Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36829676

ABSTRACT

In modern biology and medicine, drug-drug similarity is a major task with various applications in pharmaceutical drug development. Various direct and indirect sources of evidence obtained from drug-centric data such as side effects, drug interactions, biological targets, and chemical structures are used in the current methods to measure the level of drug-drug similarity. This paper proposes a computational method to measure drug-drug similarity using a novel source of evidence that is obtained from patient-centric data. More specifically, patients' narration of their thoughts, opinions, and experience with drugs in social media are explored as a potential source to compute drug-drug similarity. Online healthcare communities were used to extract a dataset of patients' reviews on anti-epileptic drugs. The collected dataset is preprocessed through Natural Language Processing (NLP) techniques and four text similarity methods are applied to measure the similarities among them. The obtained similarities are then used to generate drug-drug similarity-based ranking matrices which are analyzed through Pearson correlation, to answer questions related to the overall drug-drug similarity and the accuracy of the four similarity measures. To evaluate the obtained drug-drug similarities, they are compared with the corresponding ground-truth similarities obtained from DrugSimDB, a well-known drug-drug similarity tool that is based on drug-centric data. The results provide evidence on the feasibility of patient-centric data from social media as a novel source for computing drug-drug similarity.

2.
Artif Intell Rev ; 56(7): 5975-6037, 2023.
Article in English | MEDLINE | ID: mdl-36415536

ABSTRACT

Recently, using artificial intelligence (AI) in drug discovery has received much attention since it significantly shortens the time and cost of developing new drugs. Deep learning (DL)-based approaches are increasingly being used in all stages of drug development as DL technology advances, and drug-related data grows. Therefore, this paper presents a systematic Literature review (SLR) that integrates the recent DL technologies and applications in drug discovery Including, drug-target interactions (DTIs), drug-drug similarity interactions (DDIs), drug sensitivity and responsiveness, and drug-side effect predictions. We present a review of more than 300 articles between 2000 and 2022. The benchmark data sets, the databases, and the evaluation measures are also presented. In addition, this paper provides an overview of how explainable AI (XAI) supports drug discovery problems. The drug dosing optimization and success stories are discussed as well. Finally, digital twining (DT) and open issues are suggested as future research challenges for drug discovery problems. Challenges to be addressed, future research directions are identified, and an extensive bibliography is also included.

3.
BMC Bioinformatics ; 23(1): 278, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35836119

ABSTRACT

Predicting drug-target interactions (DTIs) has become an important bioinformatics issue because it is one of the critical and preliminary stages of drug repositioning. Therefore, scientists are trying to develop more accurate computational methods for predicting drug-target interactions. These methods are usually based on machine learning or recommender systems and use biological and chemical information to improve the accuracy of predictions. In the background of these methods, there is a hypothesis that drugs with similar chemical structures have similar targets. So, the similarity between drugs as chemical information is added to the computational methods to improve the prediction results. The question that arises here is whether this claim is actually true? If so, what method should be used to calculate drug-drug chemical structure similarities? Will we obtain the same improvement from any DTI prediction method we use? Here, we investigated the amount of improvement that can be achieved by adding the drug-drug chemical structure similarities to the problem. For this purpose, we considered different types of real chemical similarities, random drug-drug similarities, four gold standard datasets and four state-of-the-art methods. Our results show that the type and size of data, the method which is used to predict the interactions, and the algorithm used to calculate the chemical similarities between drugs are all important, and it cannot be easily stated that adding drug-drug similarities can significantly improve the results. Therefore, our results could suggest a checklist for scientists who want to improve their machine learning methods.


