Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.347
Filter
1.
Methods Mol Biol ; 2833: 109-119, 2024.
Article in English | MEDLINE | ID: mdl-38949705

ABSTRACT

Tuberculosis (TB) is the most common cause of death from an infectious disease. Although treatment has been available for more than 70 years, it still takes too long and many patients default risking relapse and the emergence of resistance. It is known that lipid-rich, phenotypically antibiotic-tolerant, bacteria are more resistant to antibiotics and may be responsible for relapse necessitating extended therapy. Using a microfluidic system that acoustically traps live mycobacteria, M. smegmatis, a model organism for M. tuberculosis we can perform optical analysis in the form of wavelength-modulated Raman spectroscopy (WMRS) on the trapped organisms. This system can allow observations of the mycobacteria for up to 8 h. By adding antibiotics, it is possible to study the effect of antibiotics in real-time by comparing the Raman fingerprints in comparison to the unstressed condition. This microfluidic platform may be used to study any microorganism and to dynamically monitor its response to many conditions including antibiotic stress, and changes in the growth media. This opens the possibility of understanding better the stimuli that trigger the lipid-rich downregulated and phenotypically antibiotic-resistant cell state.


Subject(s)
Mycobacterium smegmatis , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/growth & development , Microfluidics/methods , Microfluidics/instrumentation , Anti-Bacterial Agents/pharmacology , Acoustics/instrumentation , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Humans
2.
Plant Biol (Stuttg) ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979780

ABSTRACT

The rare and threatened Heliosciadium repens grows in moist grasslands and has a distinct life cycle. Plants reproduce both clonally, although ramets tend to be short-lived, and sexually, with seeds that can form a persistent soil seed bank. The germination requirements of H. repens were investigated, yielding important information for its habitat management and conservation. We examined the soil seed bank in three populations and carried out germination experiments and embryo growth measurements with fresh seeds in laboratory, greenhouse and outdoor conditions. We also investigated the effects of storage and burial of seeds. H. repens formed a long-term persistent (>6 years) soil seed bank with very pronounced primary dormancy, but no secondary dormancy or dormancy cycles. Seeds can germinate throughout the growing season when temperatures are sufficiently high. Embryo growth and seed germination are triggered by light and, to a lesser extent, daily temperature fluctuations. Seeds of H. repens seem to have developed a unique germination syndrome with several strategies to remain dormant in the soil until optimal conditions are present for seedling establishment and survival. Both sexual reproduction and seed bank formation are crucial for the long-term survival of the populations.

3.
Front Plant Sci ; 15: 1417204, 2024.
Article in English | MEDLINE | ID: mdl-38978523

ABSTRACT

Growth-regulating factors (GRFs) are transcription factors that play a pivotal role in plant growth and development. This study identifies 12 Solanum tuberosum GRF transcription factors (StGRFs) and analyzes their physicochemical properties, phylogenetic relationships, gene structures and gene expression patterns using bioinformatics. The StGRFs exhibit a length range of 266 to 599 amino acids, with a molecular weight of 26.02 to 64.52 kDa. The majority of StGRFs possess three introns. The promoter regions contain a plethora of cis-acting elements related to plant growth and development, as well as environmental stress and hormone response. All the members of the StGRF family contain conserved WRC and QLQ domains, with the sequences of these two conserved domain modules exhibiting high levels of conservation. Transcriptomic data indicates that StGRFs play a significant role in the growth and development of stamens, roots, young tubers, and other tissues or organs in potatoes. Furthermore, a few StGRFs exhibit differential expression patterns in response to Phytophthora infestans, chemical elicitors, heat, salt, and drought stresses, as well as multiple hormone treatments. The results of the expression analysis indicate that StGRF1, StGRF2, StGRF5, StGRF7, StGRF10 and StGRF12 are involved in the process of tuber sprouting, while StGRF4 and StGRF9 may play a role in tuber dormancy. These findings offer valuable insights that can be used to investigate the roles of StGRFs during potato tuber dormancy and sprouting.

4.
Methods Mol Biol ; 2830: 35-49, 2024.
Article in English | MEDLINE | ID: mdl-38977566

ABSTRACT

Seed dormancy is an important trait in cereal breeding, as it prevents preharvest sprouting (PHS). Although seed dormancy is a multifactorial trait, seed color has been demonstrated to be a major dormancy-related factor controlled by few genes. The R-1 gene is a seed color regulator that encodes a MYB-type transcription factor in wheat. A set of genetic markers designed against R-1 can provide a powerful tool for swift wheat breeding. Depth of seed dormancy varies not only among lines but also during seed development in each line. In this chapter, we describe how developmental seeds can be collected to perform germination tests, how seed color can be observed after NaOH staining, and how to genotype wheat R-1 genes using multiplex PCR.


