Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.314
Filter
1.
Article in English | MEDLINE | ID: mdl-38989808

ABSTRACT

PURPOSE: To investigate axial elongation (AE) and changes in relative peripheral refraction (RPR) in anisomyopic children undergoing orthokeratology (ortho-k). METHODS: Bilateral anisomyopic children, 7-12 years of age, were treated with ortho-k. Axial length (AL) and RPR, from 30° nasal (N30°) to 30° temporal (T30°), were measured at baseline and every 6 months over the study period. AE, changes in RPR and changes in the interocular AL difference were determined over time. RESULTS: Twenty-six of the 33 subjects completed the 2-year study. The AE of the higher myopic (HM) eyes (at least 1.50 D more myopia than the other eye) (0.26 ± 0.29 mm) was significantly smaller than for the less myopic (LM) eyes (0.50 ± 0.27 mm; p = 0.003), leading to a reduction in the interocular difference in AL (p = 0.001). Baseline RPR measurements in the HM eyes were relatively more hyperopic at T30°, N20° and N30° (p ≤ 0.02) and greater myopic shifts were observed at T20° (p < 0.001), T30° (p < 0.001), N20° (p = 0.02) and N30° (p = 0.01) after lens wear. After 2 years of ortho-k lens wear, temporal-nasal asymmetry increased significantly, being more myopic at the temporal locations in both eyes (p < 0.001), while AE was associated with the change in RPR at N20° (ß = 0.134, p = 0.01). The interocular difference in AE was also positively associated with the interocular difference in RPR change at N30° (ß = 0.111, p = 0.02). CONCLUSIONS: Ortho-k slowed AE in bilateral anisomyopia, with slower growth in the HM eyes leading to a reduction in interocular AL differences. After ortho-k, RPR changed from hyperopia to myopia, with greater changes induced in the HM eyes, and slower AE was associated with a more myopic shift in RPR, especially in the nasal field of both eyes.

2.
mSystems ; : e0041624, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990071

ABSTRACT

Medium-chain carboxylates (MCCs) are used in various industrial applications. These chemicals are typically extracted from palm oil, which is deemed not sustainable. Recent research has focused on microbial chain elongation using reactors to produce MCCs, such as n-caproate (C6) and n-caprylate (C8), from organic substrates such as wastes. Even though the production of n-caproate is relatively well-characterized, bacteria and metabolic pathways that are responsible for n-caprylate production are not. Here, three 5 L reactors with continuous membrane-based liquid-liquid extraction (i.e., pertraction) were fed ethanol and acetate and operated for an operating period of 234 days with different operating conditions. Metagenomic and metaproteomic analyses were employed. n-Caprylate production rates and reactor microbiomes differed between reactors even when operated similarly due to differences in H2 and O2 between the reactors. The complete reverse ß-oxidation (RBOX) pathway was present and expressed by several bacterial species in the Clostridia class. Several Oscillibacter spp., including Oscillibacter valericigenes, were positively correlated with n-caprylate production rates, while Clostridium kluyveri was positively correlated with n-caproate production. Pseudoclavibacter caeni, which is a strictly aerobic bacterium, was abundant across all the operating periods, regardless of n-caprylate production rates. This study provides insight into microbiota that are associated with n-caprylate production in open-culture reactors and provides ideas for further work.IMPORTANCEMicrobial chain elongation pathways in open-culture biotechnology systems can be utilized to convert organic waste and industrial side streams into valuable industrial chemicals. Here, we investigated the microbiota and metabolic pathways that produce medium-chain carboxylates (MCCs), including n-caproate (C6) and n-caprylate (C8), in reactors with in-line product extraction. Although the reactors in this study were operated similarly, different microbial communities dominated and were responsible for chain elongation. We found that different microbiota were responsible for n-caproate or n-caprylate production, and this can inform engineers on how to operate the systems better. We also observed which changes in operating conditions steered the production toward and away from n-caprylate, but more work is necessary to ascertain a mechanistic understanding that could be predictive. This study provides pertinent research questions for future work.

