Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Res Notes ; 17(1): 67, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38444014

ABSTRACT

OBJECTIVES: Male infertility accounts for approximately 30% of cases of reproductive failure. The characterization of genetic variants using cytogenomic techniques is essential for the adequate clinical management of these patients. We aimed to conduct a cytogenetic investigation of numerical and structural rearrangements and a genomic study of Y chromosome microdeletions/microduplications in infertile men derived from a single centre with over 14 years of experience. RESULTS: We evaluated 151 infertile men in a transversal study using peripheral blood karyotypes and 15 patients with normal karyotypes through genomic investigation by multiplex ligation-dependent probe amplification (MLPA) or polymerase chain reaction of sequence-tagged sites (PCR-STS) techniques. Out of the 151 patients evaluated by karyotype, 13 presented chromosomal abnormalities: two had numerical alterations, and 11 had structural chromosomal rearrangements. PCR-STS detected a BPY2 gene region and RBMY2DP pseudogene region microdeletion in one patient. MLPA analysis allowed the identification of one patient with CDY2B_1 and CDY2B_2 probe duplications (CDY2B and NLGN4Y genes) and one patient with BPY2_1, BPY2_2, and BPY2_4 probe duplications (PRY and RBMY1J genes).


Subject(s)
Genomics , Infertility, Male , Humans , Male , Brazil , Infertility, Male/genetics , Genetic Services , Karyotyping , Multiplex Polymerase Chain Reaction
2.
Mol Biol Evol ; 34(12): 3089-3098, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28961791

ABSTRACT

Gene duplication is thought to play a major role in phenotypic evolution. Yet the forces involved in the functional divergence of young duplicate genes remain unclear. Here, we use population-genetic inference to elucidate the role of natural selection in the functional evolution of young duplicate genes in Drosophila melanogaster. We find that negative selection acts on young duplicates with ancestral functions, and positive selection on those with novel functions, suggesting that natural selection may determine whether and how young duplicate genes are retained. Moreover, evidence of natural selection is strongest in protein-coding regions and 3' UTRs of young duplicates, indicating that selection may primarily target encoded proteins and regulatory sequences specific to 3' UTRs. Further analysis reveals that natural selection acts immediately after duplication and weakens over time, possibly explaining the observed bias toward the acquisition of new functions by young, rather than old, duplicate gene copies. Last, we find an enrichment of testis-related functions in young duplicates that underwent recent positive selection, but not in young duplicates that did not undergo recent positive selection, or in old duplicates that either did or did not undergo recent positive selection. Thus, our findings reveal that natural selection is a key player in the functional evolution of young duplicate genes, acts rapidly and in a region-specific manner, and may underlie the origin of novel testis-specific phenotypes in Drosophila.


Subject(s)
Drosophila melanogaster/genetics , Gene Duplication/genetics , Selection, Genetic/genetics , 3' Untranslated Regions/genetics , Animals , Biological Evolution , Databases, Nucleic Acid , Evolution, Molecular , Genes, Duplicate/genetics , Genetics, Population/methods , Open Reading Frames/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL