Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Front Cell Neurosci ; 18: 1392498, 2024.
Article in English | MEDLINE | ID: mdl-39104439

ABSTRACT

General anesthesia can impact a patient's memory and cognition by influencing hippocampal function. The CA1 and dentate gyrus (DG), serving as the primary efferent and gateway of the hippocampal trisynaptic circuit facilitating cognitive learning and memory functions, exhibit significant differences in cellular composition, molecular makeup, and responses to various stimuli. However, the effects of isoflurane-induced general anesthesia on CA1 and DG neuronal activity in mice are not well understood. In this study, utilizing electrophysiological recordings, we examined neuronal population dynamics and single-unit activity (SUA) of CA1 and DG in freely behaving mice during natural sleep and general anesthesia. Our findings reveal that isoflurane anesthesia shifts local field potential (LFP) to delta frequency and reduces the firing rate of SUA in both CA1 and DG, compared to wakefulness. Additionally, the firing rates of DG neurons are significantly lower than CA1 neurons during isoflurane anesthesia, and the recovery of theta power is slower in DG than in CA1 during the transition from anesthesia to wakefulness, indicating a stronger and more prolonged impact of isoflurane anesthesia on DG. This work presents a suitable approach for studying brain activities during general anesthesia and provides evidence for distinct effects of isoflurane anesthesia on hippocampal subregions.

2.
Biosensors (Basel) ; 14(8)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39194634

ABSTRACT

Here, we report an ultrasoft extra long-lasting, reusable hydrogel-based sensor that enables high-quality electrophysiological recording with low-motion artifacts. The developed sensor can be used and stored in an ambient environment for months before being reused. The developed sensor is made of a self-adhesive electrical-conductivity-enhanced ultrasoft hydrogel mounted in an Ecoflex-based frame. The hydrogel's conductivity was enhanced by incorporating polypyrrole (PPy), resulting in a conductivity of 0.25 S m-1. Young's modulus of the sensor is only 12.9 kPa, and it is stretchable up to 190%. The sensor was successfully used for electrocardiography (ECG) and electromyography (EMG). Our results indicate that using the developed hydrogel-based sensor, the signal-to-noise ratio of recorded electrophysiological signals was improved in comparison to that when medical-grade silver/silver chloride (Ag/AgCl) wet gel electrodes were used (33.55 dB in comparison to 22.16 dB). Due to the ultra-softness, high stretchability, and self-adhesion of the developed sensor, it can conform to the skin and, therefore, shows low susceptibility to motion. In addition, the sensor shows no sign of irritation or allergic reaction, which usually occurs after long-term wearing of medical-grade Ag/AgCl wet gel electrodes on the skin. Further, the sensor is fabricated using a low-cost and scalable fabrication process.


Subject(s)
Electrocardiography , Electromyography , Hydrogels , Hydrogels/chemistry , Humans , Biosensing Techniques , Electric Conductivity , Polymers , Pyrroles/chemistry , Wearable Electronic Devices , Electrodes , Signal-To-Noise Ratio
3.
PeerJ ; 12: e17870, 2024.
Article in English | MEDLINE | ID: mdl-39148679

ABSTRACT

The storage and periodic voiding of urine in the lower urinary tract are regulated by a complex neural control system that includes the brain, spinal cord, and peripheral autonomic ganglia. Investigating the neuromodulation mechanisms of the lower urinary tract helps to deepen our understanding of urine storage and voiding processes, reveal the mechanisms underlying lower urinary tract dysfunction, and provide new strategies and insights for the treatment and management of related diseases. However, the current understanding of the neuromodulation mechanisms of the lower urinary tract is still limited, and further research methods are needed to elucidate its mechanisms and potential pathological mechanisms. This article provides an overview of the research progress in the functional study of the lower urinary tract system, as well as the key neural regulatory mechanisms during the micturition process. In addition, the commonly used research methods for studying the regulatory mechanisms of the lower urinary tract and the methods for evaluating lower urinary tract function in rodents are discussed. Finally, the latest advances and prospects of artificial intelligence in the research of neuromodulation mechanisms of the lower urinary tract are discussed. This includes the potential roles of machine learning in the diagnosis of lower urinary tract diseases and intelligent-assisted surgical systems, as well as the application of data mining and pattern recognition techniques in advancing lower urinary tract research. Our aim is to provide researchers with novel strategies and insights for the treatment and management of lower urinary tract dysfunction by conducting in-depth research and gaining a comprehensive understanding of the latest advancements in the neural regulation mechanisms of the lower urinary tract.