3.
Plant Physiol Biochem ; 214: 108923, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39002308

ABSTRACT

Jasmonates are growth regulators that play a key role in flower development, fruit ripening, root growth, and plant defence. The study explores the coordination of floral organ maturation to ensure proper flower opening for pollination and fertilization. A new mutant (jar1b) was discovered, lacking petal elongation and flower opening but showing normal pistil and stamen development, leading to parthenocarpic fruit development. The mutation also enhanced the elongation of roots while reducing the formation of root hairs. BSA sequencing showed that jar1b is a missense mutation in the gene CpJAR1B, which encodes the enzyme that catalyzes the conjugation between JA and the amino acid isoleucine. The loss of function mutation in CpJAR1B produced a deficiency in biologically active (+) -7-iso-jasmonoyl-L-isoleucine (JA-Ile), which was not complemented by the paralogous gene CpJAR1A or any other redundant gene. Exogenous application of methyl jasmonate (MeJA) demonstrated that jar1b is partially insensitive to JA in both flowers and roots. Further experimentation involving the combination of JA-Ile deficient and ethylene-deficient, and ET insensitive mutations in double mutants revealed that CpJAR1B mediated ET action in female petal maturation and flower opening, but JA and ET have independent additive effects as negative regulators of the set and development of squash fruits. CpJAR1B also regulated the aperture of male flowers in an ethylene-independent manner. The root phenotype of jar1b and effects of external MeJA treatments indicated that CpJAR1B has a dual role in root development, inhibiting the elongation of primary and secondary roots, but promoting the formation of root hairs.

4.
J Biol Chem ; : 107566, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002676

ABSTRACT

MLL-fusion proteins (MLL-FPs) are believed to maintain gene activation and induce mixed lineage leukemia (MLL) through aberrantly stimulating transcriptional elongation, but the underlying mechanisms are incompletely understood. Here we show that both MLL1 and AF9, one of the major fusion partners of MLL1, mainly occupy promoters and distal intergenic regions, exhibiting chromatin occupancy patterns resembling that of RNA polymerase II (Pol II) in HEL, a human cell line without MLL1 arrangement (MLLr). MLL1 and AF9 only co-regulate over a dozen genes despite of their co-occupancy on thousands of genes. They do not interact with each other, and their chromatin occupancy is also independent of each other. Moreover, AF9 deficiency in HEL cells decreases global TBP occupancy while decreases CDK9 occupancy on a small number of genes, suggesting an accessory role of AF9 in CDK9 recruitment and a possible major role in transcriptional initiation via initiation factor recruitment. Importantly, MLL1 and MLL-AF9 occupy promoters and distal intergenic regions, exhibiting identical chromatin occupancy patterns in MLL cells, and MLL-AF9 deficiency decreased occupancy of TBP and TFIIE on major target genes of MLL-AF9 in iMA9, a murine acute myeloid leukemia (AML) cell line inducibly expressing MLL-AF9, suggesting that it can also regulate initiation. These results suggest that there is no difference between MLL1 and MLL-AF9 with respect to location and size of occupancy sites, contrary to what people have believed, and that MLL-AF9 may also regulate transcriptional initiation in addition to widely-believed elongation.

5.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000515

ABSTRACT

Advanced glycation end-products (AGEs) form through non-enzymatic glycation of various proteins. Optic nerve degeneration is a frequent complication of diabetes, and retinal AGE accumulation is strongly linked to the development of diabetic retinopathy. Type 2 diabetes mellitus is a major risk factor for Alzheimer's disease (AD), with patients often exhibiting optic axon degeneration in the nerve fiber layer. Notably, a gap exists in our understanding of how AGEs contribute to neuronal degeneration in the optic nerve within the context of both diabetes and AD. Our previous work demonstrated that glyceraldehyde (GA)-derived toxic advanced glycation end-products (TAGE) disrupt neurite outgrowth through TAGE-ß-tubulin aggregation and tau phosphorylation in neural cultures. In this study, we further illustrated GA-induced suppression of optic nerve axonal elongation via abnormal ß-tubulin aggregation in mouse retinas. Elucidating this optic nerve degeneration mechanism holds promise for bridging the knowledge gap regarding vision loss associated with diabetes mellitus and AD.


