Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 598
Filter
1.
Methods Enzymol ; 700: 413-454, 2024.
Article in English | MEDLINE | ID: mdl-38971609

ABSTRACT

A popular strategy for therapeutic delivery to cells and tissues is to encapsulate therapeutics inside particles that cells internalize via endocytosis. The efficacy of particle uptake by endocytosis is often studied in bulk using flow cytometry and Western blot analysis and confirmed using confocal microscopy. However, these techniques do not reveal the detailed dynamics of particle internalization and how the inherent heterogeneity of many types of particles may impact their endocytic uptake. Toward addressing these gaps, here we present a live-cell imaging-based method that utilizes total internal reflection fluorescence microscopy to track the uptake of a large ensemble of individual particles in parallel, as they interact with the cellular endocytic machinery. To analyze the resulting data, we employ an open-source tracking algorithm in combination with custom data filters. This analysis reveals the dynamic interactions between particles and endocytic structures, which determine the probability of particle uptake. In particular, our approach can be used to examine how variations in the physical properties of particles (size, targeting, rigidity), as well as heterogeneity within the particle population, impact endocytic uptake. These data impact the design of particles toward more selective and efficient delivery of therapeutics to cells.


Subject(s)
Clathrin , Endocytosis , Endocytosis/physiology , Humans , Clathrin/metabolism , Microscopy, Fluorescence/methods , Animals , Algorithms
2.
Drug Des Devel Ther ; 18: 2189-2202, 2024.
Article in English | MEDLINE | ID: mdl-38882051

ABSTRACT

Research for tumor treatment with significant therapy effects and minimal side-effects has been widely carried over the past few decades. Different drug forms have received a lot of attention. However, systemic biodistribution induces efficacy and safety issues. Intratumoral delivery of agents might overcome these problems because of its abundant tumor accumulation and retention, thereby reducing side effects. Delivering hydrogels, nanoparticles, microneedles, and microspheres drug carriers directly to tumors can realize not only targeted tumor therapy but also low side-effects. Furthermore, intratumoral administration has been integrated with treatment strategies such as chemotherapy, enhancing radiotherapy, immunotherapy, phototherapy, magnetic fluid hyperthermia, and multimodal therapy. Some of these strategies are ongoing clinical trials or applied clinically. However, many barriers hinder it from being an ideal and widely used option, such as decreased drug penetration impeded by collagen fibers of a tumor, drug squeezed out by high density and high pressure, mature intratumoral injection technique. In this review, we systematically discuss intratumoral delivery of different drug carriers and current development of intratumoral therapy strategies.


Subject(s)
Antineoplastic Agents , Drug Delivery Systems , Neoplasms , Humans , Neoplasms/drug therapy , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Animals , Drug Carriers/chemistry , Nanoparticles/chemistry
3.
Curr Drug Deliv ; 2024 06 11.
Article in English | MEDLINE | ID: mdl-38867527

ABSTRACT

Exosomes have emerged as critical mediators of intercellular communication and various physiological processes between cells and their environment. These nano-sized vesicles have been extensively investigated and confirmed to exhibit multifunctionality in animal systems. In particular, they participate in intercellular signaling, influence disease progression, and exhibit biological activity. However, Plant-Derived Exosomes (PDEs), especially therapeutic PDEs, have received relatively limited attention in the past few decades. Recent studies have demonstrated that PDEs are involved in signaling molecule transport in addition to intercellular communication, as they serve as functional molecules in the cellular microenvironment. This characteristic highlights the immense potential of PDEs for a wide array of applications, including antioxidation, anti-inflammation, tumour cell elimination, immune modulation, and tissue regeneration. In addition, PDEs hold substantial promise as efficient drug carriers, enhancing the stability and bioavailability of therapeutic agents and consequently enabling targeted delivery to specific cells or tissues. Therefore, PDEs may serve as effective tools for drug delivery and the treatment of various diseases. This comprehensive review provides an overview of recent studies on therapeutic PDEs, focusing on their extraction, isolation, characterization methods, biological activities, and application prospects. It summarises the research progress of exosome-like nanovesicles derived from medicinal plants, with a specific emphasis on traditional Chinese medicine, and highlights their importance in disease treatment and nanoparticle delivery. The main objective is to accelerate the clinical translation of these nanovesicles while providing novel approaches and methodologies for the research and development of innovative drugs.