Subject(s)
Urination , Humans , Animals , Urination/physiology , Urinary Tract/innervation , Urinary Tract/physiopathology
4.
Neurochem Res ; 49(10): 2926-2939, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39078522

ABSTRACT

Dexmedetomidine (DEX) is a highly selective α2-adrenoceptor agonist with sedative effects on sleep homeostasis. Oxytocin-expressing (OXT) neurons in the paraventricular nucleus (PVN) of the hypothalamus (PVNOXT) regulate sexual reproduction, drinking, sleep-wakefulness, and other instinctive behaviors. To investigate the effect of DEX on the activity and signal transmission of PVNOXT in regulating the sleep-wakefulness cycle. Here, we employed OXT-cre mice to selectively target and express the designer receptors exclusively activated by designer drugs (DREADD)-based chemogenetic tool hM3D(Gq) in PVNOXT neurons. Combining chemogenetic methods with electroencephalogram (EEG) /electromyogram (EMG) recordings, we found that cannula injection of DEX in PVN significantly increased the duration of non-rapid eye movement (NREM) sleep in mice. Furthermore, the chemogenetic activation of PVNOXT neurons using i.p. injection of clozapine N-oxide (CNO) after cannula injection of DEX to PVN led to a substantial increase in wakefulness. Electrophysiological results showed that DEX decreased the frequency of action potential (AP) and the spontaneous excitatory postsynaptic current (sEPSC) of PVNOXT neurons through α2-adrenoceptors. Therefore, these results identify that DEX promotes sleep and maintains sleep homeostasis by inhibiting PVNOXT neurons through the α2-adrenoceptor.


Subject(s)
Dexmedetomidine , Neurons , Oxytocin , Paraventricular Hypothalamic Nucleus , Animals , Dexmedetomidine/pharmacology , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Oxytocin/pharmacology , Neurons/drug effects , Neurons/metabolism , Mice , Male , Wakefulness/drug effects , Wakefulness/physiology , Adrenergic alpha-2 Receptor Agonists/pharmacology , Mice, Transgenic , Mice, Inbred C57BL , Hypnotics and Sedatives/pharmacology , Sleep/drug effects , Sleep/physiology
5.
Adv Mater ; 36(25): e2401151, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38558183

ABSTRACT

Natural material-based hydrogels are considered ideal candidates for constructing robust bio-interfaces due to their environmentally sustainable nature and biocompatibility. However, these hydrogels often encounter limitations such as weak mechanical strength, low water resistance, and poor ionic conductivity. Here, inspired by the role of natural moisturizing factor (NMF) in skin, a straightforward yet versatile strategy is proposed for fabricating all-natural ionic biogels that exhibit high resilience, ionic conductivity, resistance to dehydration, and complete degradability, without necessitating any chemical modification. A well-balanced combination of gelatin and sodium pyrrolidone carboxylic acid (an NMF compound) gives rise to a significant enhancement in the mechanical strength, ionic conductivity, and water retention capacity of the biogel compared to pure gelatin hydrogel. The biogel manifests temperature-controlled reversible fluid-gel transition properties attributed to the triple-helix junctions of gelatin, which enables in situ gelation on diverse substrates, thereby ensuring conformal contact and dynamic compliance with curved surfaces. Due to its salutary properties, the biogel can serve as an effective and biocompatible interface for high-quality and long-term electrophysiological signal recording. These findings provide a general and scalable approach for designing natural material-based hydrogels with tailored functionalities to meet diverse application needs.


Subject(s)
Gelatin , Hydrogels , Skin , Hydrogels/chemistry , Gelatin/chemistry , Skin/metabolism , Animals , Biocompatible Materials/chemistry , Electric Conductivity , Water/chemistry , Biomimetic Materials/chemistry , Pyrrolidinones/chemistry , Humans
6.
Biosens Bioelectron ; 251: 116113, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38364328