Subject(s)
Drug Repositioning , Machine Learning , Algorithms , Computational Biology/methods , Drug Interactions , Drug Repositioning/methods
4.
Gigascience ; 122022 12 28.
Article in English | MEDLINE | ID: mdl-38116825

ABSTRACT

BACKGROUND: Traditional approaches to drug development are costly and involve high risks. The drug repurposing approach can be a valuable alternative to traditional approaches and has therefore received considerable attention in recent years. FINDINGS: Herein, we develop a previously undescribed computational approach, called DrugSim2DR, which uses a network diffusion algorithm to identify candidate anticancer drugs based on a drug functional similarity network. The innovation of the approach lies in the drug-drug functional similarity network constructed in a manner that implicitly links drugs through their common biological functions in the context of a specific disease state, as the similarity relationships based on general states (e.g., network proximity or Jaccard index of drug targets) ignore disease-specific molecular characteristics. The drug functional similarity network may provide a reference for prediction of drug combinations. We describe and validate the DrugSim2DR approach through analysis of data on breast cancer and lung cancer. DrugSim2DR identified some US Food and Drug Administration-approved anticancer drugs, as well as some candidate drugs validated by previous studies in the literature. Moreover, DrugSim2DR showed excellent predictive performance, as evidenced by receiver operating characteristic analysis and multiapproach comparisons in various cancer datasets. CONCLUSIONS: DrugSim2DR could accurately assess drug-drug functional similarity within a specific disease context and may more effectively prioritize disease candidate drugs. To increase the usability of our approach, we have developed an R-based software package, DrugSim2DR, which is freely available on CRAN (https://CRAN.R-project.org/package=DrugSim2DR).


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Pharmaceutical Preparations , Drug Repositioning , Algorithms , Antineoplastic Agents/therapeutic use
5.
Chem Biol Drug Des ; 98(4): 522-538, 2021 10.
Article in English | MEDLINE | ID: mdl-34148296

ABSTRACT

PLK-4 kinase plays an essential role in the cell cycle from regulating centriole duplication till cytokinesis and is therefore an attractive drug target in cancers such as breast, lung, and central nervous system tumors. CFI-400945 is an efficient PLK-4 inhibitor and inhibits other non-PLK family proteins at nanomolar concentrations. We have compared PLK-4 with other kinases to understand its similarity based on multiple sequence alignments from protein sequences of primary structures, outer and buried residues, and compact active site conservation based on three-dimensional motifs. These in-depth studies provide information on known interface targets and design of more selective inhibitors to PLK-4. Further, pharmacophore features based on CFI-400945 bound to PLK-4 were used for searching library of compounds that were screened using deep learning methods to bind PLK-4. The shortlisted molecules were docked into PLK-4 active site and were validated using molecular docking and molecular dynamics simulations studies. MM-PBSA calculations revealed the stability of hit molecules and PLK-4 complexes in comparison with CFI-400945 and the contribution to binding from key active site residues.


Subject(s)
Indazoles/chemistry , Indoles/chemistry , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/chemistry , Small Molecule Libraries/chemistry , Amino Acid Sequence , Catalytic Domain , Cell Cycle , Cytokinesis , Deep Learning , Humans , Models, Molecular , Protein Binding , Protein Conformation , Structure-Activity Relationship
6.
Brief Bioinform ; 22(3)2021 05 20.
Article in English | MEDLINE | ID: mdl-32597467

ABSTRACT

Drug similarity studies are driven by the hypothesis that similar drugs should display similar therapeutic actions and thus can potentially treat a similar constellation of diseases. Drug-drug similarity has been derived by variety of direct and indirect sources of evidence and frequently shown high predictive power in discovering validated repositioning candidates as well as other in-silico drug development applications. Yet, existing resources either have limited coverage or rely on an individual source of evidence, overlooking the wealth and diversity of drug-related data sources. Hence, there has been an unmet need for a comprehensive resource integrating diverse drug-related information to derive multi-evidenced drug-drug similarities. We addressed this resource gap by compiling heterogenous information for an exhaustive set of small-molecule drugs (total of 10 367 in the current version) and systematically integrated multiple sources of evidence to derive a multi-modal drug-drug similarity network. The resulting database, 'DrugSimDB' currently includes 238 635 drug pairs with significant aggregated similarity, complemented with an interactive user-friendly web interface (http://vafaeelab.com/drugSimDB.html), which not only enables database ease of access, search, filtration and export, but also provides a variety of complementary information on queried drugs and interactions. The integration approach can flexibly incorporate further drug information into the similarity network, providing an easily extendable platform. The database compilation and construction source-code has been well-documented and semi-automated for any-time upgrade to account for new drugs and up-to-date drug information.