Subject(s)
Axons , Glycation End Products, Advanced , Optic Nerve , Tubulin , Animals , Tubulin/metabolism , Glycation End Products, Advanced/metabolism , Mice , Optic Nerve/metabolism , Optic Nerve/pathology , Optic Nerve/drug effects , Axons/metabolism , Axons/drug effects , Axons/pathology , Mice, Inbred C57BL , Protein Aggregates/drug effects
6.
Plants (Basel) ; 13(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38999661

ABSTRACT

Plant density is increasing in modern olive orchards to improve yields and facilitate mechanical harvesting. However, greater density can reduce light quantity and modify its quality. The objective was to evaluate plant morphology, biomass, and photosynthetic pigments under different red/far-red ratios and photosynthetically active radiation (PAR) combinations in an olive cultivar common to super-high-density orchards. In a greenhouse, young olive trees (cv. Arbequina) were exposed to low (L) or high (H) PAR with or without lateral FR supplementation (L+FR, L-FR, H+FR, H-FR) using neutral-density shade cloth and FR light-emitting diode (LED) modules. Total plant and individual organ biomass were much lower in plants under low PAR than under high PAR, with no response to +FR supplementation. In contrast, several plant morphological traits, such as main stem elongation, individual leaf area, and leaf angle, did respond to both low PAR and +FR. Total chlorophyll content decreased with +FR when PAR was low, but not when PAR was high (i.e., a significant FR*PAR interaction). When evaluating numerous plant traits together, a greater response to +FR under low PAR than under high PAR appeared to occur. These findings suggest that consideration of light quality in addition to quantity facilitates a fuller understanding of olive tree responses to a light environment. The +FR responses found here could lead to changes in hedgerow architecture and light distribution within the hedgerow.

7.
Oman Med J ; 39(2): e616, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38983714

ABSTRACT

Performing classical vaginal hysterectomy on patients with pelvic organ prolapse and cervical elongation can be challenging. Despite the difficulties and risks, it remains the safest and the best available option. We present an illustrated case of step-by-step vaginal hysterectomy management of pelvic organ prolapse with cervical elongation in a 42-year-old woman.

8.
Ophthalmology ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972357

ABSTRACT

PURPOSE: To investigate the myopia control efficacy of novel Lenslet-ARray-Integrated (LARI) spectacle lenses with positive (PLARI) and negative (NLARI) power lenslets worn for one year in myopic children. DESIGN: Randomized, double-masked, controlled clinical trial. PARTICIPANTS: A total of 240 children, aged 6 to 12 years, with spherical equivalent refraction (SER) between -4.00 and -1.00 diopter (D), astigmatism of 1.50 D or less, and anisometropia of 1.00 D or less. METHODS: Participants were assigned randomly in a 1:1:1 ratio to PLARI, NLARI, and a control (single-vision (SV)) groups. Cycloplegic autorefraction and axial length were measured at baseline and 6-month intervals after lens wear. MAIN OUTCOME MEASURES: Changes in SER, axial elongation (AE), and differences between groups. RESULTS: After 1-year, SER changes and AE in the PLARI and NLARI groups were significantly less than those in the SV group (SER: -0.30 ± 0.48 D, -0.21 ± 0.35 D, -0.66 ± 0.40 D; AE: 0.19 ± 0.20 mm, 0.17 ± 0.14 mm, 0.34 ± 0.18 mm, respectively) (all P < 0.001). There were no significant differences in SER changes and AE between PLARI and NLARI groups (P = 0.54 and P = 1.00, respectively). Younger age was associated with more rapid SER increase and larger AE in the SV (r = 0.40, P < 0.001 and r = -0.59, P < 0.001, respectively) and PLARI (r= 0.46, P < 0.001 and r = -0.52, P < 0.001, respectively) groups, but not in the NLARI group (r = -0.002, P = 0.98 and r = -0.08, P = 0.48, respectively). CONCLUSIONS: Compared with the SV group, both PLARI and NARI groups showed significantly slower myopia progression in terms of SER and axial elongation. Faster myopia progression, in terms of both SER and AE, was associated with younger age in the SV and PLARI groups, but not in the NLARI group.

