Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Microb Pathog ; 193: 106770, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960215

ABSTRACT

Neisseria gonorrheae, the causative agent of genitourinary infections, has been associated with asymptomatic or recurrent infections and has the potential to form biofilms and induce inflammation and cell transformation. Herein, we aimed to use computational analysis to predict novel associations between chronic inflammation caused by gonorrhea infection and neoplastic transformation. Prioritization and gene enrichment strategies based on virulence and resistance genes utilizing essential genes from the DEG and PANTHER databases, respectively, were performed. Using the STRING database, protein‒protein interaction networks were constructed with 55 nodes of bacterial proteins and 72 nodes of proteins involved in the host immune response. MCODE and cytoHubba were used to identify 12 bacterial hub proteins (murA, murB, murC, murD, murE, purN, purL, thyA, uvrB, kdsB, lpxC, and ftsH) and 19 human hub proteins, of which TNF, STAT3 and AKT1 had high significance. The PPI networks are based on the connectivity degree (K), betweenness centrality (BC), and closeness centrality (CC) values. Hub genes are vital for cell survival and growth, and their significance as potential drug targets is discussed. This computational study provides a comprehensive understanding of inflammation and carcinogenesis pathways that are activated during gonorrhea infection.

2.
Front Public Health ; 12: 1410672, 2024.
Article in English | MEDLINE | ID: mdl-38962772

ABSTRACT

Non-tuberculous mycobacteria (NTM) infections pose a significant public health challenge worldwide, affecting individuals across a wide spectrum of immune statuses. Recent epidemiological studies indicate rising incidence rates in both immunocompromised and immunocompetent populations, underscoring the need for enhanced diagnostic and therapeutic approaches. NTM infections often present with symptoms similar to those of tuberculosis, yet with less specificity, increasing the risk of misdiagnosis and potentially adverse outcomes for patients. Consequently, rapid and accurate identification of the pathogen is crucial for precise diagnosis and treatment. Traditional detection methods, notably microbiological culture, are hampered by lengthy incubation periods and a limited capacity to differentiate closely related NTM subtypes, thereby delaying diagnosis and the initiation of targeted therapies. Emerging diagnostic technologies offer new possibilities for the swift detection and accurate identification of NTM infections, playing a critical role in early diagnosis and providing more accurate and comprehensive information. This review delineates the current molecular methodologies for NTM species and subspecies identification. We critically assess the limitations and challenges inherent in these technologies for diagnosing NTM and explore potential future directions for their advancement. It aims to provide valuable insights into advancing the application of molecular diagnostic techniques in NTM infection identification.


Subject(s)
Mycobacterium Infections, Nontuberculous , Nontuberculous Mycobacteria , Humans , Nontuberculous Mycobacteria/genetics , Nontuberculous Mycobacteria/isolation & purification , Nontuberculous Mycobacteria/classification , Mycobacterium Infections, Nontuberculous/diagnosis , Molecular Diagnostic Techniques/methods
3.
Front Cell Infect Microbiol ; 14: 1392376, 2024.
Article in English | MEDLINE | ID: mdl-38903943

ABSTRACT

Background: The gut microbiota plays a vital role in the development of sepsis and in protecting against pneumonia. Previous studies have demonstrated the existence of the gut-lung axis and the interaction between the gut and the lung, which is related to the prognosis of critically ill patients; however, most of these studies focused on chronic lung diseases and influenza virus infections. The purpose of this study was to investigate the effect of faecal microbiota transplantation (FMT) on Klebsiella pneumoniae-related pulmonary infection via the gut-lung axis and to compare the effects of FMT with those of traditional antibiotics to identify new therapeutic strategies. Methods: We divided the mice into six groups: the blank control (PBS), pneumonia-derived sepsis (KP), pneumonia-derived sepsis + antibiotic (KP + PIP), pneumonia-derived sepsis + faecal microbiota transplantation(KP + FMT), antibiotic treatment control (KP+PIP+PBS), and pneumonia-derived sepsis+ antibiotic + faecal microbiota transplantation (KP + PIP + FMT) groups to compare the survival of mice, lung injury, inflammation response, airway barrier function and the intestinal flora, metabolites and drug resistance genes in each group. Results: Alterations in specific intestinal flora can occur in the gut of patients with pneumonia-derived sepsis caused by Klebsiella pneumoniae. Compared with those in the faecal microbiota transplantation group, the antibiotic treatment group had lower levels of proinflammatory factors and higher levels of anti-inflammatory factors but less amelioration of lung pathology and improvement of airway epithelial barrier function. Additionally, the increase in opportunistic pathogens and drug resistance-related genes in the gut of mice was accompanied by decreased production of favourable fatty acids such as acetic acid, propionic acid, butyric acid, decanoic acid, and secondary bile acids such as chenodeoxycholic acid 3-sulfate, isodeoxycholic acid, taurodeoxycholic acid, and 3-dehydrocholic acid; the levels of these metabolites were restored by faecal microbiota transplantation. Faecal microbiota transplantation after antibiotic treatment can gradually ameliorate gut microbiota disorder caused by antibiotic treatment and reduce the number of drug resistance genes induced by antibiotics. Conclusion: In contrast to direct antibiotic treatment, faecal microbiota transplantation improves the prognosis of mice with pneumonia-derived sepsis caused by Klebsiella pneumoniae by improving the structure of the intestinal flora and increasing the level of beneficial metabolites, fatty acids and secondary bile acids, thereby reducing systemic inflammation, repairing the barrier function of alveolar epithelial cells, and alleviating pathological damage to the lungs. The combination of antibiotics with faecal microbiota transplantation significantly alleviates intestinal microbiota disorder, reduces the selection for drug resistance genes caused by antibiotics, and mitigates lung lesions; these effects are superior to those following antibiotic monotherapy.


Subject(s)
Anti-Bacterial Agents , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Klebsiella Infections , Klebsiella pneumoniae , Lung , Sepsis , Animals , Klebsiella Infections/microbiology , Klebsiella Infections/therapy , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Lung/microbiology , Lung/pathology , Sepsis/microbiology , Sepsis/therapy , Prognosis , Disease Models, Animal , Humans , Male , Mice, Inbred C57BL
4.
Front Microbiol ; 15: 1364373, 2024.
Article in English | MEDLINE | ID: mdl-38694808

ABSTRACT

Escherichia coli (E. coli) is closely associated with the occurrence of puerperal metritis in dairy cows. E. coli carries some the virulence and multi-drug resistant genes, which pose a serious threat to the health of postpartum cows. In this study, E. coli was isolated and identified from the uterine contents of postpartum cows with puerperal metritis in the Ningxia region of China, and its phylogenetic subgroups were determined. Meanwhile, virulence and drug resistance genes carried by E. coli and drug sensitivity were detected, and the characteristics of virulence and drug resistance genes distribution in E. coli phylogroups were further analyzed. The results showed that the isolation rate of E. coli in puerperal metritis samples was 95.2%. E. coli was mainly divided into phylogroups B2 and D, followed by groups A and B1, and was more connected to O157:H7, O169:H4, and ECC-1470 type strains. The virulence genes were mainly dominated by ompF (100%), traT (100%), fimH (97%), papC (96%), csgA (95%), Ang43 (93.9%), and ompC (93%), and the resistance genes were dominated by TEM (99%), tetA (71.7%), aac(3)II (66.7%), and cmlA (53.5%). Additionally, it was observed that the virulence and resistance gene phenotypes could be divided into two subgroups, with subgroup B2 and D having the highest distributions. Drug sensitivity tests also revealed that the E. coli was most sensitive to the fluoroquinolones enrofloxacin, followed by macrolides, aminoglycosides, tetracyclines, ß-lactams, peptides and sulfonamides, and least sensitive to lincosamides. These results imply that pathogenic E. coli, which induces puerperal metritis of dairy cows in the Ningxia region of China, primarily belongs to the group B2 and D, contains multiple virulence and drug resistance genes, Moreover, E. coli has evolved resistance to several drugs including penicillin, lincomycin, cotrimoxazole, and streptomycin. It will offer specific guidelines reference for the prevention and treatment of puerperal metritis in dairy cows with E. coli infections in the Ningxia region of China.

5.
Acad Radiol ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38772798

ABSTRACT

RATIONALE AND OBJECTIVES: The mutations in the 23S ribosomal RNA (rRNA) gene are associated with an increase in resistance to macrolides in children with Mycoplasma pneumoniae pneumonia (MPP). This study aimed to develop and validate a chest computed tomography (CT) radiomics model for determining macrolide resistance-associated gene mutation status in MPP. MATERIALS AND METHODS: A total of 258 MPP patients were retrospectively included from two institutions (training set: 194 patients from the first institution; external test set: 64 patients from the second). The 23S rRNA gene mutation status was tested by nasopharyngeal swab polymerase chain reaction. Radiomics features were extracted from chest CT images of pulmonary lesions segmented with semi-automatic delineation. Subsequently, radiomics feature reduction was applied to identify the most relevant features. Logistic regression and random forest algorithms were employed to establish the radiomics models, which were five-fold cross-validated in the training set and validated in the external test set. RESULTS: The radiomics feature selection resulted in eight features. After five-fold cross-validation in the training set, the mean areas under the receiver operating characteristic curve (AUCs) of the logistic regression and random forest models were 0.868 (95% confidence interval (CI): 0.813-0.923) and 0.941 (95% CI: 0.907-0.975), respectively. In the external test set, the corresponding AUCs were 0.855 (95% CI: 0.758-0.952) and 0.815 (95% CI: 0.705-0.925). CONCLUSION: Chest CT radiomics is a promising diagnostic tool for determining macrolide resistance gene mutation status in MPP. AVAILABILITY OF DATA AND MATERIAL: The datasets generated or analyzed during the study are available from the corresponding author on reasonable request.