Subject(s)
Germination , Multiplex Polymerase Chain Reaction , Plant Dormancy , Seeds , Triticum , Triticum/genetics , Triticum/growth & development , Seeds/genetics , Seeds/growth & development , Plant Dormancy/genetics , Germination/genetics , Multiplex Polymerase Chain Reaction/methods , Genotype , Color , Plant Breeding/methods , Genetic Markers/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
5.
Methods Mol Biol ; 2830: 27-34, 2024.
Article in English | MEDLINE | ID: mdl-38977565

ABSTRACT

Germination test is fundamental and commonly used technique for seed dormancy and germination studies, and proper assessment of dormancy level and germination ability of a given set of seeds is prerequisite for most of the studies. However, germination is very sensitive to imbibition conditions, and dormancy development is also sensitive to growth conditions of the mother plants. In this chapter, we describe tips for plant growth and germination test mainly for physiological and molecular genetic studies with Arabidopsis. This protocol can be applied for other plant species with relatively small seeds and for various studies to analyze the effect of light, phytohormones, and other chemicals in seed germination.


Subject(s)
Arabidopsis , Germination , Plant Dormancy , Plant Growth Regulators , Seeds , Plant Dormancy/genetics , Seeds/growth & development , Seeds/genetics , Seeds/physiology , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/growth & development , Plant Growth Regulators/metabolism , Light
6.
Methods Mol Biol ; 2830: 107-120, 2024.
Article in English | MEDLINE | ID: mdl-38977572

ABSTRACT

Seed dormancy is an important agronomic trait in cereal crops. Throughout the domestication of cereals, seed dormancy has been reduced to obtain uniform germination. However, grain crops must retain moderate levels of seed dormancy to prevent problems such as preharvest sprouting in wheat (Triticum aestivum) and barley (Hordeum vulgare). To produce modern cultivars with the appropriate seed dormancy levels, it is important to identify the genes responsible for seed dormancy. With recent advances in sequencing technology, several causal genes for seed dormancy quantitative trait loci (QTLs) have been identified in barley and wheat. Here, we present a method to identify causal genes for seed dormancy QTLs in barley, a method that is also applicable to other cereals.


Subject(s)
Chromosome Mapping , Cloning, Molecular , Hordeum , Plant Dormancy , Quantitative Trait Loci , Hordeum/genetics , Hordeum/growth & development , Plant Dormancy/genetics , Chromosome Mapping/methods , Cloning, Molecular/methods , Genes, Plant , Seeds/genetics , Seeds/growth & development , Chromosomes, Plant/genetics
7.
Methods Mol Biol ; 2830: 121-129, 2024.
Article in English | MEDLINE | ID: mdl-38977573

ABSTRACT

Genome-wide association study (GWAS) is widely used to characterize genes or quantitative trait loci (QTLs) associated with preharvest sprouting and seed dormancy. GWAS can identify both previously discovered and novel QTLs across diverse genetic panels. The high-throughput SNP arrays or next-generation sequencing technologies have facilitated the identification of numerous genetic markers, thereby significantly enhancing the resolution of GWAS. Although various methods have been developed, the fundamental principles underlying these techniques remain constant. Here, we provide a basic technological flow to perform seed dormancy assay, followed by GWAS using population structure control, and compared it with previous identified QTLs and genes.


Subject(s)
Genome-Wide Association Study , Germination , Plant Dormancy , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Triticum , Genome-Wide Association Study/methods , Triticum/genetics , Triticum/growth & development , Germination/genetics , Plant Dormancy/genetics , Seeds/genetics , Seeds/growth & development , Phenotype
8.
Methods Mol Biol ; 2830: 175-193, 2024.
Article in English | MEDLINE | ID: mdl-38977578

ABSTRACT

Different methodologies have been applied for the selection of preharvest sprouting resistance in cereal breeding programs. We describe here a series of methods used in practical wheat breeding programs in Japan, including phenotyping based on germination score after artificial rain treatments and genotyping using DNA markers. These methods can be modified and applied to breeding programs in which preharvest sprouting is a problem during cereal cultivation.