ABSTRACT

Autophagy is an important physiological phenomenon in eukaryotes that helps maintain the cellular homeostasis. Autophagy is involved in the development of various cardiovascular diseases, affecting the maintenance of cardiac function and disease prognosis. Physiological levels of autophagy serve as a defense mechanism for cardiomyocytes against environmental stimuli, but an overabundance of autophagy may contribute to the development of cardiovascular diseases. However, conventional biological methods are difficult to monitor the autophagy process in a dynamic and chronic manner. Here, we developed a cardiomyocyte-based biosensing platform that records electrophysiological evolutions in action potentials to reflect the degree of autophagy. Different concentrations of rapamycin-mediated autophagy were administrated in the culture environment to simulate the autophagy model. Moreover, the 3-methyladenine (3-MA)-mediated autophagy inhibition was also investigated the protection on the autophagy. The recorded action potentials can precisely reflect different degrees of autophagy. Our study confirms the possibility of visualizing and characterizing the process of cardiomyocyte autophagy using cardiomyocyte-based biosensing platform, allowing to monitor the whole autophagy process in a non-invasive, real-time, and continuous way. We believe it will pave a promising avenue to precisely study the autophagy-related cardiovascular diseases.


Subject(s)
Biosensing Techniques , Cardiovascular Diseases , Humans , Myocytes, Cardiac , Sirolimus/pharmacology , Autophagy/physiology
8.
Int J Psychol Res (Medellin) ; 16(2): 62-86, 2023.
Article in English | MEDLINE | ID: mdl-38106956

ABSTRACT

Sensory perception is one of the most fundamental brain functions, allowing individuals to properly interact and adapt to a constantly changing environment. This process requires the integration of bottom-up and topdown neuronal activity, which is centrally mediated by the basal forebrain, a brain region that has been linked to a series of cognitive processes such as attention and alertness. Here, we review the latest research using optogenetic approaches in rodents and in vivo electrophysiological recordings that are shedding light on the role of this region, in regulating olfactory processing and decisionmaking. Moreover, we summarize evidence highlighting the anatomical and physiological differences in the basal forebrain of individuals with autism spectrum disorder, which could underpin the sensory perception abnormalities they exhibit, and propose this research line as a potential opportunity to understand the neurobiological basis of this disorder.


La percepción sensorial es una de las funciones cerebrales más fundamentales, permitiendo a los individuos interactuar de manera apropiada con el entorno y adaptarse a un ambiente en constante cambio. Este proceso requiere la integración de la actividad neuronal ascendente y descendente, que es mediada por el cerebro basal (BF), una región cerebral que ha sido asociada a una serie de procesos cognitivos, como estados de atención y alerta.En este trabajo revisamos las últimas investigaciones que han utilizado optogenética y registros electrofisiológicos in vivo que han iluminado el rol del BF en el procesamiento olfatorio y la toma de decisiones. Además, resumimos la literatura que destaca las alteraciones fisiológicas y anatómicas del BF de individuos con trastornos del espectro autista, que podrían subyacer las anormalidades en la percepción que presentan, y proponemos esta línea de investigación como una posible oportunidad para entender las bases neurobiológicas de este trastorno.

9.
Biosens Bioelectron ; 240: 115638, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37647685

ABSTRACT

The tremendous technical progress in neuroscience offers opportunities to observe a more minor or/and broader dynamic picture of the brain. Moreover, the large-scale neural activity of individual neurons enables the dissection of detailed mechanistic links between neural populations and behaviors. To measure neural activity in-vivo, multi-neuron recording, and neuroimaging techniques are employed and developed to acquire more neurons. The tools introduced concurrently recorded dozens to hundreds of neurons in the coordinated brain regions and elucidated the neuronal ensembles from a massive population perspective of diverse neurons at cellular resolution. In particular, the increasing spatiotemporal resolution of neuronal monitoring across the whole brain dramatically facilitates our understanding of additional nervous system functions in health and disease. Here, we will introduce state-of-the-art neuroscience tools involving large-scale neural population recording and the long-range connections spanning multiple brain regions. Their synergic effects provide to clarify the controversial circuitry underlying neuroscience. These challenging neural tools present a promising outlook for the fundamental dynamic interplay across levels of synaptic cellular, circuit organization, and brain-wide. Hence, more observations of neural dynamics will provide more clues to elucidate brain functions and push forward innovative technology at the intersection of neural engineering disciplines. We hope this review will provide insight into the use or development of recent neural techniques considering spatiotemporal scales of brain observation.


