Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
Biomed Khim ; 70(3): 156-160, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38940204

ABSTRACT

The cytokine profile of primary coronary artery endothelial cells cultivated in the presence of doxorubicin (2 µg/ml and 6 µg/ml) was evaluated using enzyme-linked immunosorbent assay and qPCR. Cultivation of cells in the presence of these concentrations of doxorubicin for 24 h, upregulated expression of the following genes: IL6 (by 2.30 and 2.66 times, respectively), IL1B (by 1.25 and 3.44 times), and CXCL8 (by 6.47 times and 6.42 times), MIF (2.34 and 2.28 times), CCL2 (4.22 and 3.98 times). Under these conditions the following genes were downregulated: IL10, IL1R2, TNF. Cultivation of cells in the presence of doxorubicin (2 µg/ml and 6 µg/ml) for 24 h also increased the secretion of IL-6.


Subject(s)
Coronary Vessels , Doxorubicin , Endothelial Cells , Interleukin-6 , Humans , Doxorubicin/pharmacology , Coronary Vessels/cytology , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Interleukin-6/metabolism , Interleukin-6/genetics , Cells, Cultured , Interleukin-1beta/metabolism , Interleukin-1beta/pharmacology , Cytokines/metabolism , Cytokines/genetics , Gene Expression Regulation/drug effects , Interleukin-8/metabolism , Interleukin-8/genetics , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Interleukin-10/metabolism , Interleukin-10/genetics
2.
Mol Pharm ; 21(6): 2970-2980, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38742943

ABSTRACT

One of the most significant reasons hindering the clinical translation of nanomedicines is the rapid clearance of intravenously injected nanoparticles by the mononuclear phagocyte system, particularly by Kupffer cells in the liver, leading to an inefficient delivery of nanomedicines for tumor treatment. The threshold theory suggests that the liver's capacity to clear nanoparticles is limited, and a single high dose of nanoparticles can reduce the hepatic clearance efficiency, allowing more nanomedicines to reach tumor tissues and enhance therapeutic efficacy. Building upon this theory, researchers have conducted numerous validation studies based on the same nanoparticle carrier systems. These studies involve the use of albumin nanoparticles to improve the therapeutic efficacy of albumin nanomedicines as well as polyethylene glycol (PEG)-modified liposomal nanoparticles to enhance the efficacy of PEGylated liposomal nanomedicines. However, there is no research indicating the feasibility of the threshold theory when blank nanoparticles and nanomedicine belong to different nanoparticle carrier systems currently. In this study, we prepared two different sizes of albumin nanoparticles by using bovine serum albumin. We used the marketed nanomedicine liposomal doxorubicin hydrochloride injection (trade name: LIBOD, manufacturer: Shanghai Fudan-zhangjiang Biopharmaceutical Co., Ltd.), as the representative nanomedicine. Through in vivo experiments, we found that using threshold doses of albumin nanoparticles still can reduce the clearance rate of LIBOD, prolong its time in vivo, increase the area under the plasma concentration-time curve (AUC), and also lead to an increased accumulation of the drug at the tumor site. Furthermore, evaluation of in vivo efficacy and safety further indicates that threshold doses of 100 nm albumin nanoparticles can enhance the antitumor effect of LIBOD without causing harm to the animals. During the study, we found that the particle size of albumin nanoparticles influenced the in vivo distribution of the nanomedicine at the same threshold dose. Compared with 200 nm albumin nanoparticles, 100 nm albumin nanoparticles more effectively reduce the clearance efficiency of LIBOD and enhance nanomedicine accumulation at the tumor site, warranting further investigation. This study utilized albumin nanoparticles to reduce hepatic clearance efficiency and enhance the delivery efficiency of nonalbumin nanocarrier liposomal nanomedicine, providing a new avenue to improve the efficacy and clinical translation of nanomedicines with different carrier systems.


Subject(s)
Doxorubicin , Nanoparticles , Polyethylene Glycols , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/analogs & derivatives , Animals , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Mice , Liposomes/chemistry , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/administration & dosage , Tissue Distribution , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Mice, Inbred BALB C , Liver/drug effects , Liver/metabolism , Particle Size , Nanomedicine/methods , Humans , Male , Female
3.
Int J Pharm ; 657: 124048, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38537925

ABSTRACT

Doxorubicin hydrochloride (DOX) is an anticancer agent used in cancer chemotherapy. The purpose of this study was to design nanostructured lipid carriers (NLCs) of DOX as smart chemotherapy to improve its photostability and anticancer efficacy. The characteristics of DOX and DOX-loaded NLCs were investigated using UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, particle size, and zeta potential study. The cytotoxicity of DOX was evaluated against three cancer cell lines (HeLa, A549, and CT-26). The particle size and zeta potential were in the range 58.45-94.08 nm and -5.80 mV - -18.27 mV, respectively. The chemical interactions, particularly hydrogen bonding and van der Waals forces, between DOX and the main components of NLCs was confirmed by FTIR. NLCs showed the sustained release profile of DOX. The photostability results revealed that the NLC system improved the photostability of DOX. Cytotoxicity results using the three cell lines showed that all formulations improved the anticancer efficacy of free DOX, and the efficacy was dependent on cell type and particle size. These results suggest that DOX-loaded NLCs are promising chemotherapeutic agents for cancer treatment.


Subject(s)
Cell Survival , Doxorubicin , Drug Carriers , Drug Liberation , Lipids , Nanoparticles , Particle Size , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Doxorubicin/pharmacology , Humans , Drug Carriers/chemistry , Nanoparticles/chemistry , Lipids/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Nanostructures/chemistry , Drug Stability , HeLa Cells , A549 Cells , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology
4.
Carbohydr Polym ; 329: 121780, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38286550

ABSTRACT

Our research aimed to enhance the oral bioavailability of doxorubicin hydrochloride (DOX·HCl) while minimizing the potential for myocardial toxicity. To achieve this goal, we developed a new method that utilizes a coating material to encapsulate the drug in liposomes, which can specifically target intestinal taurine transporter proteins. This coating material, TAU-CS, was created by combining taurine with chitosan. We characterized TAU-CS using various methods, including 1H NMR, FT-IR, and scanning electron microscopy (SEM). The resulting liposomes exhibited a regular spherical morphology, with a particle size of 195.7 nm, an encapsulation efficiency of 91.23 %, and a zeta potential of +11.65 mV. Under simulated gastrointestinal conditions, TAU-CS/LIP@DOX·HCl exhibited good stability and slow release. Pharmacokinetic studies revealed that, compared with DOX·HCl, TAU-CS/LIP@DOX·HCl had a relative bioavailability of 342 %. Intracellular uptake, immunofluorescence imaging, and permeation assays confirmed that the taurine transporter protein mediates the intestinal uptake of these liposomes. Our study suggested that liposomes coated with TAU-CS could serve as an effective oral delivery system and that targeting the taurine transporter protein shows promise in enhancing drug absorption.


Subject(s)
Chitosan , Liposomes , Chitosan/chemistry , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers/chemistry , Liposomes/chemistry , Particle Size , Spectroscopy, Fourier Transform Infrared , Taurine/drug effects , Taurine/metabolism
5.
Anal Chim Acta ; 1287: 342110, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38182347

ABSTRACT

BACKGROUND: Liposomal formulations have traditionally been considered the most therapeutically effective drug delivery systems (DDS). However, their pharmacokinetics study and efficacy assessment are still challenging given size heterogeneity and unknown forms in vivo. The pharmacodynamic evaluation that solely analyzes total drug concentration is unfit for the liposomal formulation study. Hence, it is crucial to develop effective strategies for the separation and analysis of different forms of liposomal formulations in order to contribute to the study of pharmacokinetic profiles associated with both liposome-incorporated and non-liposomal drugs. (84) RESULTS: A laboratory-built circular nonuniform electric field gel electrophoresis (CNEFGE) system was developed in this study for simultaneous separation and analysis of various forms of doxorubicin hydrochloride (DOX•HCl) liposomes. Liposomes were effectively fractionized based on their size and higher concentration in situ in the concentration zone, obtaining liposome recovery >95 % and a 3.04 concentration factor. It was found that the technique could be used to evaluate not only the size distribution of liposomes but also the drug loading capacity related to size. The charge-to-size-based separation mechanism has also allowed the simultaneous separation of liposome-entrapped drugs, protein-bound drugs, and free drugs in various forms, and the technique has been successfully employed in serum. Moreover, the quantification analysis of liposomes incubated with serum for 72 h showed that the proportion of the ratio of DOX•HCl in liposome-entrapped drugs, protein-bound drugs, and free drugs is approximately 97:2:1. (143) SIGNIFICANCE: Using the separation principle of gel electrophoresis and the electrification characteristics of drug carriers, this study developed and implemented an efficient approach for the simultaneous separation and concentration of multiple forms of drug liposomes in vivo. This approach offers a wide range of applications in the pharmacokinetics, efficacy, and safety evaluation of drug carriers and liposomes. (56).