Subject(s)
Germination , Phenotype , Plant Breeding , Triticum , Genetic Markers , Genotype , Germination/genetics , Japan , Plant Breeding/methods , Triticum/genetics , Triticum/growth & development
9.
Article in English | MEDLINE | ID: mdl-38946665

ABSTRACT

Dormancy is an essential ecological characteristic for the survival of organisms that experience harsh environments. Although factors that initiate dormancy vary, suppression or cessation of feeding activities are common among taxa. To distinguish between extrinsic and intrinsic causes of metabolic reduction, we focused on estivation, which occurs in summer when the feeding activity is generally enhanced. Sand lances (genus Ammodytes) are a unique marine fish with a long estivation period from early summer to late autumn. In the present study, we aimed to elucidate the control mechanisms of estivation in western sand lance (A. japonicus), and firstly examined behavioral changes in 8 months including a transition between active and dormant phases. We found that swimming/feeding behavior gradually decreased from June, and completely disappeared by late August, indicating all individuals had entered estivation. Next, we focused on leptin, known as a feeding suppression hormone in various organisms, and examined leptin-A gene (AjLepA) expression in the brain that may regulate the seasonal behavioral pattern. AjLepA expression decreased after 7 days of fasting, suggesting that leptin has a function to regulate feeding in this species. The monthly expression dynamics of AjLepA during the feeding (active) and non-feeding (estivation) periods showed that the levels gradually increased with the onset of estivation and reached its peak when all the experimental fish had estivated. The present study suggests that the suppression of feeding activity by leptin causes shift in the physiological modes of A. japonicus before estivation.

10.
Int J Biol Macromol ; : 133245, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977045

ABSTRACT

Late embryogenesis abundant (LEA) proteins play a crucial role in protecting cells from stress, making them potential contributors to abiotic stress tolerance. This study focuses on apricot (P. armeniaca L. × P. sibirica L.), where a comprehensive genome-wide analysis identified 54 LEA genes, categorized into eight subgroups based on phylogenetic relationships. Synteny analysis revealed 14 collinear blocks containing LEA genes between P. armeniaca × P. sibirica and Arabidopsis thaliana, with an additional 9 collinear blocks identified between P. armeniaca × P. sibirica and poplar. Examination of gene structure and conserved motifs indicated that these subgroups exhibit consistent exon-intron patterns and shared motifs. The expansion and duplication of LEA genes in P. armeniaca × P. sibirica were driven by whole-genome duplication (WGD), segmental duplication, and tandem duplication events. Expression analysis, utilizing RNA-seq data and quantitative real-time RT-PCR (qRT-PCR), indicated induction of PasLEA2-20, PasLEA3-2, PasLEA6-1, Pasdehydrin-3, and Pasdehydrin-5 in flower buds during dormancy and sprouting phases. Coexpression network analysis linked LEA genes with 15 cold-resistance genes. Remarkably, during the four developmental stages of flower buds in P. armeniaca × P. sibirica - physiological dormancy, ecological dormancy, sprouting period, and germination stage - the expression patterns of all PasLEAs coexpressed with cold stress-related genes remained consistent. Protein-protein interaction networks, established using Arabidopsis orthologs, emphasized connections between PasLEA proteins and cold resistance pathways. Overexpression of certain LEA genes in yeast and Arabidopsis conferred advantages under cold stress, including increased pod length, reduced bolting time and flowering time, improved survival and seed setting rates, elevated proline accumulation, and enhanced antioxidative enzymatic activities. Furthermore, these overexpressed plants exhibited upregulation of genes related to flower development and cold resistance. The Y1H assay confirmed that PasGBF4 and PasDOF3.5 act as upstream regulatory factors by binding to the promoter region of PasLEA3-2. PasDOF2.4, PasDnaJ2, and PasAP2 were also found to bind to the promoter of Pasdehydrin-3, regulating the expression levels of downstream genes. This comprehensive study explores the evolutionary relationships among PasLEA genes, protein interactions, and functional analyses during various stages of dormancy and sprouting in P. armeniaca × P. sibirica. It offers potential targets for enhancing cold resistance and manipulating flower bud dormancy in this apricot hybrid.

