Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.159
Filter
1.
J Gastrointest Oncol ; 15(3): 862-872, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38989399

ABSTRACT

Background: Defects in DNA damage repair can cause genetic mutations, which in turn can cause different types of cancers. Chromatin remodeling complexes, which help repair damaged DNA, can cause the chromatin structure to change as a result of DNA damage. ARID1A may play a role in the process of DNA damage repair, and arid1a may be related to the occurrence and development of gastric cancer (GC). This study aimed to investigate the mechanism of ARID1A regulating the DNA damage repair of gastric adenocarcinoma cell lines AGS and SGC-7901 and its effect on migration, proliferation and apoptosis. Methods: The expression of ARID1A plasmid was detected by Western blot and real-time polymerase chain reaction (PCR). The effect of etoposide (ETO) on the survival rate of AGS and SGC-7901 gastric adenocarcinoma cell lines was detected by MTT assay. The DNA double-strand break model was established by ETO and then passed through the comet assay and immunofluorescence co-localization to observe DNA damage; western blot method was used to detect the effect of ARID1A on the expression of related proteins in DNA damage repair pathway in gastric adenocarcinoma cells; scratch test and colony formation experiments were used to observe ARID1A migration and proliferation of gastric adenocarcinoma cells. The flow cytometry was used to detect the effect of ARID1A on apoptosis of gastric adenocarcinoma cells. Results: The expression of mRNA and protein was increased after transfection of ARID1A plasmid. ETO was confirmed by MTT assay to inhibit cell survival in a dose-dependent manner. After the DNA double-strand break model was established by ETO, the expression levels of phospho-ataxia telangiectasia mutated (p-ATM) protein increased in the overexpressed ARID1A group. Meanwhile, the overexpressed ARID1A group had a shortened tail moment, and γ-H2AX and ARID1A co-localized in the DNA damage site of the nucleus. The over-expressed ARID1A group had weaker wound healing ability, reduced number of clone formation, and increased apoptosis rate. Conclusions: ARID1A may repair DNA double-strand breaks caused by ETO by p-ATM pathway; ARID1A can inhibit the migration and proliferation of gastric adenocarcinoma cells and promote apoptosis. Our findings indicate that ARID1A could serve as a therapeutic target and biomarker for GC patients.

2.
J Microbiol ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995433

ABSTRACT

DNA double-strand break (DSB) repair is a fundamental cellular process crucial for maintaining genome stability, with homologous recombination and non-homologous end joining as the primary mechanisms, and various alternative pathways such as single-strand annealing (SSA) and microhomology-mediated end joining also playing significant roles under specific conditions. IRC genes were previously identified as part of a group of genes associated with increased levels of Rad52 foci in Saccharomyces cerevisiae. In this study, we investigated the effects of IRC gene mutations on DSB repair, focusing on uncharacterized IRC10, 19, 21, 22, 23, and 24. Gene conversion (GC) assay revealed that irc10Δ, 22Δ, 23Δ, and 24Δ mutants displayed modest increases in GC frequencies, while irc19Δ and irc21Δ mutants exhibited significant reductions. Further investigation revealed that deletion mutations in URA3 were not generated in irc19Δ mutant cells following HO-induced DSBs. Additionally, irc19Δ significantly reduced frequency of SSA, and a synergistic interaction between irc19Δ and rad52Δ was observed in DSB repair via SSA. Assays to determine the choice of DSB repair pathways indicated that Irc19 is necessary for generating both GC and deletion products. Overall, these results suggest a potential role of Irc19 in DSB repair pathways, particularly in end resection process.