9.
Proc Natl Acad Sci U S A ; 121(29): e2321017121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38990947

ABSTRACT

RNA polymerases (RNAPs) carry out the first step in the central dogma of molecular biology by transcribing DNA into RNA. Despite their importance, much about how RNAPs work remains unclear, in part because the small (3.4 Angstrom) and fast (~40 ms/nt) steps during transcription were difficult to resolve. Here, we used high-resolution nanopore tweezers to observe the motion of single Escherichia coli RNAP molecules as it transcribes DNA ~1,000 times improved temporal resolution, resolving single-nucleotide and fractional-nucleotide steps of individual RNAPs at saturating nucleoside triphosphate concentrations. We analyzed RNAP during processive transcription elongation and sequence-dependent pausing at the yrbL elemental pause sequence. Each time RNAP encounters the yrbL elemental pause sequence, it rapidly interconverts between five translocational states, residing predominantly in a half-translocated state. The kinetics and force-dependence of this half-translocated state indicate it is a functional intermediate between pre- and post-translocated states. Using structural and kinetics data, we show that, in the half-translocated and post-translocated states, sequence-specific protein-DNA interaction occurs between RNAP and a guanine base at the downstream end of the transcription bubble (core recognition element). Kinetic data show that this interaction stabilizes the half-translocated and post-translocated states relative to the pre-translocated state. We develop a kinetic model for RNAP at the yrbL pause and discuss this in the context of key structural features.


Subject(s)
DNA-Directed RNA Polymerases , Escherichia coli , Nanopores , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Transcription, Genetic , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Optical Tweezers , Kinetics , Nucleotides/metabolism
10.
Planta ; 260(2): 42, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958765

ABSTRACT

MAIN CONCLUSION: Ambient concentrations of atmospheric nitrogen dioxide (NO2) inhibit the binding of PIF4 to promoter regions of auxin pathway genes to suppress hypocotyl elongation in Arabidopsis. Ambient concentrations (10-50 ppb) of atmospheric nitrogen dioxide (NO2) positively regulate plant growth to the extent that organ size and shoot biomass can nearly double in various species, including Arabidopsis thaliana (Arabidopsis). However, the precise molecular mechanism underlying NO2-mediated processes in plants, and the involvement of specific molecules in these processes, remain unknown. We measured hypocotyl elongation and the transcript levels of PIF4, encoding a bHLH transcription factor, and its target genes in wild-type (WT) and various pif mutants grown in the presence or absence of 50 ppb NO2. Chromatin immunoprecipitation assays were performed to quantify binding of PIF4 to the promoter regions of its target genes. NO2 suppressed hypocotyl elongation in WT plants, but not in the pifq or pif4 mutants. NO2 suppressed the expression of target genes of PIF4, but did not affect the transcript level of the PIF4 gene itself or the level of PIF4 protein. NO2 inhibited the binding of PIF4 to the promoter regions of two of its target genes, SAUR46 and SAUR67. In conclusion, NO2 inhibits the binding of PIF4 to the promoter regions of genes involved in the auxin pathway to suppress hypocotyl elongation in Arabidopsis. Consequently, PIF4 emerges as a pivotal participant in this regulatory process. This study has further clarified the intricate regulatory mechanisms governing plant responses to environmental pollutants, thereby advancing our understanding of how plants adapt to changing atmospheric conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Basic Helix-Loop-Helix Transcription Factors , Gene Expression Regulation, Plant , Hypocotyl , Nitrogen Dioxide , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Hypocotyl/growth & development , Hypocotyl/genetics , Hypocotyl/drug effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Nitrogen Dioxide/pharmacology , Nitrogen Dioxide/metabolism , Promoter Regions, Genetic/genetics , Indoleacetic Acids/metabolism , Mutation
11.
Article in English | MEDLINE | ID: mdl-38972946

ABSTRACT

Propylparaben (PrP) and dichloropropylparaben (diClPrP) are found in soil worldwide, mainly due to the incorporation of urban sludge in crop soils and the use of non-raw wastewater for irrigation. Studies on the adverse effects of PrP on plants are incipient and not found for diClPrP. PrP and diClPrP were evaluated at concentrations 4, 40, and 400 µg/L for their phytotoxic potential to seeds of Allium cepa (onion), Cucumis sativus (cucumber), Lycopersicum sculentum (tomato), and Lactuca sativa (lettuce), and cytotoxic, genotoxic potential, and for generating oxygen-reactive substances in root meristems of A. cepa bulbs. PrP and diClPrP caused a significant reduction in seed root elongation in all four species. In A. cepa bulb roots, PrP and diClPrP resulted in a high prophase index; in addition, PrP at 400 µg/L and diClPrP at the three concentrations significantly decreased cell proliferation and caused alterations in a significant number of cells. Furthermore, diClPrP concentrations induced the development of hooked roots in onion bulbs. The two chemical compounds caused significant changes in the modulation of catalase, ascorbate peroxidase, and guaiacol peroxidase, disarming the root meristems against hydroxyl radicals and superoxides. Therefore, PrP and diClPrP were phytotoxic and cytogenotoxic to the species tested, proving dangerous to plants.