4.
Nanomedicine ; 60: 102760, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852882

ABSTRACT

Neuroblastoma (NB) is the most common extracranial solid tumor in the pediatric population with a high degree of heterogeneity in clinical outcomes. Upregulation of the tumor suppressor miR-204 in neuroblastoma is associated with good prognosis. Although miR-204 has been recognized as a potential therapeutic candidate, its delivery is unavailable. We hypothesized that REP-204, the red blood cell-derived extracellular particles (REP) with miR-204 loading, can suppress neuroblastoma cells in vitro. After miR-204 loading by electroporation, REP-204, but not REP carriers, inhibited the viability, migration, and 3D spheroid growth of neuroblastoma cells regardless of MYCN amplification status. SWATH-proteomics revealed that REP-204 treatment may trigger a negative regulation of mRNA splicing by the spliceosome, suppression of amino acid metabolism and protein production, and prevent SLIT/ROBO signaling-mediated cell migration, to halt neuroblastoma tumor growth and metastasis. The therapeutic efficacy of REP-204 should be further investigated in preclinical models and clinical studies.

5.
Biomed Pharmacother ; 176: 116798, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795642

ABSTRACT

Cancer is one of the most lethal diseases all over the world. Despite that many drugs have been developed for cancer therapy, they still suffer from various limitations including poor treating efficacy, toxicity to normal human cells, and the emergence of multidrug resistance. In this study, the amphiphilic LHES polymers were prepared using hydroxyethyl starch (HES) and linoleic acid as starting materials. The content and substitution degree of linoleic acid groups in LHES polymers were analyzed. The LHES polymers were used for fabricating LHES-B nanoparticles carrying a linoleic acid modified berberine derivative (L-BBR). The LHES-B nanoparticles showed high drug loading efficiency (29%) and could quickly release L-BBR under acidic pH condition (pH = 4.5). Biological investigations revealed that LHES-B nanoparticles significantly inhibited the proliferation of HepG2 cells and exhibited higher cytotoxicity than L-BBR. In a transgenic Tg(fabp10:rtTA2s-M2; TRE2:EGFP-krasv12) zebrafish model, LHES-B nanoparticles obviously inhibited the expression of krasv12 oncogene. These results indicated that LHES carriers could improve the anticancer activity of L-BBR, and the synthesized LHES-B nanoparticles showed great potential as anticancer drug.


Subject(s)
Animals, Genetically Modified , Berberine , Hydroxyethyl Starch Derivatives , Linoleic Acid , Nanoparticles , Proto-Oncogene Proteins p21(ras) , Zebrafish , Animals , Berberine/pharmacology , Berberine/chemistry , Linoleic Acid/chemistry , Humans , Nanoparticles/chemistry , Hep G2 Cells , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Hydroxyethyl Starch Derivatives/pharmacology , Hydroxyethyl Starch Derivatives/chemistry , Drug Carriers/chemistry , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Liberation
6.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731823

ABSTRACT

This study presents the initial attempt at introducing a magnetic molecularly imprinted polymer (MIP) designed specifically for lamotrigine with the purpose of functioning as a drug carrier. First, the composition of the magnetic polymer underwent optimization based on bulk polymer adsorption studies and theoretical analyses. The magnetic MIP was synthesized from itaconic acid and ethylene glycol dimethacrylate exhibiting a drug loading capacity of 3.4 ± 0.9 µg g-1. Structural characterization was performed using powder X-ray diffraction analysis, vibrating sample magnetometry, and Fourier transform infrared spectroscopy. The resulting MIP demonstrated controlled drug released characteristics without a burst effect in the phospahe buffer saline at pH 5 and 8. These findings hold promise for the potential nasal administration of lamotrigine in future applications.


Subject(s)
Drug Carriers , Lamotrigine , Molecularly Imprinted Polymers , Lamotrigine/chemistry , Drug Carriers/chemistry , Molecularly Imprinted Polymers/chemistry , Molecularly Imprinted Polymers/chemical synthesis , Molecular Imprinting/methods , Spectroscopy, Fourier Transform Infrared , Drug Liberation , X-Ray Diffraction , Adsorption , Hydrogen-Ion Concentration
7.
Int J Pharm ; 658: 124199, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38703928