Subject(s)
Drug Carriers , Liposomes , Drug Delivery Systems , Doxorubicin , Electrophoresis
6.
Drug Deliv Transl Res ; 14(3): 788-801, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37755673

ABSTRACT

In this study, we synthesized a novel compound, agmatine-cholesterol conjugate (AG-Chol), to enhance the anti-tumor activity of drug-loaded liposomes. We replaced cholesterol with AG-Chol in preparing doxorubicin hydrochloride (DOX) liposomes by using an active loading method for DOX. We assessed the physical and chemical properties of the resulting AG-Liposomes and evaluated their efficacy in vitro and in vivo. The results showed that AG-Liposomes were stable with high encapsulation efficiency. Compared with the control liposomes, AG-Liposomes exhibited a slower drug release rate in the release medium at pH 6.8. The in vitro cell experiments demonstrated that AG-Liposomes had higher tumor cell uptake rate, stronger migration inhibition rate, higher apoptosis rate, better anti-clonogenic ability, and higher lysosome escape ability than the control liposomes. In vivo distribution results demonstrate that liposomes prepared with AG-Chol instead of cholesterol can significantly enhance their tumor targeting abilities and reduce their distribution to non-targeted sites. In vivo tumor suppression experiments showed that AG-Liposomes had a higher tumor suppression rate than the control liposomes without causing apparent toxicity to normal tissues, as evidenced by histological staining. Therefore, substituting cholesterol with AG-Chol in the preparation of liposomes can result in enhanced lysosome escape, improved tumor targeting, and increased efficacy of anti-tumor drugs.


Subject(s)
Agmatine , Antineoplastic Agents , Neoplasms , Humans , Liposomes/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Doxorubicin/pharmacology , Doxorubicin/chemistry , Drug Delivery Systems , Cholesterol/chemistry , Cell Line, Tumor
7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1012793

ABSTRACT

Objective To establish a method for the simultaneous determination of DOX·HCl and LND. Methods HPLC was performed on Agilent 5 HC-C18(2) (4.6 mm × 250 mm, 5 µm) column. The mobile phase was methanol-0.1% TFA aqueous solution, and the gradient elution procedure were: 0 to 3 min, 65% methanol; 3 to 7 min, 65%→90% methanol; 7 to 13 min, 90% methanol; 13 to 15 min, 90%→65% methanol; 15 to 20 min, 65% methanol. The collection time was 20 min, the balance time was 3 min, the UV detection wavelengths were 205 nm and 253 nm. The flow rate was 1.0 ml/min and the column temperature was 35℃. The amount of inlet was 10 µl. Results The method was highly specific, and both DOX·HCl and LND exhibited good linearity in the concentration range of 1-40 µg/ml and 6-240 µg/ml, respectively. The two compounds’ precision, stability, and recovery satisfied the requirements of the method. Conclusion This study established a HPLC method that was suitable for the simultaneous detection of DOX·HCl and LND. This method’s high level of specificity, accuracy, and reliability .