12.
Heliyon ; 10(12): e33341, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022009

ABSTRACT

Purpose: To investigate the inhibition of myopia progression and axial elongation in children wearing orthokeratology (OK) lenses, as well as to evaluate the status of corneal reshaping, this study explores the relationship between changes in central corneal curvature (K-value) and e-value induced by OK lenses and axial elongation. Methods: In this study, it is planned to select children aged 8-15 who wear orthokeratology lenses at the Pediatric Ophthalmology and Strabismus Clinic of the Second Affiliated Hospital of Dalian Medical University. All children will undergo slit lamp examination, visual acuity assessment, computerized refraction, intraocular pressure measurement, biometry, and corneal topography examination before lens wear and at 1 month, 3 months, and 6 months after lens wear in the pediatric ophthalmology clinic. Based on age (lower age group (8 < age ≤12 years); higher age group (12 < age ≤15 years)) and baseline equivalent spherical (SE) value (mild myopia group (-1.00 D < SE ≤ -3.25D); moderate myopia group (-3.25 D < SE ≤ -6.00 D)), four groups will be formed by pairing these factors. Suitable data will be selected according to inclusion and exclusion criteria, and different groups will be included. Data will be organized, and statistical analysis will be performed using SPSS software to obtain the results. The expected results will be discussed and analyzed. Results: After wearing OK lenses, all four groups achieved good visual acuity at follow-up. At 6 months, there were no significant differences in visual acuity among the four groups (P = 0.149, >0.05). There were no significant differences in refractive error among the four groups (P = 0.066, >0.05). Baseline axial length differed significantly among the four groups (P = 0.000, <0.001), with the LM group having longer axial length than the LL group (P < 0.001, paired samples t-test), and the HM group having longer axial length than the HL group (P < 0.001, paired samples t-test). However, there were no significant differences in axial length change compared to baseline among the groups at 1 month, 3 months, and 6 months (P 1 = 0.053; P 3 = 0.557; P 6 = 0.329, >0.05). Significant differences were observed in corneal flat K-value change compared to baseline among the four groups at 1 month, 3 months, and 6 months (P 1 = 0.001, P 3 = 0.001, P 6 = 0.004, <0.05). There were no significant differences in e-value change among the groups at 1 and 3 months (P 1 = 0.205, P 3 = 0.252, >0.05), but significant differences were found in e-value change compared to baseline at 6 months (P 6 = 0.010, <0.05). Multiple regression analysis with changes in central corneal flat K-value and e-value as independent variables and axial elongation as the dependent variable showed a correlation between e-value change at 6 months and axial elongation (P = 0.004, <0.05), indicating a negative correlation. Conclusion: Orthokeratology (OK) lenses effectively improve myopic children's vision by reshaping the cornea, leading to reduced central corneal curvature and flattening of its anterior surface. The effectiveness of OK lenses is not significantly affected by age or initial myopia severity. Children of varying ages and myopia levels experience similar levels of axial length control with OK lens wear. Changes in corneal shape due to OK lenses affect axial elongation, with greater changes in corneal morphology associated with smaller increases in axial length.

13.
Methods Mol Biol ; 2819: 381-419, 2024.
Article in English | MEDLINE | ID: mdl-39028516

ABSTRACT

Bacterial chromosomal DNA is structured and compacted by proteins known as bacterial chromatin proteins (i.e., nucleoid-associated proteins or NAPs). DNA-dependent RNA polymerase (RNAP) must frequently interact with bacterial chromatin proteins because they often bind DNA genome-wide. In some cases, RNAP must overcome barriers bacterial chromatin proteins impose on transcription. One key bacterial chromatin protein in Escherichia coli that influences transcription is the histone-like nucleoid structuring protein, H-NS. H-NS binds to DNA and forms nucleoprotein filaments. To investigate the effect of H-NS filaments on RNAP elongation, we developed an in vitro transcription assay to monitor RNAP progression on a DNA template bound by H-NS. In this method, initiation and elongation by RNAP are uncoupled by first initiating transcription in the presence of only three ribonucleoside triphosphates (rNTPs) to halt elongation just downstream of the promoter. Before elongation is restarted by addition of the fourth NTP, an H-NS filament is formed on the DNA so that transcript elongation occurs on an H-NS nucleoprotein filament template. Here, we provide detailed protocols for performing in vitro transcription through H-NS filaments, analysis of the transcription products, and visualization of H-NS filament formation on DNA by electrophoretic mobility shift assay (EMSA). These methods enable insight into how H-NS affects RNAP transcript elongation and provide a starting point to determine effects of other bacterial chromatin proteins on RNAP elongation.


Subject(s)
DNA-Directed RNA Polymerases , Escherichia coli Proteins , Escherichia coli , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Transcription, Genetic , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Elongation, Genetic , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Fimbriae Proteins/metabolism , Fimbriae Proteins/genetics
14.
Open Biol ; 14(7): 240139, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955223

ABSTRACT

The vertebrate organizer plays a crucial role in building the main (antero-posterior) axis of the embryo: it neuralizes the surrounding ectoderm, and is the site of emigration for cells making axial and paraxial mesendoderm during elongation. The chick organizer becomes a stem zone at the onset of elongation; it stops recruiting cells from the neighbouring ectoderm and generates all its derivatives from the small number of resident cells it contains at the end of gastrulation stages. Nothing is known about the molecular identity of this stem zone. Here, we specifically labelled long-term resident cells of the organizer and compared their RNA-seq profile to that of the neighbouring cell populations. Screening by reverse transcription-polymerase chain reaction and in situ hybridization identified four genes (WIF1, PTGDS, ThPO and UCKL1) that are upregulated only in the organizer region when it becomes a stem zone and remain expressed there during axial elongation. In experiments specifically labelling the resident cells of the mature organizer, we show that only these cells express these genes. These findings molecularly define the organizer as a stem zone and offer a key to understanding how this zone is set up, the molecular control of its cells' behaviour and the evolution of axial growth zones.


Subject(s)
Gene Expression Regulation, Developmental , Organizers, Embryonic , Animals , Chick Embryo , Organizers, Embryonic/metabolism , Body Patterning/genetics , Gastrulation/genetics , Transcriptome , Gene Expression Profiling
15.
Structure ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38959899

ABSTRACT

LoaP is a member of the universal NusG protein family. Previously, we reported that unlike other characterized homologs, LoaP binds RNA sequence-specifically, recognizing a stem-loop in the 5'-untranslated region of operons it regulates. To elucidate how this NusG homolog acquired this ability, we now determined the co-crystal structure of Thermoanaerobacter pseudethanolicus LoaP bound to its cognate 26-nucleotide dfn RNA element. Our structure reveals that the LoaP C-terminal KOW domain recognizes the helical portion of the RNA by docking into a broadened major groove, while a protruding ß-hairpin of the N-terminal NusG-like domain binds the UNCG tetraloop capping the stem-loop. Major-groove RNA recognition is unusual and is made possible by conserved features of the dfn hairpin. Superposition with structures of other NusG proteins implies that LoaP can bind concurrently to the dfn RNA and the transcription elongation complex, suggesting a new level of co-transcriptional regulation by proteins of this conserved family.