3.
J Biol Chem ; : 107545, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992439

ABSTRACT

DNA double-strand breaks (DSBs) elicit an elaborate response to signal damage and trigger repair via two major pathways: non-homologous end-joining (NHEJ), which functions throughout the interphase, and homologous recombination (HR), restricted to S/G2 phases. The DNA damage response (DDR) relies, on post-translational modifications of nuclear factors to coordinate the mending of breaks. Ubiquitylation of histones and chromatin-associated factors regulates DSB repair and numerous E3 ubiquitin ligases are involved in this process. Despite significant progress, our understanding of ubiquitin-mediated DDR regulation remains incomplete. Here, we have performed a localization screen to identify RING/U-box E3 ligases involved in genome maintenance. Our approach uncovered 7 novel E3 ligases that are recruited to microirradiation stripes, suggesting potential roles in DNA damage signaling and repair. Amongst these factors, the DELTEX family E3 ligase DTX2 is rapidly mobilized to lesions in a poly ADP-ribosylation-dependent manner. DTX2 is recruited and retained at DSBs via its WWE and DTC domains. In cells, both domains are required for optimal binding to mono and poly ADP-ribosylated proteins with WWEs playing a prominent role in this process. Supporting its involvement in DSB repair, DTX2 depletion decreases HR efficiency and moderately enhances NHEJ. Furthermore, DTX2 depletion impeded BRCA1 foci formation and increased 53BP1 accumulation at DSBs, suggesting a fine-tuning role for this E3 ligase in repair pathway choice. Finally, DTX2 depletion sensitized cancer cells to X-rays and PARP inhibition and these susceptibilities could be rescued by DTX2 re-expression. Altogether, our work identifies DTX2 as a novel ADP-ribosylation-dependent regulator of HR-mediated DSB repair.

4.
Proc Natl Acad Sci U S A ; 121(28): e2322972121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968116

ABSTRACT

Rapid accumulation of repair factors at DNA double-strand breaks (DSBs) is essential for DSB repair. Several factors involved in DSB repair have been found undergoing liquid-liquid phase separation (LLPS) at DSB sites to facilitate DNA repair. RNF168, a RING-type E3 ubiquitin ligase, catalyzes H2A.X ubiquitination for recruiting DNA repair factors. Yet, whether RNF168 undergoes LLPS at DSB sites remains unclear. Here, we identified K63-linked polyubiquitin-triggered RNF168 condensation which further promoted RNF168-mediated DSB repair. RNF168 formed liquid-like condensates upon irradiation in the nucleus while purified RNF168 protein also condensed in vitro. An intrinsically disordered region containing amino acids 460-550 was identified as the essential domain for RNF168 condensation. Interestingly, LLPS of RNF168 was significantly enhanced by K63-linked polyubiquitin chains, and LLPS largely enhanced the RNF168-mediated H2A.X ubiquitination, suggesting a positive feedback loop to facilitate RNF168 rapid accumulation and its catalytic activity. Functionally, LLPS deficiency of RNF168 resulted in delayed recruitment of 53BP1 and BRCA1 and subsequent impairment in DSB repair. Taken together, our finding demonstrates the pivotal effect of LLPS in RNF168-mediated DSB repair.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Tumor Suppressor p53-Binding Protein 1 , Ubiquitin-Protein Ligases , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Humans , Tumor Suppressor p53-Binding Protein 1/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , Ubiquitin/metabolism , Histones/metabolism , Histones/genetics , Polyubiquitin/metabolism
5.
J Radiat Res ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899572

ABSTRACT

Small fractions of patients suffer from radiotherapy late severe adverse events (AEs Grade ≥ 3), which are usually irreversible and badly affect their quality of life. A novel functional DNA repair assay characterizing several steps of double-strand break (DSB) repair mechanisms was used. DNA repair activities of peripheral blood mononuclear cells were monitored for 1 week using NEXT-SPOT assay in 177 breast and prostate cancer patients. Only seven patients had Grade ≥ 3 AEs, 6 months after radiotherapy initiation. The machine learning method established the importance of variables among demographic, clinical and DNA repair data. The most relevant ones, all related to DNA repair, were employed to build a predictor. Predictors constructed with random forest and minimum bounding sphere predicted late Grade ≥ 3 AEs with a sensitivity of 100% and specificity of 77.17 and 86.22%, respectively. This multiplex functional approach strongly supports a dominant role for DSB repair in the development of chronic AEs. It also showed that affected patients share specific features related to functional aspects of DSB repair. This strategy may be suitable for routine clinical analysis and paves the way for modelling DSB repair associated with severe AEs induced by radiotherapy.