6.
Wei Sheng Yan Jiu ; 53(2): 243-256, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38604960

ABSTRACT

OBJECTIVE: To understand the prevalence, genetic characteristics and drug resistance features of Salmonella Kentucky ST314 in Shenzhen. METHODS: Whole genome sequencing of 14 strains of Salmonella Kentucky ST314 collected from 2010-2021 by the Foodborne Disease Surveillance Network of Shenzhen Center for Disease Control and Prevention for phylogenetic evolutionary analysis, drug resistance gene and plasmid detection; drug susceptibility experiments were performed by micro-broth dilution method. RESULTS: A total of 57 strains of Salmonella Kentucky were collected from the foodborne disease surveillance network, 14 of which were ST314. The Shenzhen isolates were clustered with isolates from Southeast Asian countries such as Vietnam and Thailand on clade 314.2, and the single nucleotide polymorphism distance between local strains in Shenzhen was large, indicating dissemination. In this study, a total of 17 drug resistance genes/mutations in 9 categories were detected in the genome of Salmonella Kentucky ST314, carrying 3 extended spectrum beta-lactamases(ESBLs), including bla_(CTX-M-24)(14.3%, 2/14), bla_(CTX-M-55)(7.1%, 1/14), and bla_(CTX-M-130)(14.3%, 2/14), all located on plasmids. Regarding quinolone resistance factors, two plasmid-mediated quinolone resistance(PMQR) genes were identified in the genome: qnrB6(71.4%, 10/14) and aac(6')Ib-cr(78.6%, 11/14), a quinolone resistance quinolone resistance-determining regions(QRDR) mutation T57 S(100%, 14/14). The multi-drug resistance rate of Salmonella Kentucky ST314 in Shenzhen was 92.86%(13/14)with the highest rate of resistance to tetracycline and cotrimoxazole(100%, 14/14), followed by chloramphenicol(92.86%, 13/14), cefotaxime and ampicillin(78.57%, 11/14), ciprofloxacin and nalidixic acid(71.43%, 10/14), and ampicillin-sulbactam had the lowest resistance rate(21.43%, 3/14). CONCLUSION: ST314 is the second most prevalent ST type among Salmonella Kentucky in Shenzhen, mainly isolated from food, especially poultry; phylogenetic analysis suggests that ST314 is a disseminated infection and the genome shows a highly genetically conserved phenotype. Drug resistance of Salmonella Kentucky ST314 is very serious, especially QRDR mutation, PMQR gene co-mediated quinolone resistance and plasmid-mediated cephalosporin resistance are prominent and deserve extensive attention.


Subject(s)
Foodborne Diseases , Quinolones , Humans , Kentucky , Phylogeny , Salmonella , Anti-Bacterial Agents/pharmacology , Plasmids/genetics , Drug Resistance , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics , beta-Lactamases/genetics
7.
Microbiol Spectr ; 12(4): e0233923, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38363108

ABSTRACT

Macrolide antibiotics such as clarithromycin (CLR) and azithromycin are the key drugs used in multidrug therapy for Mycobacterium avium complex (MAC) diseases. For these antibacterial drugs, drug susceptibility has been correlated with clinical response in MAC diseases. We have previously demonstrated the correlation between drug susceptibility and mutations in the 23S rRNA gene, which confers resistance to macrolides. Herein, we developed a rapid detection method using the amplification refractory mutation system (ARMS)-loop-mediated isothermal amplification (LAMP) technique to identify mutations in the 23S rRNA gene of M. avium. We examined the applicability of the ARMS-LAMP method to genomic DNA extracted from six genotypes of M. avium clinical isolates. The M. avium isolates were classified into 21 CLR-resistant and 9 CLR-susceptible strains based on the results of drug susceptibility tests; the 23S rRNA genes of these strains were sequenced and analyzed using the ARMS-LAMP method. Sequence analysis revealed that the 9 CLR-sensitive strains were wild-type strains, whereas the 21 CLR-resistant strains comprised 20 mutant-type strains and one wild-type strain. Using ARMS-LAMP, no amplification from genomic DNAs of the 10 wild-type strains was observed using the mutant-type mismatch primer sets (MTPSs); however, amplification from the 20 mutant-type strain DNAs was observed using the MTPSs. The rapid detection method developed by us integrates ARMS-LAMP with a real-time turbidimeter, which can help determine drug resistance in a few hours. In conclusion, ARMS-LAMP might be a new clinically beneficial technology for rapid detection of mutations.IMPORTANCEMultidrug therapy for pulmonary Mycobacterium avium complex disease is centered on the macrolide antibiotics clarithromycin and azithromycin, and resistance to macrolides is an important prognosticator for clinical aggravation. Therefore, it is important to develop a quick and easy method for detecting resistance to macrolides. Drug resistance is known to be correlated with mutations in macrolide resistance genes. We developed a rapid detection method using amplification refractory mutation system (ARMS)-loop-mediated isothermal amplification (LAMP) to identify a mutation in the 23S rRNA gene, which is a macrolide resistance gene. Furthermore, we examined the applicability of this method using M. avium clinical isolates. The rapid method developed by us for detection of the macrolide resistance gene by integrating ARMS-LAMP and a real-time turbidimeter can help in detection of drug resistance within a few hours. Since this method does not require expensive equipment or special techniques and shows high analytical speed, it would be very useful in clinical practice.


Subject(s)
Anti-Bacterial Agents , Lung Diseases , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Macrolides/pharmacology , Macrolides/therapeutic use , Clarithromycin/pharmacology , Mycobacterium avium , Azithromycin , Drug Therapy, Combination , Drug Resistance, Bacterial/genetics , Leprostatic Agents/therapeutic use , Mutation , Mycobacterium avium Complex , Lung Diseases/drug therapy , Microbial Sensitivity Tests
8.
J Vet Res ; 67(2): 161-167, 2023 Jun.
Article in English | MEDLINE | ID: mdl-38143824

ABSTRACT

Introduction: Streptococcus agalactiae (S. agalactiae) is a pathogen causing bovine mastitis that results in considerable economic losses in the livestock sector. To understand the distribution and drug resistance characteristics of S. agalactiae from dairy cow mastitis cases in China, multilocus sequence typing (MLST) was carried out and the serotypes and drug resistance characteristics of the bacteria in the region were analysed. Material and Methods: A total of 21 strains of bovine S. agalactiae were characterised based on MLST, molecular serotyping, antimicrobial susceptibility testing, and the presence of drug resistance genes. Results: The serotypes were mainly Ia and II, accounting for 47.6% and 42.9% of all serotypes, respectively. Five sequence types (STs) were identified through MLST. The ST103 and ST1878 strains were predominant, with rates of 52.4% and 28.6%, respectively. The latter is a novel, previously uncharacterised sequence type. More than 90% of S. agalactiae strains were susceptible to penicillin, oxacillin, cephalothin, ceftiofur, gentamicin, florfenicol and sulfamethoxazole. The bacteria showed high resistance to tetracycline (85.7%), clindamycin (52.1%) and erythromycin (47.6%). Resistant genes were detected by PCR, the result of which showed that 47.6%, 33.3% and 38.1% of isolates carried the tet(M), tet(O) and erm(B) genes, respectively. Conclusion: The results of this study indicate that S. agalactiae show a high level of antimicrobial resistance. It is necessary to monitor the pathogens of mastitis to prevent the transmission of these bacteria.

9.
J Nanobiotechnology ; 21(1): 493, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38115051

ABSTRACT

A multimodal analytical strategy utilizing different modalities to cross-validate each other, can effectively minimize false positives or negatives and ensure the accuracy of detection results. Herein, we establish a colorimetric, photothermal, and fluorescent triple modal CRISPR/Cas12a detection platform (CPF-CRISPR). An MNPs-ssDNA-HRP signal probe is designed to act as a substrate to trigger three signal outputs. In the presence of the DNA target, MNPs-ssDNA-HRP is cleaved by the activated CRISPR/Cas12a, resulting in the release of HRP and generating short DNA strands with 3-terminal hydroxyl on magnetic beads. The released HRP subsequently catalyzed TMB-H2O2 reaction and oxidized TMB is used for colorimetric and photothermal signal detection. Under the catalysis of terminal deoxynucleotidyl transferase (TdT), the remaining short DNA strands are used as primers to form poly-T and function as scaffolds to form copper nanoclusters for fluorescent signal output. To verify the practical application of CPF-CRISPR, we employed MRSA as a model. The results demonstrate the platform's high accuracy and sensitivity, with a limit of detection of 101 CFU/mL when combined with recombinase polymerase amplification. Therefore, by harnessing the programmability of CRISPR/Cas12a, the biosensor has the potential to detect various drug-resistant bacteria, demonstrating significant practical applicability.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Colorimetry , Hydrogen Peroxide , Bacteria/genetics , Coloring Agents , DNA, Single-Stranded
10.
Evol Bioinform Online ; 19: 11769343231191481, 2023.
Article in English | MEDLINE | ID: mdl-37576785

ABSTRACT

Corynebacterium striatum is a Gram-positive bacterium that is straight or slightly curved and non-spore-forming. Although it was originally believed to be a part of the normal microbiome of human skin, a growing number of studies have identified it as a cause of various chronic diseases, bacteremia, and respiratory infections. However, despite its increasing importance as a pathogen, the genetic characteristics of the pathogen population, such as genomic characteristics and differences, the types of resistance genes and virulence factors carried by the pathogen and their distribution in the population are poorly understood. To address these knowledge gaps, we conducted a pan-genomic analysis of 314 strains of C. striatum isolated from various tissues and geographic locations. Our analysis revealed that C. striatum has an open pan-genome, comprising 5692 gene families, including 1845 core gene families, 2362 accessory gene families, and 1485 unique gene families. We also found that C. striatum exhibits a high degree of diversity across different sources, but strains isolated from skin tissue are more conserved. Furthermore, we identified 53 drug resistance genes and 42 virulence factors by comparing the strains to the drug resistance gene database (CARD) and the pathogen virulence factor database (VFDB), respectively. We found that these genes and factors are widely distributed among C. striatum, with 77.7% of strains carrying 2 or more resistance genes and displaying primary resistance to aminoglycosides, tetracyclines, lincomycin, macrolides, and streptomycin. The virulence factors are primarily associated with pathogen survival within the host, iron uptake, pili, and early biofilm formation. In summary, our study provides insights into the population diversity, resistance genes, and virulence factors ofC. striatum from different sources. Our findings could inform future research and clinical practices in the diagnosis, prevention, and treatment of C. striatum-associated diseases.

11.
Front Cell Infect Microbiol ; 13: 1202013, 2023.
Article in English | MEDLINE | ID: mdl-37396302

ABSTRACT

Introduction: The widespread use of antibiotics in animal agriculture has increased the resistance of Escherichia coli, and pathogenic E. coli often harbor complex virulence factors. Antimicrobial resistance in pathogenic bacteria can cause public health problems. Correlation analyses of the resistance, virulence, and serotype data from the pathogenic bacteria found on farms and in the surrounding environment can thus provide extremely valuable data to help improve public health management. Methods: In this investigation, we have assessed the drug resistance and virulence genes as well as the molecular typing characteristics of 30 E. coli strains isolated from duck farms in the Zhanjiang area of China. Polymerase chain reaction was used to detect the drug resistance and virulence genes as well as serotypes, and whole-genome sequencing was used to analyze the multilocus sequence typing. Results: The detection rates for the oqxA resistance gene and fimC virulence gene were highest (93.3%, respectively). There were no correlations between the drug resistance and virulence gene numbers in the same strain. The epidemic serotype was O81 (5/24), ST3856 was an epidemic sequence type, and strains I-9 and III-6 carried 11 virulence genes. The E. coli strains from the duck farms in the Zhanjiang area were thus found to have a broad drug resistance spectrum, various virulence genes, complex serotypes, and certain pathogenicity and genetic relationship. Discussion: Monitoring the spread of pathogenic bacteria and the provision of guidance regarding the use of antibiotics in the livestock and poultry industries will be required in the future in the Zhanjiang area.


Subject(s)
Escherichia coli Infections , Escherichia coli , Animals , Escherichia coli/genetics , Ducks , Farms , Virulence/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Anti-Bacterial Agents/pharmacology , Multilocus Sequence Typing , China/epidemiology , Microbial Sensitivity Tests
12.
Infect Drug Resist ; 16: 3639-3647, 2023.
Article in English | MEDLINE | ID: mdl-37313263

ABSTRACT

Background: Staphylococcus haemolyticus is an opportunistic pathogen that belongs to coagulase-negative Staphylococci (CoNS). Increasing infection and multi-drug resistance cases caused by this strain have been reported and thus it poses a great health threat. Methods: The third-generation sequencing technology was performed on a S. haemolyticus SH-1 isolated from a clinical sample to analyze the drug resistance genes, which included vancomycin resistance related genes. In addition, antimicrobial susceptibility tests, transmission electron microscopy and Triton X-100 stimulated autolysis were conducted to understand its biological characteristics. Results: The study shows that this clinical isolate is a vancomycin intermediate-resistant strain. Genome comparison also revealed that WalK(N70K) and WalK(R280Q) mutations may contribute to the vancomycin resistant phenotype. Besides, S. haemolyticus SH-1 exhibit common features of thicker cell wall and decreased autolytic activity. Conclusion: S. haemolyticus SH-1 with WalKR mutations shows typical characteristics of vancomycin resistant strains. Combining the genome features and biological properties, our findings may provide important information for the understanding of the molecular mechanism of S. haemolyticus to vancomycin intermediate-resistance.

13.
Front Microbiol ; 14: 1177841, 2023.
Article in English | MEDLINE | ID: mdl-37168121

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR) and their CRISPR-associated proteins (Cas) are an adaptive immune system involved in specific defenses against the invasion of foreign mobile genetic elements, such as plasmids and phages. This study aims to analyze the gene structure and to explore the function of the CRISPR system in the Enterococcus genome, especially with regard to drug resistance. The whole genome information of 110 enterococci was downloaded from the NCBI database to analyze the distribution and the structure of the CRISPR-Cas system including the Cas gene, repeat sequences, and spacer sequence of the CRISPR-Cas system by bioinformatics methods, and to find drug resistance-related genes and analyze the relationship between them and the CRISPR-Cas system. Multilocus sequence typing (MLST) of enterococci was performed against the reference MLST database. Information on the drug resistance of Enterococcus was retrieved from the CARD database, and its relationship to the presence or absence of CRISPR was statistically analyzed. Among the 110 Enterococcus strains, 39 strains (35.45%) contained a complete CRISPR-Cas system, 87 CRISPR arrays were identified, and 62 strains contained Cas gene clusters. The CRISPR system in the Enterococcus genome was mainly type II-A (59.68%), followed by type II-C (33.87%). The phylogenetic analysis of the cas1 gene sequence was basically consistent with the typing of the CRISPR-Cas system. Of the 74 strains included in the study for MLST typing, only 19 (25.68%) were related to CRISPR-Cas typing, while the majority of the strains (74.32%) of MLST typing were associated with the untyped CRISPR system. Additionally, the CRISPR-Cas system may only be related to the carrying rate of some drug-resistant genes and the drug-resistant phenotype. In conclusion, the distribution of the enterococcus CRISPR-Cas system varies greatly among different species and the presence of CRISPR loci reduces the horizontal transfer of some drug resistance genes.

14.
Poult Sci ; 102(7): 102759, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37209657

ABSTRACT

Infectious serositis is a common disease caused by Riemerella anatipestifer (R. anatipestifer) in ducks, characterized by respiratory distress, septicemia, and neurological symptoms. In this study, 1,020 samples (brain and liver) were collected from ducks with suspected R. anatipestifer infection from March 2020 to March 2022 in Shandong Province, of which 171 R. anatipestifer strains were identified by PCR and isolation culture. The serotype of all strains was analyzed, and 74 strains were subjected to drug sensitivity tests and drug resistance genes detection. The results showed that the overall prevalence rate of R. anatipestifer in Shandong Province was 16.7% (171/1,020), with most strains coming from brain samples of ducklings under 3-mo old collected from September to December each year. Histopathological examination showed that heart vessels of the diseased duck were highly dilated and filled with red blood cells, with obvious fibrin exudates outside the pericardium, and fatty degeneration of liver cells. There were 45 strains of serotype 1, 45 strains of serotype 2, 2 strains of serotype 4, 33 strains of serotype 6, 44 strains of serotype 7, and 2 strains of serotype 10. The minimum inhibitory concentration (MIC) of 10 common antibiotics against 74 representative strains was determined by the agar dilution method. It was found that 74 strains had the most severe resistance to gentamicin (77%) and fully susceptible to ceftriaxone, but the 81.1% isolated strains were multidrug resistant. Resistance genes testing of 74 R. anatipestifers showed that tetracycline resistance gene tet X had the highest detection rate of 95.9%, followed by macrolide resistance gene ermF with 77%, and the rate of ß-lactam resistance gene blaTEM is the lowest (10.8%). The animal experiment of 4 R. anatipestifer strains with different serotypes showed that they had strong pathogenicity to 7-day-old ducklings, which could cause nervous symptoms, and the mortality rate was 58% to 70%. The autopsy showed obvious pathological changes. These findings of this study on R. anatipestifer will help us to understand the latest prevalence, drug resistance characteristics, and pathogenicity of R. anatipestifer in Shandong, China, and provide a scientific guide for the treatment and control of the disease.


Subject(s)
Flavobacteriaceae Infections , Poultry Diseases , Riemerella , Animals , Anti-Bacterial Agents/pharmacology , Chickens , Drug Resistance, Bacterial/genetics , Ducks/microbiology , Farms , Flavobacteriaceae Infections/epidemiology , Flavobacteriaceae Infections/veterinary , Macrolides , Poultry Diseases/epidemiology , Riemerella/genetics
15.
Front Cell Infect Microbiol ; 13: 1141959, 2023.
Article in English | MEDLINE | ID: mdl-37033475

ABSTRACT

[This corrects the article DOI: 10.3389/fcimb.2022.987260.].

16.
Poult Sci ; 102(3): 102483, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36682131

ABSTRACT

Animal-derived Enterobacteriaceae bacteria such as Escherichia coli (E. coli), Proteus mirabilis (P. mirabilis), and Klebsiella pneumoniae (K. pneumoniae) are important food-borne zoonotic bacilli that exist widely in the broiler-breeding industry. Although carbapenem antibiotics are considered to be the last line of defense against multidrug-resistant bacteria, carbapenem-resistant Enterobacteriaceae (CRE) break through them. In our study, we therefore, examined the prevalence of CRE and characteristics of antimicrobial resistance in 6 conventional broiler-fattening farms in Shandong Province, China. Our study revealed isolation rates of 3.57% (6/168) for carbapenem-resistant E. coli, 10% (5/50) for carbapenem-resistant P. mirabilis, and 3.03% (1/33) for carbapenem-resistant K. pneumoniae. All 12 CRE bacterial strains showed varying degrees of resistance to 27 antibiotics in 8 classes and were multidrug-resistant. The rate of the strains containing blaNDM genes, at 91.67% (11/12), was especially high. Among other results, the carrying rate of integrons in CRE bacteria was 91.67% (11/12), and 2 strains carried both class I and class II integrons, which accelerated the lateral transmission of resistant bacteria. Our first-ever finding of the 3 CRE bacteria E. coli, P. mirabilis, and K. pneumoniae on the same broiler farm suggests that poultry-derived CRE strains may pose a risk to humans. Moreover, our findings from surveillance can inform current understandings of the prevalence and characteristics of multidrug-resistant CRE in Shandong Province and, in turn, help to curb threats to food safety and public health and better prevent and control infectious zoonotic diseases.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Animals , Humans , Carbapenem-Resistant Enterobacteriaceae/genetics , Escherichia coli/genetics , beta-Lactamases/genetics , Chickens , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae , Carbapenems , Klebsiella pneumoniae/genetics , China/epidemiology , Microbial Sensitivity Tests/veterinary
17.
Antibiotics (Basel) ; 12(1)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36671333

ABSTRACT

The aim of this study was to investigate the antimicrobial resistance profiles and genotypes of Streptococcus suis in Heilongjiang Province, China. A total of 29 S. suis were isolated from 332 samples collected from 6 pig farms. The results showed that serotypes 2, 4 and 9 were prevalent, and all the clinical isolates were resistant to at least two antibacterial drugs. The most resisted drugs were macrolides, and the least resisted drugs were fluoroquinolones. Resistant genes ermB and aph (3')-IIIa were highly distributed among the isolates, with the detection rates of 79.31% and 75.86%. The formation of biofilm could be observed in all the isolated S. suis, among which D-1, LL-1 and LL-3 strains formed stronger biofilm structure than other strains. The results indicate that S. suis in Heilongjiang Province presents a multi-drug resistance to commonly used antimicrobial drugs, which was caused by the same target gene, the dissemination of drug resistance genes, and bacterial biofilm.

18.
Ital J Pediatr ; 48(1): 190, 2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36435821

ABSTRACT

BACKGROUND: To investigate the resistance-gene mutation of Mycoplasma pneumoniae (MP) in the bronchoalveolar lavage fluid of children with Mycoplasma pneumoniae pneumonia (MPP) and the clinical characteristics of refractory Mycoplasma pneumoniae pneumonia (RMPP) correlation. METHODS: Forty-eight children with MPP were selected and placed in RMPP and non-RMPP groups based on their clinical status - whether they had worsening clinical symptoms, persistent fever and a worsening lung image. They were also separated into drug-resistance gene mutation and non-mutated groups using nucleic acid detection. The participants' data were collected on high-sensitivity C-reactive protein and MP-DNA loads, fever time, hospitalisation time, macrolide antibiotic application time and fever regression time after application. The differences in imaging manifestations were determined by using multivariate logistic regression to analyse the clinical characteristics of RMPP. Additionally, the correlation between drug-resistance gene mutations and the clinical characteristics of RMPP was summarised. RESULTS: Among the 48 MPP children, 31 (64.6%) had A2063G and/or A2064G gene mutation, 31 (64.6%) had RMPP and 23 (74.2%) had drug-resistance gene mutation. The children in the drug-resistance gene mutation group had higher high-sensitivity C-reactive protein and MP-DNA loads, longer fever time, hospitalisation time, macrolide antibiotic application time, fever regression time after application and extrapulmonary complications. There were more symptoms and more severe changes under bronchoscopy. The difference was statistically significant (P < 0.05). Logistic multivariate regression analysis showed that the mutation of drug-resistance genes had no significant correlation with RMPP. CONCLUSION: The mutation rate of drug-resistance genes in children with MPP is high, the inflammatory index and MP-DNA load are high, the course of the disease is long, and the changes under bronchoscopy are severe. The occurrence of RMPP is not only determined by drug-resistance genes but may also be the result of a combination of factors.


Subject(s)
Mycoplasma pneumoniae , Pneumonia, Mycoplasma , Child , Humans , Mycoplasma pneumoniae/genetics , Bronchoalveolar Lavage Fluid , C-Reactive Protein/analysis , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/drug therapy , Anti-Bacterial Agents/therapeutic use , Fever , Drug Resistance , Macrolides
19.
Mikrochim Acta ; 189(10): 394, 2022 09 26.
Article in English | MEDLINE | ID: mdl-36155855

ABSTRACT

Antibiotics have brought many benefits to public health systems worldwide since their first use in the last century, yet with their overuse in clinical treatment and livestock farming, new public health issues have arisen. Previously, we found in our experiments that the levels of macB genes in bovine raw milk ranked among the top of many drug resistance genes. In this paper, we present an analysis of regularly interspaced clustered short palindromic repeats (CRISPR) combined with surface-enhanced Raman scattering (SERS) technology for the detection of the drug resistance gene macB. The analysis was accomplished through the collaboration of the CRISPR system's ability to specifically identify genes and the more sensitive performance of the SERS. The analysis detects the drug resistance gene macB and does not yet require complex steps such as nucleic acid amplification. This method may prove to be an effective method for accurate detection of the drug-resistant gene macB, thus enabling more effective prevention of contamination of drug-resistant genes in food hygiene.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Nucleic Acids , Animals , Anti-Bacterial Agents , CRISPR-Cas Systems , Cattle , Drug Resistance , Spectrum Analysis, Raman
20.
Front Genet ; 13: 976356, 2022.
Article in English | MEDLINE | ID: mdl-36118887

ABSTRACT

Hypoxia spontaneously forms in the interior of glioma tissues and regulates the expression of various genes. However, the status of hypoxia-driven genes in glioma tissues is not completely known. In the current study, RNA-seq data of 695 glioma tissues in The Cancer Genome Atlas (TCGA) were set as a discovery cohort and were used to identify hypoxia-driven genes and construct a novel gene signature. The prognostic values of that signature were verified in data from the TCGA and the Chinese Glioma Genome Atlas (CGGA). The expression and diagnostic values of hypoxia-driven genes were analyzed using immunohistochemistry and receiver operator characteristic curves. Finally, the effects of hypoxia-driven genes on temozolomide (TMZ) resistance were analyzed by western blot, CCK-8 and colony formation assay. A total of 169 hypoxia-driven genes were identified, which were associated with a poor outcome in glioma patients. Among them, 22 genes had a degree score ≥10 and 6 genes (WT1, HOXA2, HOXC6, MMP9, SHOX2 and MYOD1) were selected to construct a signature to classify glioma patients into low- or high-risk groups. That signature had a remarkable prognostic value for glioma patients in TCGA and CGGA. The expression of HOXC6, MMP9, SHOX2 and MYOD1 was associated with hypoxia degree in glioma tissues and in recurrent cases, had a remarkable diagnostic value and a significant relationship with disease free survival in glioma patients. Moreover, SHOX2 was highly expressed in glioma tissues with O-6-methylguanine-DNA methyltransferase (MGMT)-unmethylation and temozolomide (TMZ) resistant glioma cell lines, and associated with MGMT expression. Knockdown the expression of SHOX2 significantly reduced the TMZ-resistance induced by hypoxia in glioma cells. Ultimately, we identified six novel hypoxia-driven genes for reliable prognostic prediction in gliomas and found that SHOX2 might be a potential target to overcome the TMZ resistance induced by hypoxia.

SELECTION OF CITATIONS
SEARCH DETAIL
...