16.
J Integr Plant Biol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961693

ABSTRACT

Dwarfing is a pivotal agronomic trait affecting both yield and quality. Citrus species exhibit substantial variation in plant height, among which internode length is a core element. However, the molecular mechanism governing internode elongation remains unclear. Here, we unveiled that the transcriptional cascade consisting of B-BOX DOMAIN PROTEIN 22 (BBX22) and ELONGATED HYPOCOTYL 5 (HY5) finely tunes plant height and internode elongation in citrus. Loss-of-function mutations of BBX22 in an early-flowering citrus (Citrus hindsii "SJG") promoted internode elongation and reduced pigment accumulation, whereas ectopic expression of BBX22 in SJG, sweet orange (C. sinensis), pomelo (C. maxima) or heterologous expression of BBX22 in tomato (Solanum lycopersicum) significantly decreased internode length. Furthermore, exogenous application of gibberellin A3 (GA3) rescued the shortened internode and dwarf phenotype caused by BBX22 overexpression. Additional experiments revealed that BBX22 played a dual role in regulation internode elongation and pigmentation in citrus. On the one hand, it directly bound to and activated the expression of HY5, GA metabolism gene (GA2 OXIDASE 8, GA2ox8), carotenoid biosynthesis gene (PHYTOENE SYNTHASE 1, PSY1) and anthocyanin regulatory gene (Ruby1, a MYB DOMAIN PROTEIN). On the other hand, it acted as a cofactor of HY5, enhancing the ability of HY5 to regulate target genes expression. Together, our results reveal the critical role of the transcriptional cascade consisting of BBX22 and HY5 in controlling internode elongation and pigment accumulation in citrus. Unraveling the crosstalk regulatory mechanism between internode elongation and fruit pigmentation provides key genes for breeding of novel types with both dwarf and health-beneficial fortification in citrus.

17.
Vet Parasitol ; 331: 110246, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39018906

ABSTRACT

Bites of haematophagous ectoparasites cause mechanical injuries and histopathological changes in their hosts' hides and skins whose resultant leathers become unsuitable for certain leather products. The effects of tick bites on the wellbeing of their hosts are known, however, knowledge of their effects on the quality of leathers is scarce. This work investigated the effects of tick bites on the histopathology of skin and the percentage elongation at break (PEB) of shoe upper leathers produced from the skins of Amblyomma variegatum infested Yankasa sheep. A total of nine apparently healthy Yankasa sheep were selectively purchased from the open market and acclimatized for four weeks in the laboratory. Three animals in each of group 1 and 2 were infested with 40 nymphs and 20 adults of Am. variegatum respectively. Group three animals served as uninfested control. All animals were euthanized after the ticks were fully engorged and detached. Skin biopsies at tick attachment points and the uninfested control were taken from flayed skins and processed for histopathological examination. All skins were processed into finished leathers and their PEB determined. Histopathological studies revealed keratinization in all Am. variegatum infested sheep skins, while the un-infested control skins were normal. Mean PEB (%) of leathers were 21.41±3.33SE (nymphs), 36.73±4.44SE (adults) and 47.83±2.78SE (control). Bites of Am. variegatum cause histopathological changes in Yankasa sheep skins that significantly (p = 0.006) reduce the PEB of resultant leathers to less than the acceptable minimum standard of 40 % whose leathers are classified as rejects. In this study, skin of Yankasa sheep infested by nymphs and adults of Am. variegatum ticks resulted in low quality leathers that are unsuitable for standard leather products production and are also of low market value due to keratinization. Sustained efforts need to be undertaken to increase the awareness on the negative impact of tick bites on leather products by encouraging livestock farmers to engage in early treatment of animals infested with ticks.

18.
World J Microbiol Biotechnol ; 40(8): 251, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910228

ABSTRACT

Genetic diversity in Sclerotium rolfsii is useful for understanding its population structure, identifying different mycelial compatibility groups (MCGs), and developing targeted strategies for disease management in affected crops. In our study, a comprehensive genetic analysis was conducted on 50 isolates of S. rolfsii, collected from various geographic regions and host plants. Two specific genes, TEF1α and RPB2, were utilized to assess the genetic diversity and relationships among these isolates. Notably, out of 1225 pairings examined, only 154 exhibited a compatible reaction, while the majority displayed antagonistic reactions, resulting in the formation of a barrier zone. The isolates were grouped into 10 distinct MCGs. These MCGs were further characterized using genetic sequencing. TEF1α sequences distinguished the isolates into 17 distinct clusters, and RPB2 sequences classified them into 20 clusters. Some MCGs shared identical gene sequences within each gene, while others exhibited unique sequences. Intriguingly, when both TEF1α and RPB2 sequences were combined, all 10 MCGs were effectively differentiated, even those that appeared identical with single-gene analysis. This combined approach provided a comprehensive understanding of the genetic diversity and relationships among the S. rolfsii isolates, allowing for precise discrimination between different MCGs. The results shed light on the population structure and genetic variability within this plant pathogenic fungus, providing valuable insights for disease management and control strategies. This study highlights the significance of comprehending the varied virulence characteristics within S. rolfsii isolates, categorizing them into specific virulence groups based on disease severity index (DSI) values. The association with MCGs provides additional insights into the genetic underpinnings of virulence in this pathogen. Furthermore, the identification of geographical patterns in virulence implies the influence of region-specific factors, with potential implications for disease control and crop protection strategies.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [G. M. Sandeep] Last name [Kumar]. Author 2 Given name: [Praveen Kumar] Last name [Singh]. Also, kindly confirm the details in the metadata are correct.I confirm that the given names are accurate and presented in the correct sequence.