6.
J Transl Med ; 22(1): 577, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890669

ABSTRACT

BACKGROUND: Inherited variations in DNA double-strand break (DSB) repair pathway are known to influence ovarian cancer occurrence, progression and treatment response. Despite its significance, survival-associated genetic variants within the DSB pathway remain underexplored. METHODS: In the present study, we performed a two-phase analysis of 19,290 single-nucleotide polymorphisms (SNPs) in 199 genes in the DSB repair pathway from a genome-wide association study (GWAS) dataset and explored their associations with overall survival (OS) in 1039 Han Chinese epithelial ovarian carcinoma (EOC) patients. After utilizing multivariate Cox regression analysis with bayesian false-discovery probability for multiple test correction, significant genetic variations were identified and subsequently underwent functional prediction and validation. RESULTS: We discovered a significant association between poor overall survival and the functional variant GEN1 rs56070363 C > T (CT + TT vs. TT, adjusted hazard ratio (HR) = 2.50, P < 0.001). And the impact of GEN1 rs56070363 C > T on survival was attributed to its reduced binding affinity to hsa-miR-1287-5p and the resultant upregulation of GEN1 mRNA expression. Overexpression of GEN1 aggregated EOC cell proliferation, invasion and migration presumably by influencing the expression of immune inhibitory factors, thereby elevating the proportion of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and then constructing an immunosuppressive tumor microenvironment. CONCLUSIONS: In conclusion, GEN1 rs56070363 variant could serve as a potential predictive biomarker and chemotherapeutic target for improving the survival of EOC patients.


Subject(s)
Carcinoma, Ovarian Epithelial , Holliday Junction Resolvases , Ovarian Neoplasms , Polymorphism, Single Nucleotide , Female , Humans , Middle Aged , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/mortality , Cell Line, Tumor , Cell Movement , Cell Proliferation , China , East Asian People/genetics , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Kaplan-Meier Estimate , MicroRNAs/genetics , Neoplasm Invasiveness , Ovarian Neoplasms/genetics , Ovarian Neoplasms/mortality , Prognosis , Survival Analysis , Holliday Junction Resolvases/genetics
7.
Toxicol Sci ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867691

ABSTRACT

Hexavalent chromium [Cr(VI)] is an established human lung carcinogen, but the carcinogenesis mechanism is poorly understood. Chromosome instability, a hallmark of lung cancer, is considered a major driver of Cr(VI)-induced lung cancer. Unrepaired DNA double strand breaks are the underlying cause, and homologous recombination repair is the primary mechanism preventing Cr(VI)-induced DNA breaks from causing chromosome instability. Cell culture studies show acute Cr(VI) exposure causes DNA double strand breaks and increases homologous recombination repair activity. However, the ability of Cr(VI)-induced DNA breaks and repair impact has only been reported in cell culture studies. Therefore, we investigated whether acute Cr(VI) exposure could induce breaks and homologous recombination repair in rat lungs. Male and female Wistar rats were acutely exposed to either zinc chromate particles in a saline solution or saline alone by oropharyngeal aspiration. This exposure route resulted in increased Cr levels in each lobe of the lung. We found Cr(VI) induced DNA double-strand breaks in a concentration-dependent manner, with females being more susceptible than males, and induced homologous recombination repair at similar levels in both sexes. Thus, these data show this driving mechanism discovered in cell culture indeed translates to lung tissue in vivo.

8.
Histochem Cell Biol ; 162(1-2): 133-147, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38888809

ABSTRACT

Cancer initiation and progression are typically associated with the accumulation of driver mutations and genomic instability. However, recent studies demonstrated that cancer can also be driven purely by epigenetic alterations, without driver mutations. Specifically, a 24-h transient downregulation of polyhomeotic (ph-KD), a core component of the Polycomb complex PRC1, is sufficient to induce epigenetically initiated cancers (EICs) in Drosophila, which are proficient in DNA repair and characterized by a stable genome. Whether genomic instability eventually occurs when PRC1 downregulation is performed for extended periods of time remains unclear. Here, we show that prolonged depletion of PH, which mimics cancer initiating events, results in broad dysregulation of DNA replication and repair genes, along with the accumulation of DNA breaks, defective repair, and widespread genomic instability in the cancer tissue. A broad misregulation of H2AK118 ubiquitylation and to a lesser extent of H3K27 trimethylation also occurs and might contribute to these phenotypes. Together, this study supports a model where DNA repair and replication defects accumulate during the tumorigenic transformation epigenetically induced by PRC1 loss, resulting in genomic instability and cancer progression.


Subject(s)
DNA Repair , Epigenesis, Genetic , Genomic Instability , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 1/genetics , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Drosophila/metabolism , Drosophila melanogaster/metabolism , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/genetics
9.
Biochem Biophys Res Commun ; 724: 150233, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38865814

ABSTRACT

Cryptochromes (CRYs) are blue light (BL) photoreceptors to regulate a variety of physiological processes including DNA double-strand break (DSB) repair. SUPPRESSOR OF GAMMA RADIATION 1 (SOG1) acts as the central transcription factor of DNA damage response (DDR) to induce the transcription of downstream genes, including DSB repair-related genes BRCA1 and RAD51. Whether CRYs regulate DSB repair by directly modulating SOG1 is unknown. Here, we demonstrate that CRYs physically interact with SOG1. Disruption of CRYs and SOG1 leads to increased sensitivity to DSBs and reduced DSB repair-related genes' expression under BL. Moreover, we found that CRY1 enhances SOG1's transcription activation of DSB repair-related gene BRCA1. These results suggest that the mechanism by which CRYs promote DSB repair involves positive regulation of SOG1's transcription of its target genes, which is likely mediated by CRYs-SOG1 interaction.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cryptochromes , DNA Breaks, Double-Stranded , DNA Repair , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Cryptochromes/metabolism , Cryptochromes/genetics , Gene Expression Regulation, Plant , Transcription Factors/metabolism , Transcription Factors/genetics
10.
Genes (Basel) ; 15(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38927743

ABSTRACT

Ionizing radiation (IR) and chemotherapy with DNA-damaging drugs such as cisplatin are vital cancer treatment options. These treatments induce double-strand breaks (DSBs) as cytotoxic DNA damage; thus, the DSB repair activity in each cancer cell significantly influences the efficacy of the treatments. Pancreatic cancers are known to be resistant to these treatments, and the overexpression of MUC1, a member of the glycoprotein mucins, is associated with IR- and chemo-resistance. Therefore, we investigated the impact of MUC1 on DSB repair. This report examined the effect of the overexpression of MUC1 on homologous recombination (HR) and non-homologous end-joining (NHEJ) using cell-based DSB repair assays. In addition, the therapeutic potential of NHEJ inhibitors including HDAC inhibitors was also studied using pancreatic cancer cell lines. The MUC1-overexpression enhances NHEJ, while partially suppressing HR. Also, MUC1-overexpressed cancer cell lines are preferentially killed by a DNA-PK inhibitor and HDAC1/2 inhibitors. Altogether, MUC1 induces metabolic changes that create an imbalance between NHEJ and HR activities, and this imbalance can be a target for selective killing by HDAC inhibitors. This is a novel mechanism of MUC1-mediated IR-resistance and will form the basis for targeting MUC1-overexpressed pancreatic cancer.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , Mucin-1 , Pancreatic Neoplasms , Up-Regulation , Humans , Mucin-1/genetics , Mucin-1/metabolism , DNA End-Joining Repair/genetics , Cell Line, Tumor , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Homologous Recombination , Histone Deacetylase Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects
11.
BioTech (Basel) ; 13(2)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38921049

ABSTRACT

(1) Background: DNA damage is of great importance in the understanding of the effects of ionizing radiation. Various types of DNA damage can result from exposure to ionizing radiation, with clustered types considered the most important for radiobiological effects. (2) Methods: The code RITRACKS (Relativistic Ion Tracks), a program that simulates stochastic radiation track structures, was used to simulate DNA damage by photons and ions spanning a broad range of linear energy transfer (LET) values. To perform these simulations, the transport code was modified to include cross sections for the interactions of ions or electrons with DNA and amino acids for ionizations, dissociative electron attachment, and elastic collisions. The radiochemistry simulations were performed using a step-by-step algorithm that follows the evolution of all particles in time, including reactions between radicals and DNA structures and amino acids. Furthermore, detailed DNA damage events, such as base pair positions, DNA fragment lengths, and fragment yields, were recorded. (3) Results: We report simulation results using photons and the ions 1H+, 4He2+, 12C6+, 16O8+, and 56Fe26+ at various energies, covering LET values from 0.3 to 164 keV/µm, and performed a comparison with other codes and experimental results. The results show evidence of DNA protection from damage at its points of contacts with histone proteins. (4) Conclusions: RITRACKS can provide a framework for studying DNA damage from a variety of ionizing radiation sources with detailed representations of DNA at the atomic scale, DNA-associated proteins, and resulting DNA damage events and statistics, enabling a broader range of future comparisons with experiments such as those based on DNA sequencing.