ABSTRACT

Dendrimers have emerged as an important group of nanoparticles to transport drugs, DNA, or RNA into target cells in cancer and other diseases. Various functional modifications can be imposed on dendrimers to increase the efficacy and specificity in delivering their cargo to the target cells and decrease their toxicity. In the present work, we evaluated the potential of carbosilane polyphenolic dendrimers modified with caffeic acid (CA) and polyethylene glycol (PEG) to deliver proapoptotic Mcl-1 and Bcl-2 siRNAs to A549 cancer cells. Dendrimers formed stable complexes with siRNAs as assessed by transmission electron microscopy and gel electrophoresis. Modification of dendrimers with PEG reduced the size and the zeta potential of dendrimer/siRNA complexes. The presence of PEG caused a red shift of the CD spectrum, and this effect was the more pronounced, the higher the dendrimer/siRNA ratio was. The nanocomplexes were internalized by A549. All studied dendrimer/siRNA formulations inhibited tumor cell migration and adhesion and caused an increase in the population of early apoptotic cells. Among four tested dendrimers, the polyphenolic compound containing two caffeic acid moieties complexed with siRNA demonstrated the lowest polydispersity index and showed an excellent transfection profile. In conclusion, this dendrimer are a promising candidate for the delivery of siRNA into cancer cells in further in vivo studies.


Subject(s)
Apoptosis , Dendrimers , Polyethylene Glycols , Polyphenols , RNA, Small Interfering , Humans , Dendrimers/chemistry , Dendrimers/administration & dosage , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry , A549 Cells , Apoptosis/drug effects , Polyphenols/chemistry , Polyphenols/pharmacology , Polyphenols/administration & dosage , Polyethylene Glycols/chemistry , Proto-Oncogene Proteins c-bcl-2/genetics , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Caffeic Acids/administration & dosage , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Cell Movement/drug effects , Drug Carriers/chemistry , Silanes/chemistry , Transfection/methods , Cell Line, Tumor
8.
Med Eng Phys ; 126: 104160, 2024 04.
Article in English | MEDLINE | ID: mdl-38621842

ABSTRACT

In this study, amino-functionalized mesoporous silica/hydroxyapatite nanoparticles (MSNS/HAP) with the property of acid dissociation have been prepared as a traditional Chinese medicine monomer carriers to improve the drug loading rate and antibacterial properties of antimicrobial quercetin (QUE) in vitro. The experimental results confirm that the drug loading rate of MSNs/HAP is 28.94 %, which is about 3.6 times higher than that of aminated mesoporous sililca nanoparticles (MSNs). The drug release of QUE on MSNs/HAP is pH-sensitive in phosphate buffered saline (pH=4.0-7.4). The above fabricated traditional Chinese medicine monomer modified nanocomposites (QUE@MSNs/HAP) displays concentration-dependent inhibitory effect, which shows better antibacterial effect than free QUE. The minimum inhibitory concentration for two tested bacteria, Staphylococcus aureus (S.aureus) and Escherichia coli (E.coli), is 256 mg·L -1. In summary, QUE@MSNs/HAP have successfully prepared, which not only improves the bio-availability of QUE, but also has acid-sensitive drug release properties. Compared with free QUE, its antibacterial performance significantly enhances, which provides a theoretical basis for the application of Chinese medicine molecules in bacterial treatment.


Subject(s)
Durapatite , Nanoparticles , Quercetin/pharmacology , Silicon Dioxide/pharmacology , Anti-Bacterial Agents/pharmacology , Porosity , Drug Carriers
9.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612575

ABSTRACT

Multifunctional delivery systems capable of modulating drug release and exerting adjunctive pharmacological activity have attracted particular attention. Chitosan (CS) and pomegranate seed oil (PO) appear to be attractive bioactive components framing the strategy of complex therapy and multifunctional drug carriers. This research is aimed at evaluating the potential of CS in combination with PO in studies on topical emulgels containing hydrocortisone as a model anti-inflammatory agent. Its particular goal was to distinguish alterations in anti-inflammatory action followed with drug dissolution or penetrative behavior between the designed formulations that differ in CS/PO weight ratio. All formulations favored hydrocortisone release with up to a two-fold increase in the drug dissolution rate within first 5 h as compared to conventional topical preparations. The clear effect of CS/PO on the emulgel biological performance was observed, and CS was found to be prerequisite for the modulation of hydrocortisone absorption and accumulation. In turn, a greater amount of PO played the predominant role in the inhibition of hyaluronidase activity and enhanced the anti-inflammatory effect of preparation E-3. Emulgels showed a negligible reduction in mouse fibroblasts' L929 cell viability, confirming their non-irritancy with skin cells. Overall, the designed formulation with a CS/PO ratio of 6:4 appeared to be the most promising topical carrier for the effective treatment of inflammatory skin diseases among the tested subjects.


