ABSTRACT
Protein-based foods based on sweet lupine are gaining the attention of industry and consumers on account of their being one of the legumes with the highest content of proteins (28-48%). Our objective was to study the thermal properties of two lupine flours (Misak and Rumbo) and the influence of different amounts of lupine flour (0, 10, 20 and 30%) incorporations on the hydration and rheological properties of dough and bread quality. The thermograms of both lupine flours showed three peaks at 77-78 °C, 88-89 °C and 104-105 °C, corresponding to 2S, 7S and 11S globulins, respectively. For Misak flour, higher energy was needed to denature proteins in contrast to Rumbo flour, which may be due to its higher protein amount (50.7% vs. 34.2%). The water absorption of dough with 10% lupine flour was lower than the control, while higher values were obtained for dough with 20% and 30% lupine flour. In contrast, the hardness and adhesiveness of the dough were higher with 10 and 20% lupine flour, but for 30%, these values were lower than the control. However, no differences were observed for G', Gâ³ and tan δ parameters between dough. In breads, the protein content increased ~46% with the maximum level of lupine flour, from 7.27% in wheat bread to 13.55% in bread with 30% Rumbo flour. Analyzing texture parameters, the chewiness and firmness increased with incorporations of lupine flour with respect to the control sample while the elasticity decreased, and no differences were observed for specific volume. It can be concluded that breads of good technological quality and high protein content could be obtained by the inclusion of lupine flours in wheat flour. Therefore, our study highlights the great technological aptitude and the high nutritional value of lupine flours as ingredients for the breadmaking food industry.
ABSTRACT
The present work aims to develop encapsulated NaCl in carnauba wax for bread application, to reduce the salt utilization and assess its impacts on the rheological dough parameters and saltiness perception. Encapsulated salt was obtained blending salt crystals and molten Carnauba wax. Four different bread formulations were produced: 2.0% non-encapsulated salt; 2.0% Encapsulated Salt; 1.5% Encapsulated Salt; 1.0% Encapsulated Salt. Farinograph and alveograph analyses were performed to assess the dough rheology parameters and sensory analysis was conducted to evaluate saltiness. Encapsulation was effective to control Na+ ions release. They vary from 17 to 32 ppm the dissolution of sodium ions in the non-encapsulated and encapsulated samples, respectively. The alveograph and farinograph analyses showed that the 1.5E bread formulation was the closest to the control sample in rheological properties. Finally, a sensory analysis showed no difference in the saltiness perception between control and 1.5% encapsulated salt (4.65 and 4.69 respectively), indicating that carnauba wax encapsulated salt effectively reduced until 35% of salt the bread without changing the saltiness.
ABSTRACT
Bread is a highly consumed food whose nutritional value can be improved by adding an oat flour (Avena sativa L.-variety Bonaerense INTA Calen-Argentina) to a high-industrial quality wheat flour (Triticum aestivum L.). This cultivar of oat contains high amounts of ß-glucans, which act as a prebiotic fiber. Wheat flour was complemented with different amounts of oat flour (5, 15, and 25%). A contribution of hydrophilic components from oat flour was evident in the oat-wheat mixtures. At the same time, the high content of total dietary fiber led to changes in the rheological properties of the dough. Mixtures with a higher proportion of oats showed an increase in alveographic tenacity (stiffer dough), higher stability, and a lower softening degree in farinographic assays. The dough showed significant increases in hardness and gumminess, without significant changes in cohesiveness, i.e., no disruption to the gluten network was observed. Relaxation tests showed that the blends with a higher oat content yielded 10 times higher stress values compared to wheat dough. Analysis of the oat-wheat breads showed improvements in nutritional parameters, with slight decreases in the volume and crust color. The crumb showed significant increases in firmness and chewing strength as the amount of oats added increased. Nutritional parameters showed that lipids, dietary fiber, and ß-glucans were significantly increased by the addition of oats. Sensory analysis achieved high response rates with good-to-very good ratings on the hedonic scale set. Thus, the addition of oats did not generate rejection by the consumer and could be accepted by them. Breads with wheat and oats showed nutritional improvements with respect to wheat bread, since they have higher dietary fiber content, especially in ß-glucans, so they could be considered functional breads.