12.
DNA Repair (Amst) ; 140: 103710, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901287

ABSTRACT

The KU heterodimer (KU70/80) is rapidly recruited to DNA double-strand breaks (DSBs) to regulate their processing and repair. Previous work has revealed that the amino-terminal von Willebrand-like (vWA-like) domain in KU80 harbours a conserved hydrophobic pocket that interacts with a short peptide motif known as the Ku-binding motif (KBM). The KBM is present in a variety of DNA repair proteins such as APLF, CYREN, and Werner protein (WRN). Here, to investigate the importance of KBM-mediated protein-protein interactions for KU80 function, we employed KU80-deficient Chinese Hamster Ovary (Xrs-6) cells transfected with RFP-tagged wild-type human KU80 or KU80 harbouring a mutant vWA-like domain (KU80L68R). Surprisingly, while mutant RFP-KU80L68R largely or entirely restored NHEJ efficiency and radiation resistance in KU80-deficient Xrs-6 cells, it failed to restore cellular resistance to DNA replication stress induced by camptothecin (CPT) or hydroxyurea (HU). Moreover, KU80-deficient Xrs-6 cells expressing RFP-KU80L68R accumulated pan-nuclear γH2AX in an S/G2-phase-dependent manner following treatment with CPT or HU, suggesting that the binding of KU80 to one or more KBM-containing proteins is required for the processing and/or repair of DNA ends that arise during DNA replication stress. Consistent with this idea, depletion of WRN helicase/exonuclease recapitulated the CPT-induced γH2AX phenotype, and did so epistatically with mutation of the KU80 vWA-like domain. These data identify a role for the KBM-binding by KU80 in the response and resistance of CHO cells to arrested and/or collapsed DNA replication forks, and implicate the KBM-mediated interaction of KU80 with WRN as a critical effector of this role.


Subject(s)
Cricetulus , DNA Replication , Ku Autoantigen , Ku Autoantigen/metabolism , Ku Autoantigen/genetics , Animals , CHO Cells , Humans , Cricetinae , DNA Breaks, Double-Stranded , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Werner Syndrome Helicase/metabolism , Werner Syndrome Helicase/genetics , DNA End-Joining Repair , Protein Binding , Camptothecin/pharmacology , Hydroxyurea/pharmacology
13.
Mutat Res ; 829: 111866, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38878505

ABSTRACT

Homologous recombination (HR) is essential for repair of DNA double-strand breaks (DSBs) and restart of stalled or collapsed replication forks. Most cancers are characterized by mutations in components of the DSB repair pathways. Redundant DSB repair pathways exist in eukaryotes from yeast to humans and recent evidence has shown that complete loss of HR function appears to be lethal. Recent evidence has also shown that cancer cells with mutations in one DSB repair pathway can be killed by inhibiting one or more parallel pathways, a strategy that is currently aggressively explored as a cancer therapy. KDM4B is a histone demethylase with pleiotropic functions, which participates in preparing DSBs for repair by contributing to chromatin remodeling. In this report we carried out a pan-cancer analysis of KDM4B mutations with the goal of understanding their distribution and interaction with other DSB genes. We find that although KDM4B mutations co-occur with DSB repair genes, most KDM4B mutations are not drivers or pathogenic. A sequence conservation analysis from yeast to humans shows that highly conserved residues are resistant to mutation. Finally, all mutations occur in a heterozygous state. A single mutation, R986L, was predicted to significantly affect protein structure using computational modeling. This analysis suggests that KDM4B makes contributions to DSB repair but is not a key player.

14.
Res Sq ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38746379

ABSTRACT

Cancer initiation and progression are typically associated with the accumulation of driver mutations and genomic instability. However, recent studies demonstrated that cancers can also be purely initiated by epigenetic alterations, without driver mutations. Specifically, a 24-hours transient down-regulation of polyhomeotic (ph-KD), a core component of the Polycomb complex PRC1, is sufficient to drive epigenetically initiated cancers (EICs) in Drosophila, which are proficient in DNA repair and are characterized by a stable genome. Whether genomic instability eventually occurs when PRC1 down-regulation is performed for extended periods of time remains unclear. Here we show that prolonged depletion of a PRC1 component, which mimics cancer initiating events, results in broad dysregulation of DNA replication and repair genes, along with the accumulation of DNA breaks, defective repair, and widespread genomic instability in the cancer tissue. A broad mis-regulation of H2AK118 ubiquitylation and to a lesser extent of H3K27 trimethylation also occurs, and might contribute to these phenotypes. Together, this study supports a model where DNA repair and replication defects amplify the tumorigenic transformation epigenetically induced by PRC1 loss, resulting in genomic instability and cancer progression.