Subject(s)
Chitosan , Pomegranate , Animals , Mice , Humans , Hydrocortisone/pharmacology , Anti-Inflammatory Agents/pharmacology , Plant Oils/pharmacology
10.
ACS Appl Mater Interfaces ; 16(15): 18434-18448, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38579182

ABSTRACT

The poor solubility of clotrimazole in the aqueous medium and the uncontrolled removal of the drug-loaded suppository content limit its effectiveness in the treatment of vulvovaginal candidiasis. We present here the aqueous formulations of clotrimazole in the form of non-Newtonian structured fluids, i.e., Bingham plastic or pseudoplastic fluids constructed of hyperbranched polyglycidol, HbPGL, with a hydrophobized core with aryl groups such as phenyl or biphenyl. The amphiphilic constructs were obtained by the modification of linear units containing monohydroxyl groups with benzoyl chloride, phenyl isocyanate, and biphenyl isocyanate, while the terminal 1,2-diol groups in the shell were protected during the modification step, followed by their deprotection. The encapsulation of clotrimazole within internally hydrophobized HbPGLs using a solvent evaporation method followed by water addition resulted in structured fluids formation. Detailed Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) analyses performed for aryl-HbPGLs with clotrimazole revealed the difference in drug compatibility among polymers. Clotrimazole in biphenyl-enriched HbPGL, unlike phenyl derivatives, was molecularly distributed in both the dry and the hydrated states, resulting in transparent formulations. The shear-thinning properties of the obtained fluid formulations make them injectable and thus suitable for the intravaginal application. Permeability tests performed with the usage of the Franz diffusion cell showed a 5-fold increase in the permeability constant of clotrimazole compared to drugs loaded in a commercially available disposable tablet and a 50-fold increase of permeability in comparison to the aqueous suspension of clotrimazole. Furthermore, the biphenyl-modified HbPGL-based drug liquid showed enhanced antifungal activity against both Candida albicans and Candida glabrata that was retained for up to 7 days, in contrast to the phenyl-HbPGL derivatives and the tablet. With their simple formulation, convenient clotrimazole/biphenyl-HbPGL formulation strategy, rheological properties, and enhanced antifungal properties, these systems are potential antifungal therapeutics for gynecological applications. This study points in the synthetic direction of improving the solubility of poorly water-soluble aryl-enriched pharmaceuticals.


Subject(s)
Antifungal Agents , Biphenyl Compounds , Clotrimazole , Propylene Glycols , Clotrimazole/chemistry , Antifungal Agents/chemistry , Biological Availability , Solubility , Water , Tablets
11.
Int J Nanomedicine ; 19: 3715-3735, 2024.
Article in English | MEDLINE | ID: mdl-38681090

ABSTRACT

Liposomes, noted for their tunable particle size, surface customization, and varied drug delivery capacities, are increasingly acknowledged in therapeutic applications. These vesicles exhibit surface flexibility, enabling the incorporation of targeting moieties or peptides to achieve specific targeting and avoid lysosomal entrapment. Internally, their adaptable architecture permits the inclusion of a broad spectrum of drugs, contingent on their solubility characteristics. This study thoroughly reviews liposome fabrication, surface modifications, and drug release mechanisms post-systemic administration, with a particular emphasis on drugs crossing the blood-brain barrier (BBB) to address lesions. Additionally, the review delves into recent developments in the use of liposomes in ischemic stroke models, offering a comparative evaluation with other nanocarriers like exosomes and nano-micelles, thereby facilitating their clinical advancement.


Subject(s)
Blood-Brain Barrier , Drug Carriers , Ischemic Stroke , Liposomes , Liposomes/chemistry , Humans , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Ischemic Stroke/drug therapy , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Animals , Drug Delivery Systems/methods , Drug Liberation , Particle Size
12.
Chin J Traumatol ; 27(3): 134-146, 2024 May.
Article in English | MEDLINE | ID: mdl-38570272

ABSTRACT

Spinal cord injury (SCI) is a devastating traumatic disease seriously impairing the quality of life in patients. Expectations to allow the hopeless central nervous system to repair itself after injury are unfeasible. Developing new approaches to regenerate the central nervous system is still the priority. Exosomes derived from mesenchymal stem cells (MSC-Exo) have been proven to robustly quench the inflammatory response or oxidative stress and curb neuronal apoptosis and autophagy following SCI, which are the key processes to rescue damaged spinal cord neurons and restore their functions. Nonetheless, MSC-Exo in SCI received scant attention. In this review, we reviewed our previous work and other studies to summarize the roles of MSC-Exo in SCI and its underlying mechanisms. Furthermore, we also focus on the application of exosomes as drug carrier in SCI. In particular, it combs the advantages of exosomes as a drug carrier for SCI, imaging advantages, drug types, loading methods, etc., which provides the latest progress for exosomes in the treatment of SCI, especially drug carrier.


Subject(s)
Drug Carriers , Exosomes , Mesenchymal Stem Cells , Spinal Cord Injuries , Spinal Cord Injuries/therapy , Humans , Mesenchymal Stem Cells/metabolism , Animals , Apoptosis , Mesenchymal Stem Cell Transplantation/methods
13.
ACS Appl Mater Interfaces ; 16(12): 14605-14625, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38488848

ABSTRACT

In the face of severe side effects of systemic chemotherapy used in cervical cancer, topical selective drug carriers with long-lasting effects are being sought. Hydrogels are suitable platforms, but their use is problematic in the case of delivery of hydrophobic drugs with anticancer activity. Herein, hydrogels constructed of unimolecular micelles displaying enhanced solubilization of aromatic lipophilic bioactive compounds are presented. Star-shaped poly(benzyl glycidyl ether)-block-poly(glycidyl glycerol ether) with an aryl-enriched core show high encapsulation capacity of poor water-soluble nifuratel and clotrimazole. Nifuratel attained selectivity against cervical cancer cells, whereas clotrimazole preserved its original selectivity. The combination of unimolecular micelles loaded with both drugs provided synergism; however, they were still selective against cervical cancer cells. The cross-linking of drug-loaded unimolecular micelles via dynamic boronic esters provided injectable and self-healable hydrogel drug carriers also displaying synergistic anticancer activity, suitable for intravaginal administration and assuring the effective coverage of the afflicted tissue area and efficient tissue permeability with hydrophobic bioactive compounds. Here, we show that the combination of star-shaped polyether amphiphiles and boronic ester cross-linking chemistry provides a new strategy for obtaining hydrogel platforms suitable for efficient hydrophobic drug delivery.


Subject(s)
Nifuratel , Uterine Cervical Neoplasms , Female , Humans , Micelles , Uterine Cervical Neoplasms/drug therapy , Hydrogels/chemistry , Clotrimazole , Drug Carriers/chemistry , Polyethylene Glycols/chemistry
14.
Biology (Basel) ; 13(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38534423

ABSTRACT

The prognosis for cancer patients has declined dramatically in recent years due to the challenges in treating malignant tumors. Tumor immunotherapy, which includes immune target inhibition and chimeric antigen receptor cell treatment, is currently evolving quickly. Among them, natural killer (NK) cells are gradually becoming another preferred cell immunotherapy after T cell immunotherapy due to their unique killing effects in innate and adaptive immunity. NK cell therapy has shown encouraging outcomes in clinical studies; however, there are still some problems, including limited efficacy in solid tumors, inadequate NK cell penetration, and expensive treatment expenses. Noteworthy benefits of nanomaterials include their chemical specificity, biocompatibility, and ease of manufacturing; these make them promising instruments for enhancing NK cell anti-tumor immune responses. Nanomaterials can promote NK cell homing and infiltration, participate in NK cell modification and non-invasive cell tracking and imaging modes, and greatly increase the effectiveness of NK cell immunotherapy. The introduction of NK cell-based immunotherapy research and a more detailed discussion of nanomaterial research in NK cell-based immunotherapy and molecular imaging will be the main topics of this review.

15.
Polymers (Basel) ; 16(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38475324

ABSTRACT

In recent years, there has been a growing interest in developing smart drug delivery systems based on natural resources combined with stimulus-sensitive elements. This trend aims to formulate innovative and sustainable delivery platforms tailored for topical applications. This work proposed the use of layer-by-layer (LbL) methodology to fabricate biocompatible photo-responsive multilayer systems. These systems are composed of a polyoxometalate inorganic salt (POM) ([NaP5W30O110]14-) and a natural origin polymer, chitosan (CHT). Curcumin (CUR), a natural bioactive compound, was incorporated to enhance the functionality of these systems during the formation of hollow capsules. The capsules produced, with sizes between 2-5µm (SEM), were further dispersed into CHT/VCO (virgin coconut oil) emulsion solutions that were casted into molds and dried at 37 °C for 48 h. The system presented a higher water uptake in PBS than in acidic conditions, still significantly lower than that earlier reported to other CHT/VCO-based systems. The drug release profile is not significantly influenced by the medium pH reaching a maximum of 37% ± 1% after 48 h. The antioxidant performance of the designed structures was further studied, suggesting a synergistic beneficial effect resulting from CUR, POM, and VCO individual bioactivities. The increased amount of those excipients released to the media over time promoted an increase in the antioxidant activity of the system, reaching a maximum of 38.1% ± 0.1% after 48 h. This work represents a promising step towards developing advanced, sustainable drug delivery systems for topical applications.

16.
Int J Biol Macromol ; 263(Pt 2): 130389, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403207

ABSTRACT

Curcumin, a bioactive compound derived from the rhizome of Curcuma longa, has gained widespread attention for its potential therapeutic properties, including anti-inflammatory, antioxidant and anticancer effects. However, its poor aqueous solubility, instability and limited bioavailability have hindered its clinical applications. New beads formulations based on sodium alginate biopolymer (SA) and poly vinyl alcohol (PVA) were successfully prepared and evaluated as a potential drug vehicle for extended release of curcumin (Cur). Pristine and curcumin loaded calcium alginate/poly vinyl alcohol beads (CA/PVA and CA/PVA/Cur) at different compositions of SA and PVA were prepared by an ionotropic gelation method of SA followed by two freeze-thawing (FT) cycles for further crosslinking of PVA. Characterization techniques, such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV-Visible spectroscopy, thermogravimetric analysis (TGA) and x-ray diffraction (XRD) were used to confirm the successful microencapsulation of curcumin within the CA/PVA microcapsules. Furthermore, the swelling of pristine beads, pH-sensitive properties and in vitro release studies of curcumin loaded beads were investigated at 37 °C in simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and simulated colonic fluid (SCF). The effect of the polymer blend ratio, the encapsulation efficiency (EE %) of curcumin, the loading capacity (LC µg/mg), the sphericity factor (SF), the antioxidant activity of the elaborated beads and their antimicrobial properties against bacteria and fungi were just as much evaluated. The obtained results indicate that the swelling and the behavior of the developed beads were influenced by the pH of the test medium and the PVA content. The introduction of PVA into the SA matrix greatly enhanced the physicochemical properties, the encapsulation efficiency and the loading capacity of the elaborated microparticles. Results also suggested that the antioxidant activity of the loaded beads (CA/PVA/Cur) showed a higher DPPH radical scavenging activity while the bacterial and fungal strains proved sensitive to the different formulations used in the assay. Moreover, the important drug encapsulation efficiency and the sustainable drug release of these materials make them promising for the development of new drug carrier systems for colon targeting.


Subject(s)
Curcumin , Curcumin/pharmacology , Curcumin/chemistry , Hydrogels/chemistry , Alginates/chemistry , Antioxidants/pharmacology , Polyvinyl Alcohol/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Spectroscopy, Fourier Transform Infrared , Hydrogen-Ion Concentration
17.
Heliyon ; 10(3): e25445, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38352745

ABSTRACT

Arabinoxylans (AX) have become a focal point in the pharmaceutical sector owing to their physicochemical, biological, and functional properties. The purpose of this paper was to present a summary of the utilization of AX as drug release matrices through a bibliometric analysis (BA) and a literature review to spotlight the AX functional characteristics and their technological applications to promote this line of research. The BA was carried out using data from a Web of Science database research, specifically emphasizing the analysis of authors' keywords. This approach was chosen due to its significance in comprehensively understanding a particular research field and its relevance for in-depth knowledge of a research field. The BA outcomes revealed limited information concerning the AX applications in both release matrices and as excipients in the formulation and development of drug delivery systems (DDS), so there is a need for additional scientific and technological research in these areas to address the existing information gaps. However, the literature review shows that the native and modified AX from different delivery release systems, such as macrogels (including films, tablets, and hard gelatin capsules) and multi-particulate systems (including micro and nanogels), present an excellent potential as release matrices of biomolecules and drugs, such as doxorubicin, diclofenac sodium, caffeine, gentamicin, tizanidine hydrochloride, and insulin. In conclusion, AX have a wide potential for application in the pharmaceutical industry, so this work is expected to be a reference point for future research by scientists, technologists, and entrepreneurs who cope with the subject.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124053, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38422930

ABSTRACT

In this paper, we investigated the protein-ligand interactions in the presence of ZIF-8 using multi-spectroscopic approaches and molecular dynamics simulation. Fluorescence experiments and molecular docking results showed that ZIF-8 did not change the type of quenching and interaction force between ciprofloxacin (CIP) and human serum albumin (HSA), but made the binding constant of HSA-CIP to be smaller, suggesting that ZIF-8 maybe accelerate the dissociation of CIP from HSA-CIP complex. Moreover, the effect of ZIF-8 on the physiological function of HSA was explored. Multi-spectroscopic methods revealed that ZIF-8 did not significantly alter the microenvironment of amino acid groups, but cause a slight decrease in the content of α-helical conformation, and a sparse and flexible structure of the protein backbone. These peculiarities might lead to the diminution of HSA's ability to control drugs. In short, ZIF-8 might enhance drug effect due to affecting the binding of drugs to proteins. However, the present study is only a preliminary investigation of the suitability of ZIF-8 as a drug carrier in vitro, and subsequent in vivo experimental studies will be required to further confirm the idea.


Subject(s)
Molecular Dynamics Simulation , Serum Albumin, Human , Humans , Molecular Docking Simulation , Binding Sites , Protein Binding , Spectrometry, Fluorescence/methods , Ligands , Thermodynamics , Serum Albumin, Human/chemistry , Circular Dichroism
19.
Int J Biol Macromol ; 261(Pt 2): 129853, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38311141

ABSTRACT

Chinese yam is a traditional Chinese medicine that has a long history of medicinal and edible usage in China and is widely utilised in food, medicine, animal husbandry, and other industries. Chinese yam polysaccharides (CYPs) are among the main active components of Chinese yam. In recent decades, CYPs have received considerable attention because of their remarkable biological activities, such as immunomodulatory, antitumour, hypoglycaemic, hypolipidaemic, antioxidative, anti-inflammatory, and bacteriostatic effects. The structure and chemical alterations of polysaccharides are the main factors affecting their biological activities. CYPs are potential drug carriers owing to their excellent biodegradability and biocompatibility. There is a considerable amount of research on CYPs; however, a systematic summary is lacking. This review summarises the structural characteristics, derivative synthesis, biological activities, and their usage as drug carriers, providing a basis for future research, development, and application of CYPs.


Subject(s)
Dioscorea , Animals , Dioscorea/chemistry , Medicine, Chinese Traditional , Antioxidants/pharmacology , Polysaccharides/pharmacology , Polysaccharides/chemistry , Food
20.
Discov Nano ; 19(1): 23, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315307

ABSTRACT

There is growing evidence that neonatal porcine islet-like cell clusters (NPCCs) isolated from piglets can be used to treat type 1 diabetes in humans. However, graft rejection is a common complication in humans owing to the prevalence of xenoantigens in porcine. Therefore, researchers have investigated various islet encapsulation techniques that could protect against these antigens. To this end, this study presents a robust nano-encapsulation method based on bifunctional polymersomes (PSomes), in which N-hydroxysuccinimide (NHS) and maleimide (Mal) groups conjugated to the PSomes terminal interact with the amine and thiol groups on the surface of NPCCs to induce dual targeting via two covalent bonds. The findings indicate that the ratio of NHS to Mal on PSomes is optimal for dual targeting. Moreover, triiodothyronine (T3) is known to promotes pancreatic islet maturation and differentiation of endocrine cells into beta cells. T3 encapsulated in PSomes is shown to increase the glucose sensitivity of NPCCs and enhance insulin secretion from NPCCs. Furthermore, improvements in the nano-encapsulation efficiency and insulin-secreting capability of NPCCs through dual targeting via dual-Psomes are demonstrated. In conclusion, the proposed nano-encapsulation technique could pave the way for significant advances in islet nano-encapsulation and the imprevement of NPCC immaturity via T3 release.

SELECTION OF CITATIONS
SEARCH DETAIL
...