11.
Proc Natl Acad Sci U S A ; 121(29): e2406194121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38990942

ABSTRACT

Animals can alter their body compositions in anticipation of dormancy to endure seasons with limited food availability. Accumulation of lipid reserves, mostly in the form of triglycerides (TAGs), is observed during the preparation for dormancy in diverse animals, including insects (diapause) and mammals (hibernation). However, the mechanisms involved in the regulation of lipid accumulation and the ecological consequences of failure to accumulate adequate lipid stores in preparation for animal dormancy remain understudied. In the broadest sense, lipid reserves can be accumulated in two ways: the animal either receives lipids directly from the environment or converts the sugars and amino acids present in food to fatty acids through de novo lipogenesis and then to TAGs. Here, we show that preparation for diapause in the Colorado potato beetle (Leptinotarsa decemlineata) involves orchestrated upregulation of genes involved in lipid metabolism with a transcript peak in 8- and 10-d-old diapause-destined insects. Regulation at the transcript abundance level was associated with the accumulation of substantial fat stores. Furthermore, the knockdown of de novo lipogenesis enzymes (ACCase and FAS-1) prolonged the preparatory phase, while the knockdown of fatty acid transportation genes shortened the preparatory phase. Our findings suggest a model in which the insects dynamically decide when to transition from the preparation phase into diapause, depending on the progress in lipid accumulation through de novo lipogenesis.


Subject(s)
Coleoptera , Lipogenesis , Seasons , Animals , Lipogenesis/physiology , Coleoptera/metabolism , Coleoptera/genetics , Coleoptera/physiology , Triglycerides/metabolism , Lipid Metabolism , Diapause, Insect , Insect Proteins/metabolism , Insect Proteins/genetics
12.
Front Microbiol ; 15: 1415554, 2024.
Article in English | MEDLINE | ID: mdl-38952446

ABSTRACT

Introduction: The unique dormancy of Mycobacterium tuberculosis plays a significant role in the major clinical treatment challenge of tuberculosis, such as its long treatment cycle, antibiotic resistance, immune escape, and high latent infection rate. Methods: To determine the function of MtrA, the only essential response regulator, one strategy was developed to establish its regulatory network according to high-quality genome-wide binding sites. Results and discussion: The complex modulation mechanisms were implied by the strong bias distribution of MtrA binding sites in the noncoding regions, and 32.7% of the binding sites were located inside the target genes. The functions of 288 potential MtrA target genes predicted according to 294 confirmed binding sites were highly diverse, and DNA replication and damage repair, lipid metabolism, cell wall component biosynthesis, cell wall assembly, and cell division were the predominant pathways. Among the 53 pathways shared between dormancy/resuscitation and persistence, which accounted for 81.5% and 93.0% of the total number of pathways, respectively, MtrA regulatory genes were identified not only in 73.6% of their mutual pathways, but also in 75.4% of the pathways related to dormancy/resuscitation and persistence respectively. These results suggested the pivotal roles of MtrA in regulating dormancy/resuscitation and the apparent relationship between dormancy/resuscitation and persistence. Furthermore, the finding that 32.6% of the MtrA regulons were essential in vivo and/or in vitro for M. tuberculosis provided new insight into its indispensability. The findings mentioned above indicated that MtrA is a novel promising therapeutic target for tuberculosis treatment since the crucial function of MtrA may be a point of weakness for M. tuberculosis.

13.
Ecol Evol ; 14(7): e11671, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952654

ABSTRACT

Despite their crucial role in determining the fate of seeds, the type and breaking mode of seed dormancy in peatland plants in temperate Asia with a continental monsoon climate are rarely known. Fifteen common peatland plant species were used to test their seed germination response to various dormancy-breaking treatments, including dry storage (D), gibberellin acid soaking (GA), cold stratification (CS), warm followed cold stratification (WCS), GA soaking + cold stratification (GA + CS) and GA soaking + warm followed cold stratification (GA + WCS). Germination experiment, viability and imbibition test, and morphological observation of embryos were conducted. Of the 15 species, nine showed physiological dormancy (PD), with non-deep PD being the dominant type. Four species, Angelica pubescens, Cicuta virosa, Iris laevigata, and Iris setosa exhibited morphophysiological dormancy. Two species, Lycopus uniflorus and Spiraea salicifolia, demonstrated nondormancy. Overall, the effect hierarchy of dormancy-breaking is: CS > GA > WCS > GA + CS > D > GA + WCS. Principal component analysis demonstrated that seed traits, including embryo length: seed length ratio, seed size, and monocot/eudicot divergence, are more likely to influence seed dormancy than environmental factors. Our study suggests that nearly 90% of the tested peatland plant species in the Changbai Mountains demonstrated seed dormancy, and seed traits (e.g. embryo-to-seed ratio and seed size) and abiotic environmental factors (e.g. pH and temperature seasonality) are related to germination behavior, suggesting seed dormancy being a common adaptation strategy for the peatland plants in the temperate montane environment.