Subject(s)
Algorithms , Computer Simulation , Databases, Pharmaceutical , Drug Repositioning , Pharmaceutical Preparations , Software , Humans
7.
Pharmaceutics ; 12(9)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947845

ABSTRACT

Despite recent advances in bioinformatics, systems biology, and machine learning, the accurate prediction of drug properties remains an open problem. Indeed, because the biological environment is a complex system, the traditional approach-based on knowledge about the chemical structures-can not fully explain the nature of interactions between drugs and biological targets. Consequently, in this paper, we propose an unsupervised machine learning approach that uses the information we know about drug-target interactions to infer drug properties. To this end, we define drug similarity based on drug-target interactions and build a weighted Drug-Drug Similarity Network according to the drug-drug similarity relationships. Using an energy-model network layout, we generate drug communities associated with specific, dominant drug properties. DrugBank confirms the properties of 59.52% of the drugs in these communities, and 26.98% are existing drug repositioning hints we reconstruct with our DDSN approach. The remaining 13.49% of the drugs seem not to match the dominant pharmacologic property; thus, we consider them potential drug repurposing hints. The resources required to test all these repurposing hints are considerable. Therefore we introduce a mechanism of prioritization based on the betweenness/degree node centrality. Using betweenness/degree as an indicator of drug repurposing potential, we select Azelaic acid and Meprobamate as a possible antineoplastic and antifungal, respectively. Finally, we use a test procedure based on molecular docking to analyze Azelaic acid and Meprobamate's repurposing.

8.
J Med Syst ; 43(4): 92, 2019 Mar 05.
Article in English | MEDLINE | ID: mdl-30834481

ABSTRACT

Measuring drug-drug similarity is important but challenging. Significant progresses have been made in drugs whose labeled training data is sufficient and available. However, handling data skewness and incompleteness with domain-specific knowledge graph, is still a relatively new territory and an under-explored prospect. In this paper, we present a system KGDDS for node-link-based bio-medical Knowledge Graph curation and visualization, aiding Drug-Drug Similarity measure. Specifically, we reuse existing knowledge bases to alleviate the difficulties in building a high-quality knowledge graph, ranging in size up to 7 million edges. Then we design a prediction model to explore the pharmacology features and knowledge graph features. Finally, we propose a user interaction model to allow the user to better understand the drug properties from a drug similarity perspective and gain insights that are not easily observable in individual drugs. Visual result demonstration and experimental results indicate that KGDDS can bridge the user/caregiver gap by facilitating antibiotics prescription knowledge, and has remarkable applicability, outperforming existing state-of-the-art drug similarity measures.


Subject(s)
Audiovisual Aids , Drug Substitution/methods , Knowledge Bases , Neural Networks, Computer , Algorithms , Anti-Bacterial Agents/pharmacology , Humans , User-Computer Interface
9.
J Cheminform ; 11(1): 22, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30874969

ABSTRACT

Efficient representations of drugs provide important support for healthcare analytics, such as drug-drug interaction (DDI) prediction and drug-drug similarity (DDS) computation. However, incomplete annotated data and drug feature sparseness create substantial barriers for drug representation learning, making it difficult to accurately identify new drug properties prior to public release. To alleviate these deficiencies, we propose KMR, a knowledge-oriented feature-driven method which can learn drug related knowledge with an accurate representation. We conduct series of experiments on real-world medical datasets to demonstrate that KMR is capable of drug representation learning. KMR can support to discover meaningful DDI with an accuracy rate of 92.19%, demonstrating that techniques developed in KMR significantly improve the prediction quality for new drugs not seen at training. Experimental results also indicate that KMR can identify DDS with an accuracy rate of 88.7% by facilitating drug knowledge, outperforming existing state-of-the-art drug similarity measures.

SELECTION OF CITATIONS
SEARCH DETAIL