Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Ecol Appl ; 34(4): e2980, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38725332

ABSTRACT

Understanding how human-modified landscapes maintain biodiversity and provide ecosystem services is crucial for establishing conservation practices. Given that responses to land-use are species-specific, it is crucial to understand how land-use changes may shape patterns of species diversity and persistence in human-modified landscapes. Here, we used a comprehensive data set on bird distribution from the Brazilian Atlantic Forest to understand how species richness and individual occurrences of frugivorous bird species responded to land-use spatial predictors and, subsequently, assess how ecological traits and phylogeny modulated these responses. Using Bayesian hierarchical modeling, we reveal that the richness of frugivorous birds was positively associated with the amount of native forest and negatively with both agriculture and pasture amount at the landscape scale. Conversely, the effect of these predictors on species occurrence and ecological traits was highly variable and presented a weak phylogenetic signal. Furthermore, land-use homogenization (i.e., the conversion of forest to pasture or agriculture) led to pervasive consequences for forest-dependent bird species, whereas several generalist species thrived in deforested areas, replacing those sensitive to habitat disturbances.


Subject(s)
Agriculture , Biodiversity , Birds , Animals , Birds/physiology , Brazil , Tropical Climate , Conservation of Natural Resources/methods , Forests , Fruit
2.
Mol Ecol ; 30(16): 4062-4076, 2021 08.
Article in English | MEDLINE | ID: mdl-34160853

ABSTRACT

Understanding how geographic and environmental heterogeneity drive local patterns of genetic variation is a major goal of ecological genomics and a key question in evolutionary biology. The tropical Andes and inter-Andean valleys are shaped by markedly heterogeneous landscapes, where species experience strong selective processes. We examined genome-wide SNP data together with behavioural and ecological traits (mating calls and body size) known to contribute to genetic isolation in anurans in the banana tree-dwelling frog, Boana platanera, distributed across an environmental gradient in Central Colombia (northern South America). Here, we analysed the relationships between environmentally (temperature and precipitation) associated genetic and phenotypic differentiation and the potential drivers of isolation by environment along an elevation gradient. We identified candidate SNPs associated with temperature and body size, which follow a clinal pattern of genome-wide differentiation tightly coupled with phenotypic variation: as elevation increases, B. platanera exhibits larger body size and longer call duration with more pulses but lower pulse rate and frequency. Thus, the environmental landscape has rendered a scenario where isolation by environment and candidate loci show concordance with phenotypic divergence in this tropical frog along an elevation gradient in the Colombian Andes. Our study sets the basis for evaluating the role of temperature in the genetic structure and local adaptation in tropical treefrogs and its putative effect on life cycle (embryos, tadpoles, adults) along elevation gradients.


Subject(s)
Altitude , Anura , Animals , Anura/genetics , Colombia , Genomics , Reproductive Isolation
3.
Ecology ; 102(5): e03298, 2021 May.
Article in English | MEDLINE | ID: mdl-33554332

ABSTRACT

Reef fish represent one of the most diverse vertebrate groups on Earth, with over 7,000 species distributed around the globe. This richness is not evenly distributed geographically. The Atlantic (AT) and the Eastern Pacific (EP) encompass 30% of the global fish fauna. These areas have been considered the most isolated from the marine biodiversity hotspot in the Indo-Pacific due to distinct physical barriers, such as the Tethyan closure and the distance between the EP and the western Pacific. Despite their comparatively lower species richness, these realms host unique fish assemblages characterized by a remarkable proportion of regional endemics and species with large body size. Here, we present the largest database of life-history traits and biogeographical and conservation aspects presently available for the reef fish fauna of the AT and the EP realms. The database includes 21 traits distributed into behavioral (home range, diel activity, group size, level in the water column, three measures of preferred temperature), morphological (maximum body size, size class, body shape, aspect ratio, caudal fin, mouth position), and ecological (trophic level, diet, spawning strategy, depth of occurrence, two allometric constants, pelagic larval duration, and life span), as well as biogeographical (geographic range index, range extension, species distribution in 20 marine provinces, latitude north and south of occurrence, total number of provinces where species occur, occurrence in the AT and EP), and conservation aspects (IUCN status, vulnerability and global market price). We compiled these data through a careful review of 104 local checklists published between 1982 and 2020, online repositories, local reports, books, and monographs on specific families or genera. We limited our database to localities situated between latitudes 51°N and 45°S that including shallow and upper mesophotic biogenic and/or rocky reefs habitats. Our database covers 2,198 species belonging to 146 families and 655 reef fish genera distributed in two marine realms (1,458 in the AT, 829 in the EP, and 89 in both realms) and 20 marine provinces. This database of reef fish offers the opportunity to explore novel ecological and evolutionary questions at different scales and provides tools for species conservation based on these traits. There are no copyright or proprietary restrictions for research or teaching purposes.