Subject(s)
Biosensing Techniques , Neurons , Brain
10.
Pharmacology ; 108(5): 469-477, 2023.
Article in English | MEDLINE | ID: mdl-37607511

ABSTRACT

INTRODUCTION: Complex spikes (CSs) activity of cerebellar Purkinje cells plays critical roles in motor coordination and motor learning by transferring information to cerebellar cortex, which is an accessible and useful model for neurophysiological investigation. Etomidate is an ultrashort-acting nonbarbiturate intravenous anesthetic, which inhibits the spontaneous activity of cerebellar Purkinje cells through activation of GABAA and glycine receptors in vivo in mice. However, the effect of etomidate on the spontaneous CSs activity of cerebellar Purkinje cells in living mouse is not clear. METHODS: We here investigated the effects of etomidate on spontaneous CSs activity of cerebellar Purkinje cell in urethane-anesthetized mice by electrophysiology recording technique and pharmacological methods. RESULTS: Our results showed that cerebellar surface perfusion of etomidate significantly depressed the activity of spontaneous CSs, which exhibited decreases in the number of spikelets and the area under curve (AUC) of the CSs. The etomidate-produced inhibition of CSs activity was persisted in the presence of GABAA and glycine receptors antagonists. However, application of cannabinoid 1 (CB1) receptor antagonist, AM-251, completely blocked the etomidate-induced inhibition of CSs. Furthermore, application of the CB1 receptor agonist, WIN55212-2, induced a decrease of CSs. Moreover, in the presence of a specific protein kinase A (PKA) inhibitor, KT5720, etomidate failed to produce decreases in the spikelets number and the AUC of the spontaneous CSs. CONCLUSION: These results indicate that cerebellar surface application of etomidate facilitates CB1 receptor activity resulting in a depression of spontaneous CSs activity of Purkinje cells via PKA signaling pathway in mouse cerebellar cortex. Our present results suggest that the etomidate administration may impair the function of cerebellar cortical neuronal circuitry by inhibition of the climbing fiber - Purkinje cells synaptic transmission through activation of CB1 receptors in vivo in mice.


Subject(s)
Cannabinoids , Etomidate , Animals , Mice , Purkinje Cells , Etomidate/pharmacology , Receptors, Glycine/metabolism , Receptor, Cannabinoid, CB1/metabolism , Anesthetics, Intravenous/pharmacology , Cannabinoids/pharmacology
11.
Front Neurosci ; 17: 1195095, 2023.
Article in English | MEDLINE | ID: mdl-37383109

ABSTRACT

The investigation of brain networks and neural circuits involves the crucial aspects of observing and modulating neurophysiological activity. Recently, opto-electrodes have emerged as an efficient tool for electrophysiological recording and optogenetic stimulation, which has greatly facilitated the analysis of neural coding. However, implantation and electrode weight control have posed significant challenges in achieving long-term and multi-regional brain recording and stimulation. To address this issue, we have developed a mold and custom-printed circuit board-based opto-electrode. We report successful opto-electrode placement and high-quality electrophysiological recordings from the default mode network (DMN) of the mouse brain. This novel opto-electrode facilitates synchronous recording and stimulation in multiple brain regions and holds promise for advancing future research on neural circuits and networks.

12.
Int J Mol Sci ; 24(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37373344

ABSTRACT

Patients with vascular dementia experience more pain than healthy elders, potentially due to the presence of central neuropathic pain. However, the mechanisms underlying neuropathic pain in vascular dementia remain poorly understood, and there is currently a lack of effective treatment available. In this study, a rat model of vascular dementia was induced by permanently occluding the common carotid arteries bilaterally (2-VO). The cognitive impairments in the 2-VO rats were evaluated using the Morris Water Maze test, while HE and LBF staining were employed to assess brain tissue lesions in the hippocampal, cerebral cortex, and white matter regions known to be associated with severe memory and learning deficits. Furthermore, pain-related behavioral tests, including mechanical and thermal stimuli assessments, were conducted, and in vivo electrophysiological recordings of primary sensory neurons were performed. Compared to sham-operated and pre-operative rats, rats with vascular dementia exhibited mechanical allodynia and thermal hyperalgesia 30 days after surgery. Furthermore, in vivo electrophysiology revealed a significant increase in the occurrence of spontaneous activity of Aß- and C-fiber sensory neurons in the rat model of vascular dementia. These results indicate that neuropathic pain behaviors developed in the rat model of vascular dementia, and abnormal spontaneous discharges of primary sensory neurons may play a crucial role in the development of pain after vascular dementia.