8.
Pharm Dev Technol ; 28(10): 915-927, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37921920

ABSTRACT

Hepatocellular carcinoma (HCC), more than 800 000 cases reported annually, is the most common primary liver cancer globally. Doxorubicin hydrochloride (Dox-HCl) is a widely used chemotherapy drug for HCC, but efficacy and tolerability are limited, thus critical to develop delivery systems that can target Dox-HCl to the tumour site. In this study, liver-targeting ligand glycyrrhetinic acid (Gly) was conjugated to polyethylene glycol (PEG) via Steglich reaction and incorporated in liposomes, which were then loaded with Dox-HCl by pH gradient method. The optimal formulation Gly-Peg-Dox-ProLP-F6 showed high Dox-HCl encapsulation capacity (90.0%±1.85%), low particle size (120 ± 3.2 nm). Gly-Peg-Dox-ProLP-F6 formulation demonstrated substantially greater toxicity against HCC cells than commercial Dox-HCl formulation (greater against 1.14, 1.5, 1.24 fold against Hep G2, Mahlavu and Huh-7 cells, respectively), but was 1.86-fold less cytotoxic against non-cancerous cell line AML-12. It increased permeability from apical to basolateral (A-B) approximately 2-fold. Gly-Peg-Dox-ProLP-F6 demonstrated superior antitumor efficacy in mouse liver cancer model as evaluated by IVIS. Isolated mouse liver tissue contained 2.48-fold Dox more than Dox-HCl after administration of Gly-Peg-Dox-ProLP-F6, while accumulation in heart tissue was substantially lower. This Gly-Peg-Dox-ProLP-F6 formulation may improve HCC outcomes through superior liver targeting for enhanced tumour toxicity with lower systemic toxicity.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Polyethylene Glycols , Drug Delivery Systems , Cell Line, Tumor
9.
J Interv Med ; 6(3): 121-125, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37846340

ABSTRACT

Aims: To determine the safety and efficacy of microwave ablation (MWA) and transarterial chemoembolization (TACE) with doxorubicin hydrochloride liposome (DHL) in patients with primary liver cancer (PLC) and metastatic liver cancer (MLC). Materials and methods: The medical records of patients with primary or metastatic liver cancer who underwent MWA combined with TACE containing DHL from March 2019 to March 2022 were collected and analyzed. Treatment-related adverse events (AEs) were recorded. Local tumor response was evaluated according to the modified RECIST criteria. Local tumor progression-free survival (LTPFS) and overall survival (OS) were calculated using the Kaplan-Meier method. Results: Altogether, 96 patients with liver cancer were included (PLC, n â€‹= â€‹45; MLC, n â€‹= â€‹51). Forty (41.7%) patients experienced AEs during treatment, and eight (8.3%) patients developed grade 3 AEs. Compared to before treatment, the serum total bilirubin level and neutrophil to lymphocyte ratio significantly increased after treatment. The median LTPFS was 14.5 months in patients with PLC and 10.7 months in patients with MLC. The median OS was not reached in patients with PLC or MLC. The 1-month and 3-month disease control rates reached more than 80% in both groups. Conclusion: MWA combined with TACE with DHL may be a safe and effective method for the treatment of liver cancer.

10.
Colloids Surf B Biointerfaces ; 229: 113432, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37422992

ABSTRACT

Herein, folic acid conjugated poly (NIPAM-co-functional palygorskite-Au-co-acrylic acid) (FA-PNFA) hybrid microgels were fabricated by emulsion polymerization. The introduction of acrylic acid can increase the low critical solution temperature (LCST) of FA-PNFA from 36 °C at pH 5.5-42 °C at pH 7.4. Doxorubicin hydrochloride (DOX) was chosen as the load drug, the results show that the DOX release behavior is driven by temperature, pH and light. Cumulative drug release rate can reach 74 % at 37 °C and pH 5.5 while only 20 % at 37 °C and pH 7.4, which effectively avoided the early leakage of the drug. In addition, by exposing FA-PNFA hybrid microgels to laser irradiation, the cumulative release rate was increased by 5 % compared to the release rate under dark conditions. Functional palygorskite-Au as physical crosslinkers not only improves the drug loading content of microgels but also promotes the release of DOX through light drive. Methyl thiazolyl tetrazolium bromide (MTT) assay demonstrated that the FA-PNFA are nontoxic up to 200 µg mL-1 towards 4T1 breast cancer cell. Meanwhile, DOX-loaded FA-PNFA show more significant cytotoxicity than the free DOX. Confocal laser scanning microscope (CLSM) revealed that the DOX-loaded FA-PNFA could be efficiently taken by 4T1 breast cancer cells. FA-PNFA hybrid microgels not only improve the LCST of PNIPAM, but also endow the microgels with photostimulation responsiveness, which can release drugs in response to the triple stimulation response of temperature, pH and light, thus effectively reducing the activity of cancer cells, making them more promising for wider medical applications.