Subject(s)
Coral Reefs , Fishes , Animals , Biodiversity , Biological Evolution , Ecosystem , Humans
4.
Ecol Evol ; 8(7): 3617-3627, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29686843

ABSTRACT

Passeriformes is the largest and most diverse avian order in the world and comprises the Passeri and Tyranni suborders. These suborders constitute a monophyletic group, but differ in their ecology and history of occupation of South America. We investigated the influence of biogeographic history on functional and phylogenetic diversities of Passeri and Tyranni in forest and savanna habitats in the Brazilian Amazon. We compiled species composition data for 34 Passeriformes assemblages, 12 in savannas and 22 in forests. We calculated the functional (Rao's quadratic entropy, FD Q ) and phylogenetic diversities (mean pairwise distance, MPD, and mean nearest taxon distance, MNTD), and the functional beta diversity to investigate the potential role of biogeographic history in shaping ecological traits and species lineages of both suborders. The functional diversity of Passeri was higher than for Tyranni in both habitats. The MPD for Tyranni was higher than for Passeri in forests; however, there was no difference between the suborders in savannas. In savannas, Passeri presented higher MNTD than Tyranni, while in forest areas, Tyranni assemblages showed higher MNTD than Passeri. We found a high functional turnover (~75%) between Passeri and Tyranni in both habitats. The high functional diversity of Passeri in both habitats is due to the high diversity of ecological traits exhibited by species of this group, which enables the exploitation of a wide variety of resources and foraging strategies. The higher Tyranni MPD and MNTD in forests is likely due to Tyranni being older settlers in this habitat, resulting in the emergence and persistence of more lineages. The higher Passeri MNTD in savannas can be explained by the existence of a larger number of different Passeri lineages adapted to this severe habitat. The high functional turnover between the suborders in both habitats suggests an ecological strategy to avoid niche overlap.

5.
Ann Bot ; 112(6): 1169-79, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24023042

ABSTRACT

BACKGROUND AND AIMS: In habitat mosaics, plant populations face environmental heterogeneity over short geographical distances. Such steep environmental gradients can induce ecological divergence. Lowland rainforests of the Guiana Shield are characterized by sharp, short-distance environmental variations related to topography and soil characteristics (from waterlogged bottomlands on hydromorphic soils to well-drained terra firme on ferralitic soils). Continuous plant populations distributed along such gradients are an interesting system to study intrapopulation divergence at highly local scales. This study tested (1) whether conspecific populations growing in different habitats diverge at functional traits, and (2) whether they diverge in the same way as congeneric species having different habitat preferences. METHODS: Phenotypic differentiation was studied within continuous populations occupying different habitats for two congeneric, sympatric, and ecologically divergent tree species (Eperua falcata and E. grandiflora, Fabaceae). Over 3000 seeds collected from three habitats were germinated and grown in a common garden experiment, and 23 morphological, biomass, resource allocation and physiological traits were measured. KEY RESULTS: In both species, seedling populations native of different habitats displayed phenotypic divergence for several traits (including seedling growth, biomass allocation, leaf chemistry, photosynthesis and carbon isotope composition). This may occur through heritable genetic variation or other maternally inherited effects. For a sub-set of traits, the intraspecific divergence associated with environmental variation coincided with interspecific divergence. CONCLUSIONS: The results indicate that mother trees from different habitats transmit divergent trait values to their progeny, and suggest that local environmental variation selects for different trait optima even at a very local spatial scale. Traits for which differentiation within species follows the same pattern as differentiation between species indicate that the same ecological processes underlie intra- and interspecific variation.


Subject(s)
Adaptation, Biological , Fabaceae/physiology , Bayes Theorem , Ecosystem , Fabaceae/genetics , Fabaceae/growth & development , French Guiana , Genetic Variation , Geography , Linear Models , Phenotype , Photosynthesis , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Quantitative Trait Loci , Rain , Seedlings/genetics , Seedlings/growth & development , Seedlings/physiology , Seeds/genetics , Seeds/growth & development , Seeds/physiology , Trees , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL