Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Small ; : e2406397, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223859

ABSTRACT

Silicon heterojunction (SHJ) solar cells have set world-record efficiencies among single-junction silicon solar cells, accelerating their commercial deployment. Despite these clear efficiency advantages, the high costs associated with low-temperature silver pastes (LTSP) for metallization have driven the search for more economical alternatives in mass production. 2D transition metal carbides (MXenes) have attracted significant attention due to their tunable optoelectronic properties and metal-like conductivity, the highest among all solution-processed 2D materials. MXenes have emerged as a cost-effective alternative for rear-side electrodes in SHJ solar cells. However, the use of MXene electrodes has so far been limited to lab-scale SHJ solar cells. The efficiency of these devices has been constrained by a fill factor (FF) of under 73%, primarily due to suboptimal charge transport at the contact layer/MXene interface. Herein, a silver nanowire (AgNW)-assisted Ti3C2Tx MXene electrode contact is introduced and explores the potential of this hybrid electrode in industry-scale solar cells. By incorporating this hybrid electrode into SHJ solar cells, 9.0 cm2 cells are achieved with an efficiency of 24.04% (FF of 81.64%) and 252 cm2 cells with an efficiency of 22.17% (FF of 76.86%), among the top-performing SHJ devices with non-metallic electrodes to date. Additionally, the stability and cost-effectiveness of these solar cells are discussed.

2.
Sensors (Basel) ; 22(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36366209

ABSTRACT

Dry electrodes offer an accessible continuous acquisition of biopotential signals as part of current in-home monitoring systems but often face challenges of high-contact impedance that results in poor signal quality. The performance of dry electrodes could be affected by electrode material and skin hydration. Herein, we investigate these dependencies using a circuit skin-electrode interface model, varying material and hydration in controlled benchtop experiments on a biomimetic skin phantom simulating dry and hydrated skin. Results of the model demonstrate the contribution of the individual components in the circuit to total impedance and assist in understanding the role of electrode material in the mechanistic principle of dry electrodes. Validation was performed by conducting in vivo skin-electrode contact impedance measurements across ten normative human subjects. Further, the impact of the electrode on biopotential signal quality was evaluated by demonstrating an ability to capture clinically relevant electrocardiogram signals by using dry electrodes integrated into a toilet seat cardiovascular monitoring system. Titanium electrodes resulted in better signal quality than stainless steel electrodes. Results suggest that relative permittivity of native oxide of electrode material come into contact with the skin contributes to the interface impedance, and can lead to enhancement in the capacitive coupling of biopotential signals, especially in dry skin individuals.


Subject(s)
Electrocardiography , Skin , Humans , Electric Impedance , Electrodes , Monitoring, Physiologic/methods
3.
Adv Sci (Weinh) ; 9(36): e2203683, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36319474

ABSTRACT

Metal halide perovskites have drawn substantial interest in optoelectronic devices in the past decade. Perovskite/electrode contacts are crucial for constructing high-performance charge-transporting-layer-free perovskite devices, such as solar cells, field-effect transistors, artificial synapses, memories, etc. Many studies have evidenced that the perovskite layer can directly contact the electrodes, showing abundant physicochemical, electronic, and photoelectric properties in charge-transporting-layer-free perovskite devices. Meanwhile, for perovskite/metal contacts, some critical interfacial physical and chemical processes are reported, including band bending, interface dipoles, metal halogenation, and perovskite decomposition induced by metal electrodes. Thus, a systematic summary of the role of metal halide perovskite/electrode contacts on device performance is essential. This review summarizes and discusses charge carrier dynamics, electronic band engineering, electrode corrosion, electrochemical metallization and dissolution, perovskite decomposition, and interface engineering in perovskite/electrode contacts-based electronic devices for a comprehensive understanding of the contacts. The physicochemical, electronic, and morphological properties of various perovskite/electrode contacts, as well as relevant engineering techniques, are presented. Finally, the current challenges are analyzed, and appropriate recommendations are put forward. It can be expected that further research will lead to significant breakthroughs in their application and promote reforms and innovations in future solid-state physics and materials science.