Subject(s)
Dementia, Vascular , Neuralgia , Rats , Animals , Rats, Sprague-Dawley , Dementia, Vascular/etiology , Disease Models, Animal , Neuralgia/etiology , Neuralgia/psychology , Hyperalgesia/etiology , Sensory Receptor Cells
13.
Rev. neurol. (Ed. impr.) ; 75(11): 341-347, Dic 1, 2022. tab
Article in Spanish | IBECS | ID: ibc-212926

ABSTRACT

Introducción: Dentro de los fenotipos de polineuropatía desmielinizante inflamatoria crónica (CIDP) existe uno cuyo tiempo de evolución es menor de ocho semanas desde el inicio de los síntomas, denominado de inicio agudo (A-CIDP). Esta entidad puede confundirse con el síndrome de Guillain-Barré, variedad desmielinizante inflamatoria aguda (AIDP), lo que retrasa el inicio del tratamiento. Objetivo: Analizar las diferencias clínicas y electrofisiológicas entre A-CIDP, CIDP clásica y AIDP, con el fin de identificar factores que auxilien al diagnóstico diferencial de forma temprana. Pacientes y métodos: Se realizó un estudio transversal con pacientes atendidos en la clínica de enfermedades neuromusculares del Instituto Nacional de Neurología y Neurocirugía con diagnóstico de CIDP según criterios de la European Federation of Neurological Societies and Peripheral Nerve Society. Los pacientes con CIDP <8 semanas se catalogaron como A-CIDP y fueron comparados con pacientes diagnosticados con CIDP clásica y AIDP. Se obtuvieron y analizaron variables clínicas, paraclínicas y electrofisiológicas. Resultados: Se observaron diferencias significativas en antecedente de infección, afección de nervios del cráneo y disautonomías entre la A-CIDP y la AIDP. Los registros electrofisiológicos describieron diferencias significativas en velocidad de conducción de los nervios motores y en los registros del nervio sural, que fueron menores en el grupo de A-CIDP. Conclusión: El antecedente de infección, la afección de nervios del cráneo y las disautonomías son parámetros importantes que se debe tener en cuenta para el diagnóstico diferencial de estas entidades. El análisis electrofisiológico es similar entre la A-CIDP y la CIDP. El diagnóstico diferencial entre estos tipos de polineuropatía desmielinizante debe basarse en el juicio clínico.(AU)


Introduction: The phenotypes of chronic inflammatory demyelinating polyneuropathy (CIDP) include an acute-onset phenotype (A-CIDP) with an evolution time of less than eight weeks from the onset of symptoms. This entity can be confused with Guillain-Barré syndrome of the acute inflammatory demyelinating variety (AIDP), delaying the start of treatment. Objective: To analyze the clinical and electrophysiological differences between A-CIDP, classic CIDP and AIDP, in order to identify factors that may help in the early differential diagnosis. Patients and methods: A cross-sectional study was carried out with patients seen at the neuromuscular disease clinic of the National Institute of Neurology and Neurosurgery with a diagnosis of CIDP according to the criteria of the European Federation of Neurological Societies and Peripheral Nerve Society. Patients with CIDP <8 weeks were categorized as A-CIDP and were compared with patients diagnosed with classic CIDP and AIDP. Clinical, paraclinical and electrophysiological variables were obtained and analyzed. Results: Significant differences in history of infection, cranial nerve involvement and dysautonomia were observed between A-CIDP and AIDP. Electrophysiological recordings reported significant differences in motor nerve conduction velocity and sural nerve recordings, being lower in the A-CIDP group. Conclusion: A history of infection, cranial nerve involvement and dysautonomia are important parameters to take into account for the differential diagnosis of these entities. Electrophysiological analysis is similar between A-CIDP and CIDP. The differential diagnosis between these types of demyelinating polyneuropathy must be based on clinical assessment.(AU)


Subject(s)
Guillain-Barre Syndrome , Neurophysiology , Neuromuscular Diseases , Prognosis , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating , Neurology , Nervous System Diseases , Cross-Sectional Studies
14.
Bioengineering (Basel) ; 9(10)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36290518