Subject(s)
Basidiomycota , Genetic Variation , Multilocus Sequence Typing , Phylogeny , Plant Diseases , Plant Diseases/microbiology , Basidiomycota/genetics , Basidiomycota/isolation & purification , Basidiomycota/classification , Mycelium/genetics , Fungal Proteins/genetics , DNA, Fungal/genetics , Crops, Agricultural/microbiology
19.
Front Plant Sci ; 15: 1397337, 2024.
Article in English | MEDLINE | ID: mdl-38835859

ABSTRACT

Currently, the control of rhizosphere selection on farms has been applied to achieve enhancements in phenotype, extending from improvements in single root characteristics to the dynamic nature of entire crop systems. Several specific signals, regulatory elements, and mechanisms that regulate the initiation, morphogenesis, and growth of new lateral or adventitious root species have been identified, but much more work remains. Today, phenotyping technology drives the development of root traits. Available models for simulation can support all phenotyping decisions (root trait improvement). The detection and use of markers for quantitative trait loci (QTLs) are effective for enhancing selection efficiency and increasing reproductive genetic gains. Furthermore, QTLs may help wheat breeders select the appropriate roots for efficient nutrient acquisition. Single-nucleotide polymorphisms (SNPs) or alignment of sequences can only be helpful when they are associated with phenotypic variation for root development and elongation. Here, we focus on major root development processes and detail important new insights recently generated regarding the wheat genome. The first part of this review paper discusses the root morphology, apical meristem, transcriptional control, auxin distribution, phenotyping of the root system, and simulation models. In the second part, the molecular genetics of the wheat root system, SNPs, TFs, and QTLs related to root development as well as genome editing (GE) techniques for the improvement of root traits in wheat are discussed. Finally, we address the effect of omics strategies on root biomass production and summarize existing knowledge of the main molecular mechanisms involved in wheat root development and elongation.

20.
Physiother Res Int ; 29(3): e2107, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38873741

ABSTRACT

OBJECTIVE: This study aimed to evaluate the intrarater and interrater reliability of measuring Achilles tendon (AT) thickness using a digital caliper in patients with knee osteoarthritis. METHODS: A cross-sectional survey was conducted at the Physiotherapy Department of Rabia Moon Hospital, involving the recruitment of 61 patients with knee osteoarthritis. Measurements were taken in millimeters at a 90-degree angle, approximately 5 cm from the attachment to the calcaneus, precisely where the ankle joint joins the medial malleolus. Two physical therapists conducted two testing sessions, separated by 7 days, to assess both the intrarater and interrater reliability of the digital caliper. During the second session, two raters simultaneously assessed the patients' responses on the digital caliper. The study analyzed reliability indices, including the Intraclass Correlation Coefficient (ICC) and Bland-Altman plot. RESULTS: The study found high intrarater reliability for the digital caliper, with an ICC of 0.96 (95% confidence interval: 0.22, 0.99). For interrater reliability, the ICC was 0.98 (95% CI: 0.96, 0.98) in patients with knee OA. Additionally, both interrater and intrarater agreement for measuring AT thickness with the digital caliper fell within acceptable limits on 95% of occasions, as indicated by the Limits of Agreement values: 0.32 to -0.53 mm for interrater agreement and -0.35 to -0.04 mm for intrarater agreement. CONCLUSIONS: Digital Calipers have been found to provide excellent intrarater and interrater reliability when used to measure AT thickness in patients with knee osteoarthritis (OA).


Subject(s)
Achilles Tendon , Observer Variation , Osteoarthritis, Knee , Humans , Male , Female , Cross-Sectional Studies , Reproducibility of Results , Middle Aged , Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...