14.
Article in English | MEDLINE | ID: mdl-38963567

ABSTRACT

Much of the fatality of tumors is linked to the growth of metastases, which can emerge months to years after apparently successful treatment of primary tumors. Metastases arise from disseminated tumor cells (DTCs), which disperse through the body in a dormant state to seed distant sites. While some DTCs lodge in pre-metastatic niches (PMNs) and rapidly develop into metastases, other DTCs settle in distinct microenvironments that maintain them in a dormant state. Subsequent awakening, induced by changes in the microenvironment of the DTC, causes outgrowth of metastases. Hence, there has been extensive investigation of the factors causing survival and subsequent awakening of DTCs, with the goal of disrupting these processes to decrease cancer lethality. We here provide a detailed overview of recent developments in understanding of the factors controlling dormancy and awakening in the lung, a common site of metastasis for many solid tumors. These factors include dynamic interactions between DTCs and diverse epithelial, mesenchymal, and immune cell populations resident in the lung. Paradoxically, among key triggers for metastatic outgrowth, lung tissue remodeling arising from damage induced by the treatment of primary tumors play a significant role. In addition, growing evidence emphasizes roles for inflammation and aging in opposing the factors that maintain dormancy. Finally, we discuss strategies being developed or employed to reduce the risk of metastatic recurrence.

15.
Proc Natl Acad Sci U S A ; 121(28): e2404887121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968100

ABSTRACT

The timing of seed germination is controlled by the combination of internal dormancy and external factors. Temperature is a major environmental factor for seed germination. The permissive temperature range for germination is narrow in dormant seeds and expands during after-ripening (AR) (dormancy release). Quantitative trait loci analyses of preharvest sprouting in cereals have revealed that MKK3, a mitogen-activated protein kinase (MAPK) cascade protein, is a negative regulator of grain dormancy. Here, we show that the MAPKKK19/20-MKK3-MPK1/2/7/14 cascade modulates the germination temperature range in Arabidopsis seeds by elevating the germinability of the seeds at sub- and supraoptimal temperatures. The expression of MAPKKK19 and MAPKKK20 is induced around optimal temperature for germination in after-ripened seeds but repressed in dormant seeds. MPK7 activation depends on the expression levels of MAPKKK19/20, with expression occurring under conditions permissive for germination. Abscisic acid (ABA) and gibberellin (GA) are two major phytohormones which are involved in germination control. Activation of the MKK3 cascade represses ABA biosynthesis enzyme gene expression and induces expression of ABA catabolic enzyme and GA biosynthesis enzyme genes, resulting in expansion of the germinable temperature range. Our data demonstrate that the MKK3 cascade integrates temperature and AR signals to phytohormone metabolism and seed germination.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Germination , Seeds , Temperature , Germination/physiology , Germination/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Seeds/growth & development , Seeds/metabolism , Seeds/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , MAP Kinase Kinase 3/metabolism , MAP Kinase Kinase 3/genetics , MAP Kinase Signaling System/physiology , Plant Dormancy/genetics , Plant Dormancy/physiology , Signal Transduction , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics
16.
J Plant Physiol ; 301: 154301, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38968782

ABSTRACT

Abscisic acid (ABA) and gibberellin (GA) are major regulators of seed dormancy, an adaptive trait closely associated with preharvest sprouting. This study examined transcriptional regulation of ABA and GA metabolism genes and modulation of ABA and GA levels in seeds of barley genotypes exhibiting a range of dormancy phenotype. We observed a very strong negative correlation between genetic variation in seed germination and embryonic ABA level (r = 0.85), which is regulated by transcriptional modulation of HvNCED1 and/or HvCYP707A genes. A strong positive correlation was evident between variation in seed germination and GA level (r = 0.64), mediated via transcriptional regulation of GA biosynthesis genes, HvGA20ox2 and/or HvGA3oxs, and GA catabolism genes, HvGA2ox3 and/or HvGA3ox6. Modulation of the ABA and GA levels in the genotypes led to the prevalence of ABA to GA level ratio that exhibited a very strong negative correlation (r = 0.84) with seed germination, highlighting the importance of a shift in ABA/GA ratio in determining genetic variation of dormancy in barley seeds. Our results overall show that transcriptional regulation of specific ABA and GA metabolism genes underlies genetic variation in ABA/GA ratio and seed dormancy, reflecting the potential use of these genes as molecular tools for enhancing preharvest sprouting resistance in barley.

17.
Plant Physiol Biochem ; 214: 108881, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38968842

ABSTRACT

Seed germination is a critical phase for the life cycle and propagation of higher plants. This study explores the role of SlWRKY37, a WRKY transcription factor in tomato, in modulating seed germination. We discovered that SlWRKY37 expression is markedly downregulated during tomato seed germination. Through CRISPR/Cas9-mediated editing, we demonstrate that SlWRKY37 knockout enhances germination, while its overexpression results in a delay compared to the wild type. Transcriptome analysis revealed 679 up-regulated and 627 down-regulated genes in Slwrky37-CRISPR deletion mutants relative to the wild type. Gene ontology (GO) enrichment analysis indicated these differentially expressed genes are linked to seed dormancy, abscisic acid homeostasis, and protein phosphorylation pathways. Bioinformatics and biochemical assays identified SlABI5-like7 and SlLEA2 as key transcriptional targets of SlWRKY37, integral to tomato seed dormancy regulation. Additionally, SlWRKY37 was found to be post-translationally phosphorylated at Ser65, a modification crucial for its transcriptional activation. Our findings elucidate the regulatory role of SlWRKY37 in seed dormancy, suggesting its potential as a target for gene editing to reduce seed dormancy in tomato breeding programs.

18.
Zookeys ; 1205: 169-189, 2024.
Article in English | MEDLINE | ID: mdl-38957218

ABSTRACT

Diapausing embryos encased within cladoceran ephippia result from sexual reproduction and increase genetic diversity. They are also important means by which species bypass harsh environmental conditions and disperse in space and time. Once released, ephippia usually sink to the benthos and remain there until hatching. Using the Sars' method (incubating sediments to identify cladoceran hatchlings), ephippial egg bank biodiversity can be evaluated. Yet, even when samples are incubated under a variety of conditions, it is not possible to warrant that all have hatched. Few keys are available that facilitate the identification of cladocerans by using only ephippial morphology. Our goal was to analyze some cladoceran ephippia from Mexico, to develop a means to identify them using easily recognizable characteristics. Ephippia of 23 cladoceran species from waters in Aguascalientes (México) in 11 genera (Alona, Biapertura, Ceriodaphnia, Chydorus, Daphnia, Dunhevedia, Ilyocryptus, Macrothrix, Moina, Pleuroxus, and Simocephalus) were analyzed. In our analysis six morphological features were selected that permitted the identification of ephippia to species(-group) level. The results demonstrate that with a proper catalog of features, some ephippia can be identified.

19.
Tree Physiol ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905284

ABSTRACT

Epigenetic changes serve as a cellular memory for cumulative cold recognition in both herbaceous and tree species, including bud dormancy. However, most studies have discussed predicted chromatin structure with respect to histone marks. In the present study, we investigated the structural dynamics of bona fide chromatin to determine how plants recognise prolonged chilling during the initial stage of bud dormancy. The vegetative axillary buds of the 'Fuji' apple, which shows typical low temperature-dependent, but not photoperiod, dormancy induction, were used for the chromatin structure and transcriptional change analyses. The results were integrated using a deep-learning model and interpreted using statistical models, including Bayesian estimation. Although our model was constructed using a small dataset of two time points, chromatin remodelling due to random changes was excluded. The involvement of most nucleosome structural changes in transcriptional changes and the pivotal contribution of cold-driven circadian rhythm-dependent pathways regulated by the mobility of cis-regulatory elements were predicted. These findings may help to develop potential genetic targets for breeding species with less bud dormancy to overcome the effects of short winters during global warming. Our artificial intelligence concept can improve epigenetic analysis using a small dataset, especially in non-model plants with immature genome databases.

20.
Trends Cell Biol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38897887

ABSTRACT

Embryonic and adult stem cells enable development and regeneration. Embryonic cells, like adult stem cells, can enter dormancy as part of their lifecycle. Recent evidence suggests that this cellular transition to dormancy requires active rewiring of metabolism. The dormancy-induced metabolic switches in embryonic and adult stem cells are explored here.

SELECTION OF CITATIONS
SEARCH DETAIL
...