Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
Ann N Y Acad Sci ; 1536(1): 107-121, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837424

ABSTRACT

One feature of animal wings is their embedded mechanosensory system that can support flight control. Insect wings are particularly interesting as they are highly deformable yet the actuation is limited to the wing base. It is established that strain sensors on insect wings can directly mediate reflexive control; however, little is known about airflow sensing by insect wings. What information can flow sensors capture and how can flow sensing benefit flight control? Here, we use the dragonfly (Sympetrum striolatum) as a model to explore the function of wing sensory bristles in the context of flight control. Combining our detailed anatomical reconstructions of both the sensor microstructures and wing architecture, we used computational fluid dynamics simulations to ask the following questions. (1) Are there strategic locations on wings that sample flow for estimating aerodynamically relevant parameters such as the local effective angle of attack? (2) Is the sensory bristle distribution on dragonfly wings optimal for flow sensing? (3) What is the aerodynamic effect of microstructures found near the sensory bristles on dragonfly wings? We discuss the benefits of flow sensing for flexible wings and how the evolved sensor placement affects information encoding.


Subject(s)
Flight, Animal , Odonata , Wings, Animal , Animals , Wings, Animal/physiology , Wings, Animal/anatomy & histology , Odonata/physiology , Flight, Animal/physiology , Biomechanical Phenomena/physiology , Hydrodynamics , Computer Simulation
2.
Biomimetics (Basel) ; 9(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38667259

ABSTRACT

Soft robotics is closely related to embodied intelligence in the joint exploration of the means to achieve more natural and effective robotic behaviors via physical forms and intelligent interactions. Embodied intelligence emphasizes that intelligence is affected by the synergy of the brain, body, and environment, focusing on the interaction between agents and the environment. Under this framework, the design and control strategies of soft robotics depend on their physical forms and material properties, as well as algorithms and data processing, which enable them to interact with the environment in a natural and adaptable manner. At present, embodied intelligence has comprehensively integrated related research results on the evolution, learning, perception, decision making in the field of intelligent algorithms, as well as on the behaviors and controls in the field of robotics. From this perspective, the relevant branches of the embodied intelligence in the context of soft robotics were studied, covering the computation of embodied morphology; the evolution of embodied AI; and the perception, control, and decision making of soft robotics. Moreover, on this basis, important research progress was summarized, and related scientific problems were discussed. This study can provide a reference for the research of embodied intelligence in the context of soft robotics.

4.
Interface Focus ; 13(3): 20220067, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37065267

ABSTRACT

The embryological view of development is that coordinated gene expression, cellular physics and migration provides the basis for phenotypic complexity. This stands in contrast with the prevailing view of embodied cognition, which claims that informational feedback between organisms and their environment is key to the emergence of intelligent behaviours. We aim to unite these two perspectives as embodied cognitive morphogenesis, in which morphogenetic symmetry breaking produces specialized organismal subsystems which serve as a substrate for the emergence of autonomous behaviours. As embodied cognitive morphogenesis produces fluctuating phenotypic asymmetry and the emergence of information processing subsystems, we observe three distinct properties: acquisition, generativity and transformation. Using a generic organismal agent, such properties are captured through models such as tensegrity networks, differentiation trees and embodied hypernetworks, providing a means to identify the context of various symmetry-breaking events in developmental time. Related concepts that help us define this phenotype further include concepts such as modularity, homeostasis and 4E (embodied, enactive, embedded and extended) cognition. We conclude by considering these autonomous developmental systems as a process called connectogenesis, connecting various parts of the emerged phenotype into an approach useful for the analysis of organisms and the design of bioinspired computational agents.

6.
Front Robot AI ; 9: 1027389, 2022.
Article in English | MEDLINE | ID: mdl-36545277
7.
Front Robot AI ; 9: 930405, 2022.
Article in English | MEDLINE | ID: mdl-35899076

ABSTRACT

The mechanical properties of a sensor strongly affect its tactile sensing capabilities. By exploiting tactile filters, mechanical structures between the sensing unit and the environment, it is possible to tune the interaction dynamics with the surrounding environment. But how can we design a good tactile filter? Previously, the role of filters' geometry and stiffness on the quality of the tactile data has been the subject of several studies, both implementing static filters and adaptable filters. State-of-the-art works on online adaptive stiffness highlight a crucial role of the filters' mechanical behavior in the structure of the recorded tactile data. However, the relationship between the filter's and the environment's characteristics is still largely unknown. We want to show the effect of the environment's mechanical properties on the structure of the acquired tactile data and the performance of a classification task while testing a wide range of static tactile filters. Moreover, we fabricated the filters using four materials commonly exploited in soft robotics, to merge the gap between tactile sensing and robotic applications. We collected data from the interaction with a standard set of twelve objects of different materials, shapes, and textures, and we analyzed the effect of the filter's material on the structure of such data and the performance of nine common machine learning classifiers, both considering the overall test set and the three individual subsets made by all objects of the same material. We showed that depending on the material of the test objects, there is a drastic change in the performance of the four tested filters, and that the filter that matches the mechanical properties of the environment always outperforms the others.

8.
Artif Life ; 28(3): 348-368, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35881682

ABSTRACT

Bacterial chemotaxis in unicellular Escherichia coli, the simplest biological creature, enables it to perform effective searching behaviour even with a single sensor, achieved via a sequence of "tumbling" and "swimming" behaviours guided by gradient information. Recent studies show that suitable random walk strategies may guide the behaviour in the absence of gradient information. This article presents a novel and minimalistic biologically inspired search strategy inspired by bacterial chemotaxis and embodied intelligence concept: a concept stating that intelligent behaviour is a result of the interaction among the "brain," body morphology including the sensory sensitivity tuned by the morphology, and the environment. Specifically, we present bacterial chemotaxis inspired searching behaviour with and without gradient information based on biological fluctuation framework: a mathematical framework that explains how biological creatures utilize noises in their behaviour. Via extensive simulation of a single sensor mobile robot that searches for a moving target, we will demonstrate how the effectiveness of the search depends on the sensory sensitivity and the inherent random walk strategies produced by the brain of the robot, comprising Ballistic, Levy, Brownian, and Stationary search. The result demonstrates the importance of embodied intelligence even in a behaviour inspired by the simplest creature.


Subject(s)
Escherichia coli , Intelligence , Computer Simulation , Models, Biological
9.
Front Robot AI ; 9: 797393, 2022.
Article in English | MEDLINE | ID: mdl-35712548

ABSTRACT

Simultaneously evolving morphologies (bodies) and controllers (brains) of robots can cause a mismatch between the inherited body and brain in the offspring. To mitigate this problem, the addition of an infant learning period has been proposed relatively long ago by the so-called Triangle of Life approach. However, an empirical assessment is still lacking to-date. In this paper, we investigate the effects of such a learning mechanism from different perspectives. Using extensive simulations we show that learning can greatly increase task performance and reduce the number of generations required to reach a certain fitness level compared to the purely evolutionary approach. Furthermore, we demonstrate that the evolved morphologies will be also different, even though learning only directly affects the controllers. This provides a quantitative demonstration that changes in the brain can induce changes in the body. Finally, we examine the learning delta defined as the performance difference between the inherited and the learned brain, and find that it is growing throughout the evolutionary process. This shows that evolution produces robots with an increasing plasticity, that is, consecutive generations become better learners and, consequently, they perform better at the given task. Moreover, our results demonstrate that the Triangle of Life is not only a concept of theoretical interest, but a system methodology with practical benefits.

10.
Front Neurorobot ; 16: 836772, 2022.
Article in English | MEDLINE | ID: mdl-35360828

ABSTRACT

Robots used in research on Embodied AI often need to physically explore the world, to fail in the process, and to develop from such experiences. Most research robots are unfortunately too stiff to safely absorb impacts, too expensive to repair if broken repeatedly, and are never operated without the red kill-switch prominently displayed. The GummiArm Project was intended to be an open-source "soft" robot arm with human-inspired tendon actuation, sufficient dexterity for simple manipulation tasks, and with an eye on enabling easy replication of robotics experiments. The arm offers variable-stiffness and damped actuation, which lowers the potential for damage, and which enables new research opportunities in Embodied AI. The arm structure is printable on hobby-grade 3D printers for ease of manufacture, exploits stretchable composite tendons for robustness to impacts, and has a repair-cycle of minutes when something does break. The material cost of the arm is less than $6000, while the full set of structural parts, the ones most likely to break, can be printed with less than $20 worth of plastic filament. All this promotes a concurrent approach to the design of "brain" and "body," and can help increase productivity and reproducibility in Embodied AI research. In this work we describe the motivation for, and the development and application of, this 6 year project.

11.
Front Robot AI ; 8: 797556, 2021.
Article in English | MEDLINE | ID: mdl-34901173

ABSTRACT

Plants have evolved different mechanisms to disperse from parent plants and improve germination to sustain their survival. The study of seed dispersal mechanisms, with the related structural and functional characteristics, is an active research topic for ecology, plant diversity, climate change, as well as for its relevance for material science and engineering. The natural mechanisms of seed dispersal show a rich source of robust, highly adaptive, mass and energy efficient mechanisms for optimized passive flying, landing, crawling and drilling. The secret of seeds mobility is embodied in the structural features and anatomical characteristics of their tissues, which are designed to be selectively responsive to changes in the environmental conditions, and which make seeds one of the most fascinating examples of morphological computation in Nature. Particularly clever for their spatial mobility performance, are those seeds that use their morphology and structural characteristics to be carried by the wind and dispersed over great distances (i.e. "winged" and "parachute" seeds), and seeds able to move and penetrate in soil with a self-burial mechanism driven by their hygromorphic properties and morphological features. By looking at their motion mechanisms, new design principles can be extracted and used as inspiration for smart artificial systems endowed with embodied intelligence. This mini-review systematically collects, for the first time together, the morphological, structural, biomechanical and aerodynamic information from selected plant seeds relevant to take inspiration for engineering design of soft robots, and discusses potential future developments in the field across material science, plant biology, robotics and embodied intelligence.

12.
Front Robot AI ; 8: 724056, 2021.
Article in English | MEDLINE | ID: mdl-34869612

ABSTRACT

The soft robotics community is currently wondering what the future of soft robotics is. Therefore, it is very important to identify the directions in which the community should focus its efforts to consolidate its impact. The identification of convincing applications is a priority, especially to demonstrate that some achievements already represent an attractive alternative to current technological approaches in specific scenarios. However, most of the added value of soft robotics has been only theoretically grasped. Embodied Intelligence, being of these theoretical principles, represents an interesting approach to fully exploit soft robotic's potential, but a pragmatic application of this theory still remains difficult and very limited. A different design approach could be beneficial, i.e., the integration of a certain degree of continuous adaptability in the hardware functionalities of the robot, namely, a "flexible" design enabled by hardware components able to fulfill multiple functionalities. In this paper this concept of flexible design is introduced along with its main technological and theoretical basic elements. The potential of the approach is demonstrated through a biological comparison and the feasibility is supported by practical examples with state-of-the-art technologies.

13.
Artif Life ; : 1-16, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34473820

ABSTRACT

Behavioral diversity seen in biological systems is, at the most basic level, driven by interactions between physical materials and their environment. In this context we are interested in falling paper systems, specifically the V-shaped falling paper (VSFP) system that exhibits a set of discrete falling behaviors across the morphological parameter space. Our previous work has investigated how morphology influences dominant falling behaviors in the VSFP system. In this article we build on this analysis to investigate the nature of behavioral transitions in the same system. First, we investigate stochastic behavior transitions. We demonstrate how morphology influences the likelihood of different transitions, with certain morphologies leading to a wide range of possible paths through the behavior-space. Second, we investigate deterministic transitions. To investigate behaviors over longer time periods than available in falling experiments we introduce a new experimental platform. We demonstrate how we can induce behavior transitions by modulating the energy input to the system. Certain behavior transitions are found to be irreversible, exhibiting a form of hysteresis, while others are fully reversible. Certain morphologies are shown to behave like simplistic sequential logic circuits, indicating that the system has a form of memory encoded into the morphology-environment interactions. Investigating the limits of how morphology-environment interactions induce non-trivial behaviors is a key step for the design of embodied artificial life-forms.

14.
Front Robot AI ; 8: 549360, 2021.
Article in English | MEDLINE | ID: mdl-34136534

ABSTRACT

Research on Human-Robot Interaction (HRI) requires the substantial consideration of an experimental design, as well as a significant amount of time to practice the subject experiment. Recent technology in virtual reality (VR) can potentially address these time and effort challenges. The significant advantages of VR systems for HRI are: 1) cost reduction, as experimental facilities are not required in a real environment; 2) provision of the same environmental and embodied interaction conditions to test subjects; 3) visualization of arbitrary information and situations that cannot occur in reality, such as playback of past experiences, and 4) ease of access to an immersive and natural interface for robot/avatar teleoperations. Although VR tools with their features have been applied and developed in previous HRI research, all-encompassing tools or frameworks remain unavailable. In particular, the benefits of integration with cloud computing have not been comprehensively considered. Hence, the purpose of this study is to propose a research platform that can comprehensively provide the elements required for HRI research by integrating VR and cloud technologies. To realize a flexible and reusable system, we developed a real-time bridging mechanism between the robot operating system (ROS) and Unity. To confirm the feasibility of the system in a practical HRI scenario, we applied the proposed system to three case studies, including a robot competition named RoboCup@Home. via these case studies, we validated the system's usefulness and its potential for the development and evaluation of social intelligence via multimodal HRI.

16.
Front Robot AI ; 8: 788067, 2021.
Article in English | MEDLINE | ID: mdl-35047567

ABSTRACT

Soft robotic systems typically follow conventional control schemes, where actuators are supplied with dedicated inputs that are regulated through software. However, in recent years an alternative trend is being explored, where the control architecture can be simplified by harnessing the passive mechanical characteristics of the soft robotic system. This approach is named "morphological control", and it can be used to decrease the number of components (tubing, valves and regulators) required by the controller. In this paper, we demonstrate morphological control of bio-inspired asymmetric motions for systems of soft bending actuators that are interconnected with passive flow restrictors. We introduce bending actuators consisting out of a cylindrical latex balloon in a flexible PVC shell. By tuning the radii of the tube and the shell, we obtain a nonlinear relation between internal pressure and volume in the actuator with a peak and valley in pressure. Because of the nonlinear characteristics of the actuators, they can be assembled in a system with a single pressure input where they bend in a discrete, preprogrammed sequence. We design and analyze two such systems inspired by the asymmetric movements of biological cilia. The first replicates the swept area of individual cilia, having a different forward and backward stroke, and the second generates a travelling wave across an array of cilia.

17.
Front Psychol ; 11: 2220, 2020.
Article in English | MEDLINE | ID: mdl-33041893

ABSTRACT

We present a theory of cooperative-competitive intelligence (CCI), its measures, research program, and applications that stem from it. Within the framework of this theory, satisficing sub-optimal behavior is any behavior that does not promote a decrease in the prospective control of the functional action diversity/unpredictability (D/U) potential of the agent or team. This potential is defined as the entropy measure in multiple, context-dependent dimensions. We define the satisficing interval of behaviors as CCI. In order to manifest itself at individual or team level, this capacity harnesses properties such as degeneracy, pleiotropy (pluri-potentiality), synergies, and metastability. Intelligence is embodied because intelligent behavior is deeply dependent on body functionalities, defined as entropy measures. We base our theory on three principles: (a) relativity of functional entropy/information in agent (team)-environment systems, (b) tendency toward the satisficing level of D/U potential, and (c) tendency toward the non-decreasing D/U potential. The conjunction of these three principles provides existence of sub-optimal behaviors associated with CCI. First, we deal with the problem of how to reduce multidimensional behavior to a concept that accounts for the vast set of scenarios in which CCI is manifested. Secondly, we define and discuss the three interacting principles that underpin CCI behavior as well as providing an outline for a future CCI research program supported by agent-based modeling and empirical research. Finally, we provide some preliminary practical issues that stem from the theory.