Subject(s)
Breast Neoplasms , Microgels , Humans , Female , Drug Carriers/chemistry , Temperature , Folic Acid/chemistry , Drug Delivery Systems/methods , Doxorubicin/pharmacology , Doxorubicin/chemistry , Hydrogen-Ion Concentration
11.
Int J Biol Macromol ; 243: 125222, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37285879

ABSTRACT

Hybrid nanoparticles made up of zein and various stabilizers were developed and characterized. In detail, a zein concentration of 2 mg/ml was blended with various amounts of different phospholipids or PEG-derivatives in order to obtain formulations with suitable physico-chemical properties for drug delivery purposes. Doxorubicin hydrochloride (DOX) was used as a model of a hydrophilic compound and its entrapment efficiency, release profile and cytotoxic activity were investigated. Photon correlation spectroscopy showed that the best formulations were obtained using DMPG, DOTAP and DSPE-mPEG2000 as stabilizers of zein nanoparticles, which were characterized by an average diameter of ~100 nm, a narrow size distribution and a significant time- and temperature-dependent stability. The interaction between protein and stabilizers was confirmed through FT-IR analysis, while TEM analysis showed the presence of a shell-like structure around the zein core. The release profiles of the drug from the zein/DSPE-mPEG2000 nanosystems, evaluated at two pHs (5.5 and 7.4), showed a prolonged and constant leakage of the drug. The encapsulation of DOX within zein/DSPE-mPEG2000 nanosystems did not compromise its biological efficacy, demonstrating the potential application of these hybrid nanoparticles as drug carriers.


Subject(s)
Nanoparticles , Zein , Doxorubicin/pharmacology , Doxorubicin/chemistry , Zein/chemistry , Spectroscopy, Fourier Transform Infrared , Drug Delivery Systems/methods , Drug Carriers/chemistry , Nanoparticles/chemistry , Particle Size
12.
Biomed Mater ; 18(4)2023 06 23.
Article in English | MEDLINE | ID: mdl-37321227

ABSTRACT

This work aimed to establish a simple and feasible method to obtain silk fibroin nanoparticles (SFNPs) with uniform particles size, and then modify the SFNPs with nanobody (Nb) 11C12 targeting the proximal membrane end of carcinoembryonic antigen on the surface of colorectal cancer (CRC) cells. The regenerated silk fibroin (SF) was isolated using ultrafiltration tubes with a 50 kDa molecular weight cut-off, and the retention fraction (named as SF > 50 kDa) was further self-assembled into SFNPs by ethanol induction. Scanning electron microscope (SEM) and high-resolution transmission electron microscop showed that the SFNPs with uniform particles size were formed. Due to electrostatic adsorption and pH responsiveness, SFNPs have been proved to effectively load and release the anticancer drug doxorubicin hydrochloride (DOX) (DOX@SFNPs). Further, targeting molecule Nb 11C12 was used to modify these nanoparticles, constituting the targeted outer layer of the drug delivery system (DOX@SFNPs-11C12), achieving precise localization to cancer cells. The release amount of DOX observed fromin vitrodrug release profiles increased as follows: pH 7.4 < pH 6.8 < pH 5.4, demonstrating that the DOX release could be accelerated in a weakly acidic environment.In vitrocytotoxicity experiments displayed that SFNPs-11C12 nanoparticles exhibited good safety and biocompatibility. Drug-loaded nanoparticles, DOX@SFNPs-11C12, led to higher LoVo cells apoptosis compared to DOX@SFNPs. Fluorescence spectrophotometer characterization and confocal laser scanning microscopy further showed that the internalization of DOX was highest in the DOX@SFNPs-11C12, certifying that the introduced targeting molecule enhanced the uptake of drug delivery system by LoVo cells. This study provides a simple and operational approach to developing an optimized SFNPs drug delivery system modified by targeting Nb, which can be a good candidate for CRC therapy.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Fibroins , Nanoparticles , Humans , Fibroins/chemistry , Carcinoembryonic Antigen , Nanoparticles/chemistry , Doxorubicin/pharmacology , Drug Delivery Systems , Hydrogen-Ion Concentration
13.
Nanomedicine (Lond) ; 18(5): 455-469, 2023 02.
Article in English | MEDLINE | ID: mdl-37166001

ABSTRACT

Aim: Folate-targeted Pluronic™ F-127/poly(lactic acid) (FA-F127-PLA) polymersomes were used as codelivery carriers of doxorubicin hydrochloride (DOX) and paclitaxel (PTX) to achieve a targeted synergistic antitumor effect. Materials & methods: The cytotoxicity of PTX/DOX polymersomes against OVCAR-3 cells was determined by methyl thiazolyl tetrazolium assay. The cellular uptake of PTX/DOX polymersomes was examined by HPLC and micro-bicinchoninic acid techniques. Results: The polymersomes showed a bilayer core-shell structure with negative charge and good dispersion. PTX1/DOX5 polymersomes with a mass ratio of PTX to DOX of 1:5 showed the best synergistic effect and the highest cellular uptake. Conclusion: FA-F127-PLA polymersomes have the great promise for codelivery of multiple chemotherapeutics to achieve a targeted antitumor synergistic effect.


Hydrophilic doxorubicin hydrochloride (DOX) and hydrophobic paclitaxel (PTX) are two well-known anticancer drugs. Coadministration of DOX and PTX as a free drug cocktail has been widely used in clinical treatment to further improve their anticancer effect. However, this free drug cocktail often causes a lot of side effects such as cardiotoxicity and nephrotoxicity. In order to reduce the side effects of the drug cocktail and enhance their targeted delivery, folic acid-targeted Pluronic™ F-127 / poly(lactic acid) (FA-F127-PLA) polymersomes were used to load the drug cocktail. Both the cytotoxicity and cellular uptake data showed that PTX/DOX coloaded FA-F127-PLA polymersomes had better synergistic anticancer ability than a DOX and PTX free-drug cocktail.


Subject(s)
Ovarian Neoplasms , Paclitaxel , Humans , Female , Paclitaxel/pharmacology , Paclitaxel/chemistry , Folic Acid/chemistry , Apoptosis , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/chemistry , Polyesters , Drug Carriers/chemistry , Drug Delivery Systems/methods
14.
Carbohydr Polym ; 312: 120840, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37059565

ABSTRACT

Achieving target specific delivery of chemotherapeutics in metastatic skeletal lesions remains a major challenge. Towards this, a dual drug loaded, radiolabeled multi-trigger responsive nanoparticles having partially oxidized hyaluronate (HADA) conjugated to alendronate shell and palmitic acid core were developed. While the hydrophobic drug, celecoxib was encapsulated in the palmitic acid core, the hydrophilic drug, doxorubicin hydrochloride was linked to the shell via a pH responsive imine linkage. Hydroxyapatite binding studies showed affinity of alendronate conjugated HADA nanoparticles to bones. Enhanced cellular uptake of the nanoparticles was achieved via HADA-CD44 receptor binding. HADA nanoparticles demonstrated trigger responsive release of encapsulated drugs in the presence of hyaluronidase, pH and glucose, present in excess in the tumor microenvironment. Efficacy of the nanoparticles for combination chemotherapy was established by >10-fold reduction in IC50 of drug loaded particles with a combination index of 0.453, as compared to free drugs in MDA-MB-231 cells. The nanoparticles could be radiolabeled with the gamma emitting radioisotope technetium-99m (99mTc) through a simple, 'chelator free', procedure with excellent radiochemical purity (RCP) (>90 %) and in vitro stability. 99mTc-labeled drug loaded nanoparticles reported herein constitutes a promising theranostic agent to target metastatic bone lesions. STATEMENT OF HYPOTHESES: Technetium-99m labeled, alendronate conjugated, dual targeting, tumor responsive, hyaluronate nanoparticle for tumor specific drug release and enhanced therapeutic effect, with real-time in vivo monitoring.


