Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Micromachines (Basel) ; 12(5)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068510

ABSTRACT

In this paper, the combined effect of the fluid rheology, finite-sized ions, and slippage toward augmenting a non-reacting solute's mass transport due to an oscillatory electroosmotic flow (OEOF) is determined. Bikerman's model is used to include the finite-sized ions (steric effects) in the original Poisson-Boltzmann (PB) equation. The volume fraction of ions quantifies the steric effects in the modified Poisson-Boltzmann (MPB) equation to predict the electrical potential and the ion concentration close to the charged microchannel walls. The hydrodynamics is affected by slippage, in which the slip length was used as an index for wall hydrophobicity. A conventional finite difference scheme was used to solve the momentum and species transport equations in the lubrication limit together with the MPB equation. The results suggest that the combined slippage and steric effects promote the best conditions to enhance the mass transport of species in about 90% compared with no steric effect with proper choices of the Debye length, Navier length, steric factor, Womersley number, and the tidal displacement.

2.
Micromachines (Basel) ; 11(8)2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32764332

ABSTRACT

In this investigation, the transient electroosmotic flow of multi-layer immiscible viscoelastic fluids in a slit microchannel is studied. Through an appropriate combination of the momentum equation with the rheological model for Maxwell fluids, an hyperbolic partial differential equation is obtained and semi-analytically solved by using the Laplace transform method to describe the velocity field. In the solution process, different electrostatic conditions and electro-viscous stresses have to be considered in the liquid-liquid interfaces due to the transported fluids content buffer solutions based on symmetrical electrolytes. By adopting a dimensionless mathematical model for the governing and constitutive equations, certain dimensionless parameters that control the start-up of electroosmotic flow appear, as the viscosity ratios, dielectric permittivity ratios, the density ratios, the relaxation times, the electrokinetic parameters and the potential differences. In the results, it is shown that the velocity exhibits an oscillatory behavior in the transient regime as a consequence of the competition between the viscous and elastic forces; also, the flow field is affected by the electrostatic conditions at the liquid-liquid interfaces, producing steep velocity gradients, and finally, the time to reach the steady-state is strongly dependent on the relaxation times, viscosity ratios and the number of fluid layers.

3.
Electrophoresis ; 41(7-8): 598-606, 2020 04.
Article in English | MEDLINE | ID: mdl-31904869

ABSTRACT

A complete mathematical model for electromigration in paper-based analytical devices is derived, based on differential equations describing the motion of fluids by pressure sources and EOF, the transport of charged chemical species, and the electric potential distribution. The porous medium created by the cellulose fibers is considered like a network of tortuous capillaries and represented by macroscopic parameters following an effective medium approach. The equations are obtained starting from their open-channel counterparts, applying scaling laws and, where necessary, including additional terms. With this approach, effective parameters are derived, describing diffusion, mobility, and conductivity for porous media. While the foundations of these phenomena can be found in previous reports, here, all the contributions are analyzed systematically and provided in a comprehensive way. Moreover, a novel electrophoretically driven dispersive transport mechanism in porous materials is proposed. Results of the numerical implementation of the mathematical model are compared with experimental data, showing good agreement and supporting the validity of the proposed model. Finally, the model succeeds in simulating a challenging case of free-flow electrophoresis in paper, involving capillary flow and electrophoretic transport developed in a 2D geometry.


Subject(s)
Electrophoresis/methods , Microfluidic Analytical Techniques/methods , Models, Chemical , Paper , Diffusion , Electric Conductivity
4.
Micromachines (Basel) ; 8(8)2017 Jul 27.
Article in English | MEDLINE | ID: mdl-30400424

ABSTRACT

In this work, a non-isothermal electroosmotic flow of two immiscible fluids within a uniform microcapillary is theoretically studied. It is considered that there is an annular layer of a non-Newtonian liquid, whose behavior follows the power-law model, adjacent to the inside wall of the capillary, which in turn surrounds an inner flow of a second conducting liquid that is driven by electroosmosis. The inner fluid flow exerts an interfacial force, dragging the annular fluid due to shear and Maxwell stresses at the interface between the two fluids. Because the Joule heating effect may be present in electroosmotic flow (EOF), temperature gradients can appear along the microcapillary, making the viscosity coefficients of both fluids and the electrical conductivity of the inner fluid temperature dependent. The above makes the variables of the flow field in both fluids, velocity, pressure, temperature and electric fields, coupled. An additional complexity of the mathematical model that describes the electroosmotic flow is the nonlinear character due to the rheological behavior of the surrounding fluid. Therefore, based on the lubrication theory approximation, the governing equations are nondimensionalized and simplified, and an asymptotic solution is determined using a regular perturbation technique by considering that the perturbation parameter is associated with changes in the viscosity by temperature effects. The principal results showed that the parameters that notably influence the flow field are the power-law index, an electrokinetic parameter (the ratio between the radius of the microchannel and the Debye length) and the competition between the consistency index of the non-Newtonian fluid and the viscosity of the conducting fluid. Additionally, the heat that is dissipated trough the external surface of the microchannel and the sensitivity of the viscosity to temperature changes play important roles, which modify the flow field.

SELECTION OF CITATIONS
SEARCH DETAIL