ABSTRACT

Microwire microelectrode arrays (MEAs) have been a popular low-cost tool for chronic electrophysiological recordings and are an inexpensive means to record the electrical dynamics crucial to brain function. However, both the fabrication and implantation procedures for multi-MEAs on a single rodent are time-consuming and the accuracy and quality are highly manual skill-dependent. To address the fabrication and implantation challenges for microwire MEAs, (1) a computer-aided designed and 3D printed skull cap for the pre-determined implantation locations of each MEA and (2) a benchtop fabrication approach for low-cost custom microwire MEAs were developed. A proof-of-concept design of a 32-channel 4-MEA (8-wire each) recording system was prototyped and tested through Sprague Dawley rat recordings. The skull cap design, based on the CT-scan of a single rat conforms well with multiple Sprague Dawley rats of various sizes, ages, and weight with a minimal bregma alignment error (A/P axis standard error of the mean = 0.25 mm, M/L axis standard error of the mean = 0.07 mm, n = 6). The prototyped 32-channel system was able to record the spiking activities over five months. The developed benchtop fabrication method and the 3D printed skull cap implantation platform would enable neuroscience groups to conduct in-house design, fabrication, and implantation of customizable microwire MEAs at a lower cost than the current commercial options and experience a shorter lead time for the design modifications and iterations.

15.
Nanomicro Lett ; 14(1): 132, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35699782

ABSTRACT

HIGHLIGHTS: Polyimide-based flexible microneedle array (PI-MNA) electrodes realize high electrical/mechanical performance and are compatible with wearable wireless recording systems. The normalized electrode-skin interface impedance (EII) of the PI-MNA electrodes reaches 0.98 kΩ cm2 at 1 kHz and 1.50 kΩ cm2 at 10 Hz, approximately 1/250 of clinical standard electrodes. This is the first report on the clinical study of microneedle electrodes. The PI-MNA electrodes are applied to clinical long-term continuous monitoring for polysomnography. Microneedle array (MNA) electrodes are an effective solution to achieve high-quality surface biopotential recording without the coordination of conductive gel and are thus very suitable for long-term wearable applications. Existing schemes are limited by flexibility, biosafety, and manufacturing costs, which create large barriers for wider applications. Here, we present a novel flexible MNA electrode that can simultaneously achieve flexibility of the substrate to fit a curved body surface, robustness of microneedles to penetrate the skin without fracture, and a simplified process to allow mass production. The compatibility with wearable wireless systems and the short preparation time of the electrodes significantly improves the comfort and convenience of electrophysiological recording. The normalized electrode-skin contact impedance reaches 0.98 kΩ cm2 at 1 kHz and 1.50 kΩ cm2 at 10 Hz, a record low value compared to previous reports and approximately 1/250 of the standard electrodes. The morphology, biosafety, and electrical/mechanical properties are fully characterized, and wearable recordings with a high signal-to-noise ratio and low motion artifacts are realized. The first reported clinical study of microneedle electrodes for surface electrophysiological monitoring was conducted in tens of healthy and sleep-disordered subjects with 44 nights of recording (over 8 h per night), providing substantial evidence that the electrodes can be leveraged to substitute for clinical standard electrodes.

16.
Front Cell Neurosci ; 16: 863342, 2022.
Article in English | MEDLINE | ID: mdl-35431815

ABSTRACT

Long-term synaptic plasticity in the cerebellar cortex is a possible mechanism for motor learning. Previous studies have demonstrated the induction of mossy fiber-granule cell (MF-GrC) synaptic plasticity under in vitro and in vivo conditions, but the mechanisms underlying sensory stimulation-evoked long-term synaptic plasticity of MF-GrC in living animals are unclear. In this study, we investigated the mechanism of long-term potentiation (LTP) of MF-GrC synaptic transmission in the cerebellum induced by train of facial stimulation at 20 Hz in urethane-anesthetized mice using electrophysiological recording, immunohistochemistry techniques, and pharmacological methods. Blockade of GABAA receptor activity and repetitive facial stimulation at 20 Hz (240 pulses) induced an LTP of MF-GrC synapses in the mouse cerebellar cortical folium Crus II, accompanied with a decrease in paired-pulse ratio (N2/N1). The facial stimulation-induced MF-GrC LTP was abolished by either an N-methyl-D-aspartate (NMDA) receptor blocker, i.e., D-APV, or a specific GluNR2A subunit-containing NMDA receptor antagonist, PEAQX, but was not prevented by selective GluNR2B or GluNR2C/D subunit-containing NMDA receptor blockers. Application of GNE-0723, a selective and brain-penetrant-positive allosteric modulator of GluN2A subunit-containing NMDA receptors, produced an LTP of N1, accompanied with a decrease in N2/N1 ratio, and occluded the 20-Hz facial stimulation-induced MF-GrC LTP. Inhibition of nitric oxide synthesis (NOS) prevented the facial stimulation-induced MF-GrC LTP, while activation of NOS produced an LTP of N1, with a decrease in N2/N1 ratio, and occluded the 20-Hz facial stimulation-induced MF-GrC LTP. In addition, GluN2A-containing NMDA receptor immunoreactivity was observed in the mouse cerebellar granular layer. These results indicate that facial stimulation at 20 Hz induced LTP of MF-GrC synaptic transmission via the GluN2A-containing NMDA receptor/nitric oxide cascade in mice. The results suggest that the sensory stimulation-evoked LTP of MF-GrC synaptic transmission in the granular layer may play a critical role in cerebellar adaptation to native mossy fiber excitatory inputs and motor learning behavior in living animals.