Subject(s)
Nanoparticles , Neoplasms , Humans , Technetium/chemistry , Alendronate , Precision Medicine , Palmitic Acid , Nanoparticles/chemistry , Glycosaminoglycans , Cell Line, Tumor , Tumor Microenvironment
15.
Int J Biol Macromol ; 236: 123907, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36870656

ABSTRACT

In this study, octenyl succinic anhydride (OSA) starch with different folic acid (FA) grafting time was prepared and the degree of FA substitution at different grafting time was determined. The results of XPS quantitatively reflected the surface elemental composition of OSA starch grafted with FA. FTIR spectra further confirmed the successful introduction of FA on OSA starch granules. SEM images showed that the surface roughness of OSA starch granules was more obvious with higher FA grafting time. The particle size, zeta potential, and swelling properties were determined to study the effect of FA on the structure of OSA starch. TGA indicated that FA effectively enhanced the thermal stability of OSA starch at high temperature. The crystalline form of the OSA starch gradually transformed from A type to a hybrid A and V-type with the progress of FA grafting reaction. In addition, the anti-digestive properties of OSA starch were enhanced after grafting FA. Using doxorubicin hydrochloride (DOX) as the model drug, the loading efficiency of OSA starch grafted with FA for DOX reached 87.71 %. These results provide novel insights into OSA starch grafted with FA as potential strategy for loading DOX.


Subject(s)
Starch , Succinic Anhydrides , Starch/chemistry , Succinic Anhydrides/chemistry , Doxorubicin , Particle Size
16.
BMC Chem ; 17(1): 3, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36782310

ABSTRACT

In this study, Superparamagnetic magnetite nanoparticles (SPMNPs) are used in a new way as direct nanocarrier for Doxorubicin hydrochloride (DOX) via the functionalization of their surface with tri-sodium citrate through ligand exchange to conjugate DOX with imine bond to form tri-sodium citrate functionalized magnetite loaded DOX nanoparticles (DOX/Cit-MNPs). The DOX/Cit-MNPs were coated with chitosan to form chitosan coated citrate functionalized magnetite loaded DOX nanoparticles (Cs/DOX/Cit-MNPs) to offer biodegradability and pH-sensitive drug release features. The Fourier transform infrared spectroscopy (FTIR) analysis confirmed functionalization of SPMNPs, DOX-conjugation, and chitosan coating. The trans electron microscopy (TEM) show spherical nanostructures with average size 40 nm for coated nanocarriers. The saturation magnetization value of carrier was 59 emu/g.The in-vitro release of DOX from the chitosan coated tri-sodium citrate functionalized magnetite loaded DOX nanoparticles (Cs/DOX/Cit-MNPs) was studied to be 75% at pH 5.5 and 28.6% at pH 7.4 which proves the pH sensitivity of encapsulated Cs/DOX/Cit-MNPs. The effect of Cs/DOX/Cit-MNPs toward Human Breast Cancer Cell lines (MCF7) was studied and found to be 76% without magnet and 98% with external magnet after 72 h. With increasing DOX concentration and treatment time, the cell inhibition (IR%) of DOX solution and Cs/DOX-Cit-MNPs suspension to all cells is increased. Cs/DOX/Cit-MNPs showed sustained release and good inhibition to cancer cells and offer a protective mode for normal cells (WISH) compared to the free DOX.

17.
Pharmaceutics ; 15(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36678809

ABSTRACT

Doxorubicin hydrochloride (DOX) is a well-known antitumor drug used as first line treatment for many types of malignancies. Despite its clinical relevance, the administration of the compound is negatively affected by dose-dependent off-target toxicity phenomena. Nanotechnology has helped to overcome these important limitations by improving the therapeutic index of the bioactive and promoting the translation of novel nanomedicines into clinical practice. Herein, nanoparticles made up of wheat gliadin and stabilized by polyoxyethylene (2) oleyl ether were investigated for the first time as carriers of DOX. The encapsulation of the compound did not significantly affect the physico-chemical features of the gliadin nanoparticles (GNPs), which evidenced a mean diameter of ~180 nm, a polydispersity index < 0.2 and a negative surface charge. The nanosystems demonstrated great stability regarding temperature (25−50 °C) and were able to retain high amounts of drug, allowing its prolonged and sustained release for up to a week. In vitro viability assay performed against breast cancer cells demonstrated that the nanoencapsulation of DOX modulated the cytotoxicity of the bioactive as a function of the incubation time with respect to the free form of the drug. The results demonstrate the potential use of GNPs as carriers of hydrophilic antitumor compounds.

18.
Pharmacol Res ; 188: 106654, 2023 02.
Article in English | MEDLINE | ID: mdl-36640858

ABSTRACT

The application of immune checkpoint inhibitors and FGFR protein tyrosine kinase inhibitors have made a tremendous breakthrough in bladder cancer therapy. However, inadequate drug responses and drug resistance interfere with successful treatment outcomes. For a new drug to enter the market, there is a long development cycle with high costs and low success rates. Repurposing previously Food and Drug Administration (FDA)-approved medications and using novel drug discovery strategies may be an optimal approach. Homoharringtonine (HHT) has been used for hematologic malignancies for over 40 years in China and was approved by the FDA approximately 10 years ago. Many studies have demonstrated that HHT effectively inhibits the development of several types of solid tumors, although the underlying mechanisms of action are unclear. In this study, we investigated the mechanisms underlying HHT activity against bladder cancer growth. We first compared HTT with the drugs currently used clinically for bladder cancer treatment. HHT showed stronger inhibitory activity than cisplatin, carboplatin, and doxorubicin. Our in vitro and in vivo data demonstrated that HHT inhibited proliferation, colony formation, migration, and cell adhesion of bladder cancer cells and induced apoptosis and cell cycle arrest in the nanomolar concentration range. Furthermore, we revealed that HHT treatment could downregulate the MAPK/Erk and PI3k/Akt signaling pathways by inactivating the integrin α5/ß1-FAK/Src axis. HHT-induced activity reduced cell-ECM interactions and cell migration, thus suppressing tumor metastasis progression. Altogether, HHT shows enormous potential as an anticancer agent and may be applied as a combination treatment strategy for bladder cancer.


Subject(s)
Integrin alpha5 , Urinary Bladder Neoplasms , Humans , Homoharringtonine/pharmacology , Integrin alpha5/pharmacology , Pharmaceutical Preparations , Phosphatidylinositol 3-Kinases , Integrin alpha5beta1 , Cell Line, Tumor , Apoptosis , Urinary Bladder Neoplasms/drug therapy
19.
Int J Pharm ; 634: 122637, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36702387

ABSTRACT

Osteosarcoma (OS) is the most common malignant tumor of the bone that affects children and adolescents, and its treatment usually involves doxorubicin hydrochloride (DOX). However, the drug resistance and side effects caused by high-dose DOX infusion greatly hinder its therapeutic effects. To achieve efficient OS treatment with low toxicity, an injectable rhein (RH)-assisted crosslinked hydrogel (PVA@RH@DOX hydrogel, PRDH) was designed, which was prepared by loading DOX and RH into a polyvinyl alcohol (PVA) solution. The cytotoxicity assay and live/dead staining results showed that the combination of RH and DOX more effectively killed OS cells, producing excellent effects at low concentrations of DOX. The wound healing and transwell test results proved that PRDH could significantly inhibit the metastasis and invasion of OS cells. PRDH showed a long-lasting antitumor effect after injection of a single dose, significantly suppressing the proliferation and metastasis of OS and achieving the strategy of a single administration for long-term treatment. Excitingly, RH facilitated hydrogel formation by assisting with PVA crosslinking. This system provides an alternative regimen and broadens the horizon for the clinical treatment of OS.


Subject(s)
Bone Neoplasms , Osteosarcoma , Child , Humans , Adolescent , Hydrogels/therapeutic use , Osteosarcoma/drug therapy , Doxorubicin/pharmacology , Bone Neoplasms/drug therapy , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...