4.
Artif Organs ; 46(10): 2085-2096, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35971860

ABSTRACT

BACKGROUND: The stimulation and recording performance of implanted neural interfaces are functions of the physical and electrical characteristics of the neural interface, its electrode material and structure. Therefore, rapid optimization of such characteristics is becoming critical in most clinical and research studies. This paper describes the development of an upgraded 3D printed cuff electrode shell design containing a novel intrinsically conductive polymer (ICP) for stimulation and recording of peripheral nerve fibers. METHODS: A 3D stereolithography (SLA) printer was used to print a scalable, custom designed, C-cuff electrode and I-beam closure for accurate, rapid implementation. A novel contact consisting of a percolated carbon graphite base electrodeposited with an intrinsically conductive polymer (ICP), poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) produced a PEDOT:PSS + carbon black (CB) matrix that was used to form the electrochemical interface on the structure. Prototype device performance was tested both in-vitro and in-vivo for electrical chemical capacity, electrochemical interfacial impedance, surgical handling, and implantability. The in-vivo work was performed on the sciatic nerve of 25 anesthetized Sprague Dawley rats to demonstrate recording and stimulating ability. RESULTS: Prototypes of different spatial geometries and number of contacts (bipolar, tripolar, and tetrapolar) were designed. The design was successfully printed with inner diameters down to 500 µm. Standard bipolar and tripolar cuffs, with a 1.3 mm inner diameter (ID), 0.5 mm contact width, 1.0 mm pitch, and a 1.5 mm end distance were used for the functional tests. This geometry was appropriate for placement on the rat sciatic nerve and enabled in-vivo testing in anesthetized rats. The contacts on the standard bipolar electrode had an area of 2.1 × 10-2  cm2 . Cyclic voltammetry on ICP coated and uncoated graphite contacts showed that the ICP increased the average charge storage capacity (CSC) by a factor of 30. The corresponding impedance at 1 Hz was slightly above 1 kΩ, a 99.99% decrease from 100 kΩ in the uncoated state. The statistical comparison of the pre- versus post-stimulation impedance measurements were not significantly different (p-value > 0.05). CONCLUSIONS: The new cuff electrode enables rapid development of cost-effective functional stimulation devices targeting nerve bundles less than 1.0 mm in diameter. This allows for recording and modulation of a low-frequency current targeted within the peripheral nervous system.


Subject(s)
Carbon , Graphite , Animals , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Electrodes , Electrodes, Implanted , Polymers/chemistry , Rats , Rats, Sprague-Dawley , Soot , Stereolithography
5.
ACS Sens ; 6(2): 573-580, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33355460

ABSTRACT

Herein, we report ultrasonic generation of thiyl radicals as a general method for functionalizing a range of surfaces with organic molecules. The method is simple, rapid, can be utilized at ambient conditions and involves sonicating a solution of disulfide molecules, homolytically cleaving S-S bonds and generating thiyl radicals that react with the surfaces by forming covalently bound monolayers. Full molecular coverages on conducting oxides (ITO), semiconductors (Si-H), and carbon (GC) electrode surfaces can be achieved within a time scale of 15-90 min. The suitability of this method to connect the same molecule to different electrodes enabled comparing the conductivity of single molecules and the electrochemical electron transfer kinetics of redox active monolayers as a function of the molecule-electrode contact. We demonstrate, using STM break-junction technique, single-molecule heterojunction comprising Au-molecule-ITO and Au-molecule-carbon circuits. We found that despite using the same molecule, the single-molecule conductivity of Au-molecule-carbon circuits is about an order of magnitude higher than that of Au-molecule-ITO circuits. The same trend was observed for electron transfer kinetics, measured using electrochemical impedance spectroscopy for ferrocene-terminated monolayers on carbon and ITO. This suggests that the interfacial bond between different electrodes and the same molecule can be used to tune the conductivity of single-molecule devices and to control the rate of charge transport in redox active monolayers, opening prospects for relating various types of interfacial charge-transfer rate processes.


Subject(s)
Electronics , Ultrasonics , Electrochemistry , Electrodes , Electron Transport
SELECTION OF CITATIONS
SEARCH DETAIL