15.
DNA Repair (Amst) ; 140: 103696, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820807

ABSTRACT

DNA double-strand breaks (DSBs) represent one of the most severe threats to genomic integrity, demanding intricate repair mechanisms within eukaryotic cells. A diverse array of factors orchestrates the complex choreography of DSB signaling and repair, encompassing repair pathways, such as non-homologous end-joining, homologous recombination, and polymerase-θ-mediated end-joining. This review looks into the intricate decision-making processes guiding eukaryotic cells towards a particular repair pathway, particularly emphasizing the processing of two-ended DSBs. Furthermore, we elucidate the transformative role of Cas9, a site-specific endonuclease, in revolutionizing our comprehension of DNA DSB repair dynamics. Additionally, we explore the burgeoning potential of Cas9's remarkable ability to induce sequence-specific DSBs, offering a promising avenue for precise targeting of tumor cells. Through this comprehensive exploration, we unravel the intricate molecular mechanisms of cellular responses to DSBs, shedding light on both fundamental repair processes and cutting-edge therapeutic strategies.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , Humans , Animals , DNA Repair , DNA Polymerase theta , CRISPR-Associated Protein 9/metabolism , DNA/metabolism
16.
Cancers (Basel) ; 16(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791886

ABSTRACT

Non-Hispanic Black breast cancer survivors have poorer outcomes and higher mortality rates than White survivors, but systemic biological mechanisms underlying these disparities are unclear. We used circulating leukocytes as a surrogate for measuring systemic mechanisms, which might be different from processes in the target tissue (e.g., breast). We investigated race-based differences in DNA damage and repair, using a novel CometChip assay, in circulating leukocytes from breast cancer survivors who had completed primary cancer therapy and were cancer free. We observed novel race-based differences in systemic DNA damage and repair activity in cancer survivors, but not in cells from healthy volunteers. Basal DNA damage in leukocytes was higher in White survivors, but Black survivors showed a much higher induction after bleomycin treatment. Double-strand break repair activity was also significantly different between the races, with cells from White survivors showing more sustained repair activity compared to Black leukocytes. These results suggest that cancer and cancer therapy might have long-lasting effects on systemic DNA damage and repair mechanisms that differ in White survivors and Black survivors. Findings from our preliminary study in non-cancer cells (circulating leukocytes) suggest systemic effects beyond the target site, with implications for accelerated aging-related cancer survivorship disparities.

17.
Lung Cancer ; 192: 107831, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38805902

ABSTRACT

OBJECTIVES: This study aims to investigate the association between DNA double-strand breaks (DSBs) repair capacity, variations in DSBs-related genes, and the occurrence and prognosis of lung cancer in the Chinese population. METHODS: Peripheral blood mononuclear cells (PBMC) were collected from 98 lung cancer patients and 60 healthy individuals. The individual DSBs repair capacity was assessed by measuring changes in γ-H2AX levels after treatment with etoposide. Exonic sequencing of 45 DSBs-related genes was performed on PBMC DNA. Logistic regression analysis was conducted to examine the relationship between lung cancer risk and DSBs repair capacity as well as germlines gene variations. Survival analysis employed the Cox proportional hazards regression model, Kaplan-Meier method, and Log-rank test. RESULTS: Lower DSBs repair capacity predicted an increased risk of developing lung cancer (OR = 0.94, 95 %CI = 0.917-0.964, P<0.001). Among lung cancer patients, higher DSBs repair capacity was associated with shorter progression-free survival (PFS) during first-line treatment (HR = 1.80, 95 %CI = 1.10-3.00, P = 0.031). Patients with BRCA1 mutations had shorter overall survival (OS) (HR = 1.92, 95 %CI = 1.12-3.28, P = 0.018). Patients with FOXO3 mutations had shorter PFS (HR = 4.23, 95 %CI = 1.44-12.36, P = 0.009). Analysis of patients treated with immune checkpoint inhibitors (ICIs) indicated that LIG4 mutations were associated with shorter PFS (HR = 2.90, 95 %CI = 1.00-8.10, P = 0.041). CONCLUSIONS: This study concludes that assessing DSBs repair capacity holds promise for predicting both lung cancer risk and prognosis in the Chinese population. Further large-scale studies and functional validation of specific gene mutations related to double-strand breaks are necessary for confirmation.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Female , Male , Prognosis , Middle Aged , DNA Repair/genetics , Aged , Biomarkers, Tumor/genetics , Genetic Predisposition to Disease , Leukocytes, Mononuclear/metabolism , Risk Factors
18.
Front Oncol ; 14: 1380633, 2024.
Article in English | MEDLINE | ID: mdl-38807759

ABSTRACT

Background: Ataxia telangiectasia-mutated (ATM) kinase is a central regulator of the DNA damage response (DDR) signaling pathway, and its function is critical for the maintenance of genomic stability in cells that coordinate a network of cellular processes, including DNA replication, DNA repair, and cell cycle progression. ATM is frequently mutated in human cancers, and approximately 3% of lung cancers have biallelic mutations in ATM, i.e., including 3.5% of lung adenocarcinomas (LUAD) and 1.4% of lung squamous cell carcinomas (LUSC). Methods: We investigated the potential of targeting the DDR pathway in lung cancer as a potential therapeutic approach. In this context, we examined whether ATM loss is synthetically lethal with niraparib monotherapy. This exploration involved the use of hATM knockout (KO) isogenic cell lines containing hATM homozygous (-/-) and heterozygous (+/-) generated via CRISPR/Cas9 gene knockout technology in DLD-1, a human colorectal adenocarcinoma cell line. Subsequently, we extended our investigation to non-small cell lung cancer (NSCLC) patient derived xenograft (PDX) models for further validation of poly ADP-ribose polymerase inhibitor (PARPi) synthetic lethality in ATM mutant NSCLC models. Results: Here, we demonstared that biallelic hATM deletion (-/-) in DLD-1 impairs homologous recombination (HR) repair function and sensitizes cells to the PARPi, niraparib. Niraparib also caused significant tumor regression in one-third of the NSCLC PDX models harboring deleterious biallelic ATM mutations. Loss of hATM (-/-) was concomitantly associated with low BRCA1 and BRCA2 protein expression in both the hATM (-/-) DLD-1 cell line and PARPi-sensitive ATM mutant NSCLC PDX models, suggesting a downstream effect on the impairment of HR-mediated DNA checkpoint signaling. Further analysis revealed that loss of ATM led to inhibition of phosphorylation of MRN (Mre11-Rad50-NBS1) complex proteins, which are required for ATM-mediated downstream phosphorylation of p53, BRCA1, and CHK2. Conclusions: Taken together, our findings highlight that the synthetic lethality of niraparib in ATM-deficient tumors can be regulated through a subsequent effect on the modulation of BRCA1/2 expression and its effect on HR function.

19.
Trends Genet ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38789375

ABSTRACT

The tumour-suppressive roles of BRCA1 and 2 have been attributed to three seemingly distinct functions - homologous recombination, replication fork protection, and single-stranded (ss)DNA gap suppression - and their relative importance is under debate. In this review, we examine the origin and resolution of ssDNA gaps and discuss the recent advances in understanding the role of BRCA1/2 in gap suppression. There are ample data showing that gap accumulation in BRCA1/2-deficient cells is linked to genomic instability and chemosensitivity. However, it remains unclear whether there is a causative role and the function of BRCA1/2 in gap suppression cannot unambiguously be dissected from their other functions. We therefore conclude that the three functions of BRCA1 and 2 are closely intertwined and not mutually exclusive.

20.
Pharmaceuticals (Basel) ; 17(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38794172

ABSTRACT

Histone deacetylases inhibitors (HDACis) have shown promising therapeutic outcomes in haematological malignancies such as leukaemia, multiple myeloma, and lymphoma, with disappointing results in solid tumours when used as monotherapy. As a result, combination therapies either with radiation or other deoxyribonucleic acid (DNA) damaging agents have been suggested as ideal strategy to improve their efficacy in solid tumours. Numerous in vitro and in vivo studies have demonstrated that HDACis can sensitise malignant cells to both electromagnetic and particle types of radiation by inhibiting DNA damage repair. Although the radiosensitising ability of HDACis has been reported as early as the 1990s, the mechanisms of radiosensitisation are yet to be fully understood. This review brings forth the various protocols used to sequence the administration of radiation and HDACi treatments in the different studies. The possible contribution of these various protocols to the ambiguity that surrounds the mechanisms of radiosensitisation is also highlighted.

SELECTION OF CITATIONS
SEARCH DETAIL
...