18.
Soft Robot ; 7(4): 444-450, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31990639

ABSTRACT

Self-regulation (or so-called homeostasis) is a property of all living organisms to maintain an internal stable state through specialized biofeedback mechanisms under varying external and internal conditions. Although these feedback mechanisms in living organisms are complex networks and hard to implement one-to-one in artificial systems, the new approaches in soft robotics may benefit from the concept of self-regulation-especially in the new endeavors of making untethered, autonomous soft robots. In this study, we show a simple system, in which plant robots display heliotropism (sun tracking) and nyctinasty (leaf opening) through artificial self-regulation attained through a bioinspired transpiration mechanism. The feedback involves dehydration/hydration and transpiration events that keep the stem continuously in a metastable position, which maximizes light on plant leaves and the efficiency of light harvesting when solar panels are attached on leaves. We also demonstrate that this artificial feedback can be regulated by doping with light-absorbing chemicals or by changing the geometry of the system, and it can further be expanded to other lightweight systems. Implementing self-regulation into (soft) robots through bioinspired material feedback is beneficial not only for energy efficiency and harvesting but also for achieving embodied intelligence in autonomous soft robots.


Subject(s)
Biomimetic Materials , Robotics , Biomimetic Materials/chemistry , Phototropism , Plant Leaves , Sunlight
19.
Front Robot AI ; 7: 75, 2020.
Article in English | MEDLINE | ID: mdl-33501242

ABSTRACT

Bioinspired and biomimetic soft machines rely on functions and working principles that have been abstracted from biology but that have evolved over 3.5 billion years. So far, few examples from the huge pool of natural models have been examined and transferred to technical applications. Like living organisms, subsequent generations of soft machines will autonomously respond, sense, and adapt to the environment. Plants as concept generators remain relatively unexplored in biomimetic approaches to robotics and related technologies, despite being able to grow, and continuously adapt in response to environmental stimuli. In this research review, we highlight recent developments in plant-inspired soft machine systems based on movement principles. We focus on inspirations taken from fast active movements in the carnivorous Venus flytrap (Dionaea muscipula) and compare current developments in artificial Venus flytraps with their biological role model. The advantages and disadvantages of current systems are also analyzed and discussed, and a new state-of-the-art autonomous system is derived. Incorporation of the basic structural and functional principles of the Venus flytrap into novel autonomous applications in the field of robotics not only will inspire further plant-inspired biomimetic developments but might also advance contemporary plant-inspired robots, leading to fully autonomous systems utilizing bioinspired working concepts.

20.
Trends Cogn Sci ; 18(8): 404-13, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24839893

ABSTRACT

Traditionally, in cognitive science the emphasis is on studying cognition from a computational point of view. Studies in biologically inspired robotics and embodied intelligence, however, provide strong evidence that cognition cannot be analyzed and understood by looking at computational processes alone, but that physical system-environment interaction needs to be taken into account. In this opinion article, we review recent progress in cognitive developmental science and robotics, and expand the notion of embodiment to include soft materials and body morphology in the big picture. We argue that we need to build our understanding of cognition from the bottom up; that is, all the way from how our body is physically constructed.


Subject(s)
Artificial Intelligence , Brain/physiology , Cognition/physiology , Models, Biological , Animals , Brain-Computer Interfaces , Humans , Mind-Body Relations, Metaphysical , Perception , Robotics , Software
SELECTION OF CITATIONS
SEARCH DETAIL