17.
Biosens Bioelectron ; 206: 114122, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35245868

ABSTRACT

Intracellular recording of action potentials is an essential mean for studying disease mechanisms, and for electrophysiological studies, particularly in excitable cells as cardiomyocytes or neurons. Current strategies to obtain intracellular recordings include three-dimensional (3D) nanoelectrodes that can effectively penetrate the cell membrane and achieve high-quality intracellular recordings in a minimally invasive manner, or transient electroporation of the membrane that can yield temporary intracellular access. However, the former strategy requires a complicated and costly fabrication process, and the latter strategy suffers from high dependency on the method of application of electroporation, yielding inconsistent, suboptimal recordings. These factors hinder the high throughput use of these strategies in electrophysiological studies. In this work, we propose an advanced cell-based biosensing platform that relies on electroporation to produce consistent, high-quality intracellular recordings. The suggested universal system can be integrated with any electrode array, and it enables tunable electroporation with controllable pulse parameters, while the recorded potentials can be analyzed in real time to provide instantaneous feedback on the electroporation effectiveness. This integrated system enables the user to perform electroporation, record and assess the obtained signals in a facile manner, to ultimately achieve stable, reliable, intracellular recording. Moreover, the proposed platform relies on microelectrode arrays which are suited for large-scale production, and additional modules that are low-cost. Using this platform, we demonstrate the tuning of electroporation pulse width, pulse number, and amplitude, to achieve effective electroporation and high-quality intracellular recordings. This integrated platform has the potential to enable larger scale, repeatable, convenient, and low-cost electrophysiological studies.


Subject(s)
Biosensing Techniques , Action Potentials/physiology , Electroporation , Microelectrodes , Myocytes, Cardiac/physiology
18.
Neurosci Lett ; 777: 136584, 2022 04 23.
Article in English | MEDLINE | ID: mdl-35318076

ABSTRACT

Corticotropin releasing factor (CRF) type 2 receptor (CRF-R2) is present in climbing fiber (CF) afferents, which involves in modulating the CF-Purkinje cell (PC) synaptic transmission in cerebellar cortex. However, the role of CRF-R2 in regulating CF-PC synaptic transmission is unclear. We here investigate the role of CRF-R2 in modulating PC complex spikes (CSs) activity and CF-PC synaptic transmission using electrophysiological recording techniques and pharmacological methods. Cerebellar surface application of a selective CRF-R2 agonist, urocortin III (UCN III; 300 nM) induced an enhancement of CSs activity, which expressed an increase in number of CSs spikelets and pause of simple spike firing of cerebellar PCs in urethane anesthetized mice. The CSs activity was also enhanced by CRF (300 nM) in the presence of CRF-R1 antagonist, which was abolished by CRF-R2 antagonist. Under in vitro conditions, bath application of UCN III increased CF-PC synaptic transmission, which exhibited a time-dependent increase in amplitude of excitatory postsynaptic currents (EPSCs), accompanied by a decrease in paired-pulse ratio (PPR). In addition, bath application of CRF (100 nM) induced an increase in amplitude of EPSCs and a decrease in PPR in the absence of CRF-R1 activity. UCN-induced enhancement of CF-PC synaptic transmission was abolished by bath application of protein kinase A (PKA) inhibitor, KT5720 (100 nM), but it was not prevented by inhibiting intracellular PKA with PKI (5 µM). These results indicate that activation of CRF-R2 augments CF-PC synaptic transmission through a presynaptic PKA signaling pathway in the mouse cerebellar cortex.


Subject(s)
Corticotropin-Releasing Hormone , Purkinje Cells , Animals , Cerebellum , Corticotropin-Releasing Hormone/pharmacology , Excitatory Postsynaptic Potentials , Mice , Purkinje Cells/physiology , Synaptic Transmission
19.
Acta Physiol (Oxf) ; 234(2): e13767, 2022 02.
Article in English | MEDLINE | ID: mdl-34981885

ABSTRACT

AIM: MicroRNAs (miRNAs) are abundantly expressed in vasoactive intestinal peptide expressing (VIP+ ) interneurons and are indispensable for their functional maintenance and survival. Here, we blocked miRNA biogenesis in postmitotic VIP+ interneurons in mice by selectively ablating Dicer, an enzyme essential for miRNA maturation, to study whether ablation of VIP+ miRNA affects olfactory function and neural activity in olfactory centres such as the olfactory bulb, which contains a large number of VIP+ interneurons. METHODS: A go/no-go odour discrimination task and a food-seeking test were used to assess olfactory discrimination and olfactory detection. In vivo electrophysiological techniques were used to record single units and local field potentials. RESULTS: Olfactory detection and olfactory discrimination behaviours were impaired in VIP+ -specific Dicer-knockout mice. In vivo electrophysiological recordings in awake, head-fixed mice showed that both spontaneous and odour-evoked firing rates were decreased in mitral/tufted cells in knockout mice. The power of ongoing and odour-evoked beta local field potentials response of the olfactory bulb and anterior piriform cortex were dramatically decreased. Furthermore, the coherence of theta oscillations between the olfactory bulb and anterior piriform cortex was decreased. Importantly, Dicer knockout restricted to olfactory bulb VIP+ interneurons recapitulated the behavioural and electrophysiological results of the global knockout. CONCLUSIONS: VIP+ miRNAs are an important factor in sensory processing, affecting olfactory function and olfactory neural activity.


Subject(s)
MicroRNAs , Olfactory Bulb , Animals , Interneurons/physiology , Mice , MicroRNAs/genetics , Olfactory Bulb/physiology , Smell/physiology , Vasoactive Intestinal Peptide/genetics
20.
J Neural Eng ; 19(1)2022 01 24.
Article in English | MEDLINE | ID: mdl-34996053

ABSTRACT

Objective.Extracellular electrophysiology has been widely applied to neural circuit dissections. However, long-term multiregional recording in free-moving mice remains a challenge. Low-cost and easy-fabrication of elaborate drivable electrodes is required for their prevalence.Approach.A three-layer nested construct (outside diameter, OD ∼ 1.80 mm, length ∼10 mm, <0.1 g) was recruited as a drivable component, which consisted of an ethylene-vinyl acetate copolymer heat-shrinkable tube, non-closed loop ceramic bushing, and stainless ferrule with a bulge twining silver wire. The supporting and working components were equipped with drivable components to be assembled into a drivable microwire electrode array with a nested structure (drivable MEANS). Two drivable microwire electrode arrays were independently implanted for chronic recording in different brain areas at respective angles. An optic fiber was easily loaded into the drivable MEANS to achieve optogenetic modulation and electrophysiological recording simultaneously.Main results.The drivable MEANS had lightweight (∼0.37 g), small (∼15 mm × 15 mm × 4 mm), and low cost (⩽$64.62). Two drivable MEANS were simultaneously implanted in mice, and high-quality electrophysiological recordings could be applied ⩾5 months after implantation in freely behaving animals. Electrophysiological recordings and analysis of the lateral septum (LS) and lateral hypothalamus in food-seeking behavior demonstrated that our drivable MEANS can be used to dissect the function of neural circuits. An optical fiber-integrated drivable MEANS (∼0.47 g) was used to stimulate and record LS neurons, which suggested that changes in working components can achieve more functions than electrophysiological recordings, such as optical stimulation, drug release, and calcium imaging.Significance.Drivable MEANS is an easily fabricated, lightweight drivable microwire electrode array for multiple-region electrophysiological recording in free-moving mice. Our design is likely to be a valuable platform for both current and prospective users, as well as for developers of multifunctional electrodes for free-moving mice.


Subject(s)
Electrophysiological Phenomena , Optogenetics , Animals , Electrodes, Implanted , Electrophysiological Phenomena/physiology , Mice , Microelectrodes , Neurons/physiology , Optogenetics/methods , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL