Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38244565

ABSTRACT

Impairments in working memory (WM) are evident in both clinically diagnosed patients with mild cognitive decline and older adults at risk, as indicated by lower scores on neuropsychological tests. Examining the WM-related neural signatures in at-risk older adults becomes essential for timely intervention. WM functioning relies on dynamic brain activities, particularly within the frontoparietal system. However, it remains unclear whether the cognitive decline would be reflected in the decreased dynamic reconfiguration of brain coactivation states during WM tasks. We enrolled 47 older adults and assessed their cognitive function using the Montreal Cognitive Assessment. The temporal dynamics of brain coactivations during a WM task were investigated through graph-based time-frame modularity analysis. Four primary recurring states emerged: two task-positive states with positive activity in the frontoparietal system (dorsal attention and central executive); two task-negative states with positive activity in the default mode network accompanied by negative activity in the frontoparietal networks. Heightened WM load was associated with increased flexibility of the frontoparietal networks, but the cognitive decline was correlated with reduced capacity for neuroplastic changes in response to increased task demands. These findings advance our understanding of aberrant brain reconfiguration linked to cognitive decline, potentially aiding early identification of at-risk individuals.


Subject(s)
Cognitive Dysfunction , Memory, Short-Term , Humans , Aged , Memory, Short-Term/physiology , Brain/diagnostic imaging , Brain/physiology , Cognition/physiology , Cognitive Dysfunction/diagnostic imaging , Brain Mapping , Neuropsychological Tests , Magnetic Resonance Imaging
2.
Cereb Cortex ; 31(4): 2125-2138, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33258911

ABSTRACT

The functional organization of the human brain adapts dynamically in response to a rapidly changing environment. However, the relation of these rapid changes in functional organization to cognitive functioning is not well understood. This study used a graph-based time-frame modularity analysis approach to identify temporally recurrent functional configuration patterns in neural responses to an n-back working memory task during fMRI. Working memory load was manipulated to investigate the functional relevance of the identified brain states. Four distinct brain states were defined by the predominant patterns of activation in the task-positive, default-mode, sensorimotor, and visual networks. Associated with escalating working memory load, the occurrence of the task-positive state and the probability of transitioning into this state increased. In contrast, the occurrence of the default-mode and sensorimotor states and the probability of these 2 states transitioning away from the task-positive state decreased. The task-positive state occurrence rate and the probability of transitioning from the default-mode state back to the task-positive state explained a significant and unique portion of the variance in task performance. The results demonstrate that dynamic brain activities support successful cognitive functioning and may have heuristic value for understanding abnormal cognitive functioning associated with multiple neuropsychiatric disorders.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Cognition/physiology , Nerve Net/diagnostic imaging , Nerve Net/physiology , Psychomotor Performance/physiology , Adult , Female , Humans , Magnetic Resonance Imaging/methods , Male , Memory, Short-Term/physiology , Middle Aged , Time Factors , Young Adult
3.
Article in English | MEDLINE | ID: mdl-29486868

ABSTRACT

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is thought to stem from aberrancies in large-scale cognitive control networks. However, the exact nature of aberrant brain circuit dynamics involving these control networks is poorly understood. Using a saliency-based triple-network model of cognitive control, we tested the hypothesis that dynamic cross-network interactions among the salience, central executive, and default mode networks are dysregulated in children with ADHD, and we investigated how these dysregulations contribute to inattention. METHODS: Using functional magnetic resonance imaging data from 140 children with ADHD and typically developing children from two cohorts (primary cohort = 80 children, replication cohort = 60 children) in a case-control design, we examined both time-averaged and dynamic time-varying cross-network interactions in each cohort separately. RESULTS: Time-averaged measures of salience network-centered cross-network interactions were significantly lower in children with ADHD compared with typically developing children and were correlated with severity of inattention symptoms. Children with ADHD displayed more variable dynamic cross-network interaction patterns, including less persistent brain states, significantly shorter mean lifetimes of brain states, and intermittently weaker cross-network interactions. Importantly, dynamic time-varying measures of cross-network interactions were more strongly correlated with inattention symptoms than with time-averaged measures of functional connectivity. Crucially, we replicated these findings in the two independent cohorts of children with ADHD and typically developing children. CONCLUSIONS: Aberrancies in time-varying engagement of the salience network with the central executive network and default mode network are a robust and clinically relevant neurobiological signature of childhood ADHD symptoms. The triple-network neurocognitive model provides a novel, replicable, and parsimonious dynamical systems neuroscience framework for characterizing childhood ADHD and inattention.


Subject(s)
Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Brain/diagnostic imaging , Executive Function/physiology , Nerve Net/diagnostic imaging , Adolescent , Attention Deficit Disorder with Hyperactivity/psychology , Brain Mapping , Case-Control Studies , Child , Female , Humans , Magnetic Resonance Imaging , Male
SELECTION OF CITATIONS
SEARCH DETAIL