spatial resolution of five meters, a simulated experiment of the ground intrusion along the selected path was designed and implemented, in which a hydraulic excavator was chosen to exert intrusion perturbations with different strengths and modes at five selected intrusion sites. For each intrusion place, the distributed vibration responses of sensing fibers mounted on the tunnel wall and the track bed were detected to identify the occurrence and characteristics of the intrusion event simulated by the discrete and continuous pulses of the excavator under two loading postures. By checking the on-site records of critical moments in the intrusion process, the proposed detection approach based on distributed structural vibration responses for the ground intrusion can detect the occurrence of intrusion events, locate the intrusion ground area, and distinguish intrusion strength and typical perturbation modes.

8.
Sensors (Basel) ; 18(9)2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30154358

ABSTRACT

In the presented work, the potential of fiber-optic distributed acoustic sensing (DAS) for detection of small gas pipeline leaks (<1%) is investigated. Helical wrapping of the sensing fiber directly around the pipeline is used to increase the system sensitivity for detection of weak leak-induced vibrations. DAS measurements are supplemented with reference accelerometer data to facilitate analysis and interpretation of recorded vibration signals. The results reveal that a DAS system using direct fiber application approach is capable of detecting pipeline natural vibrations excited by the broadband noise generated by the leaking medium. In the performed experiment, pipeline vibration modes with acceleration magnitudes down to single µg were detected. Simple leak detection approach based on spectral integration of time-averaged DAS signals in frequency domain was proposed. Potential benefits and limitations of the presented monitoring approach were discussed with respect to its practical applicability. We demonstrated that the approached is potentially capable of detection and localization of gas pipeline leaks with leak rates down to 0.1% of the pipeline flow volume and might be of interest for monitoring of short- and medium-length gas pipelines.

SELECTION OF CITATIONS
SEARCH DETAIL