ABSTRACT
Polymer-based membranes containing nanocellulose and natural macromolecules have potential to treat water, however few works have associated the changes in chemical and morphological membrane's features with their performance as adsorbent. Herein, a new green composite based on nanocellulose (NC) and alkylated tannic acid (ATA) and cross-linked with proanthocyanidin was produced and incorporated into polyacrylonitrile (PAN) membranes to eliminate propranolol (PRO) from water. Characterizations revealed that the increasing of NC-ATA content reduced the pore size of the membrane's upper surface and made the finger like structure of the sublayer disappear, due to the formation of hydrophilic domains of NC/ATA which speeds up the external solidification step. The presence of NC-ATA reduced the hydrophilicity, from a water contact angle of 3.65° to 16.51°, the membrane roughness, from 223.5 to 52.0 nm, and the zeta potential from -25.35 to -55.20 mV, improving its features to be a suitable adsorbent of organic molecules. The membranes proved to be excellent green adsorbent, tridimensional, and easy to remove after use, and qmax for PRO was 303 mg·g-1. The adsorption mechanism indicates that H-bonds, ion exchange, and π-π play important role in adsorption. NC-ATA@PAN kept high removal efficiencies after four cycles, evidencing the potential for water purification.
Subject(s)
Polyphenols , Proanthocyanidins , Water Pollutants, Chemical , Propranolol , Water , Adsorption , Water Pollutants, Chemical/chemistryABSTRACT
Microplastic pollution is a growing public concern as these particles are ubiquitous in various environments and can fragment into smaller nanoplastics. Another environmental concern arises from widely used engineered nanoparticles. Despite the increasing abundance of these nano-sized pollutants and the possibility of interactions with organisms at the sub cellular level, with many risks still being unknown, there are only a few publications on this topic due to the lack of reliable techniques for nanoparticle characterization. We propose a multi-technique approach for the characterization of nanoparticles down to the 10 nm level using standard micro-Raman spectroscopy combined with standard atomic force microscopy. We successfully obtained single-particle spectra from 25 nm sized polystyrene and 9 nm sized TiO2 nanoparticles with corresponding mass limits of detection of 8.6 ag (attogram) and 1.6 ag, respectively, thus demonstrating the possibility of achieving an unambiguous Raman signal from a single, small nanoparticle with a resolution comparable to more complex and time-consuming technologies such as Tip-Enhanced Raman Spectroscopy and Photo-Induced Force Microscopy.
ABSTRACT
This study explores the potential of the corozo fruit (Bactris guineensis) palm tree in the Colombian Caribbean as a source for porous carbon material. Its specific surface area, pore volume, and average pore size were obtained using N2 adsorption/desorption isotherms. The images of the precursor and adsorbent surface were obtained using scanning electron microscopy (SEM). Fourier transform infrared (FTIR) spectra were obtained to detect the main functional groups present and an X-ray diffraction analysis (XRD) was performed in order to analyze the structural organization of the materials. By carbonizing the fruit stone with zinc chloride, a porous carbon material was achieved with a substantial specific surface area (1125 m2 gâ»1) and pore volume (3.241 × 10-1 cm3 gâ»1). The material was tested for its adsorption capabilities of the drug propranolol. The optimal adsorption occurred under basic conditions and at a dosage of 0.7 g Lâ»1. The Langmuir homogeneous surface model effectively described the equilibrium data and, as the temperature increased, the adsorption capacity improved, reaching a maximum of 134.7 mg gâ»1 at 328.15 K. The model constant was favorable to the temperature increase, increasing from 1.556 × 10-1 to 2.299 × 10-1 L mg-1. Thermodynamically, the adsorption of propranolol was found to be spontaneous and benefited from higher temperatures, indicating an endothermic nature (12.39 kJ molâ»1). The negative ΔG0 values decreased from -26.28 to -29.99 kJ mol-1, with the more negative value occurring at 328 K. The adsorbent material exhibited rapid kinetics, with equilibrium times ranging from 30 to 120 min, depending on the initial concentration. The kinetics data were well-represented by the general order and linear driving force models. The rate constant of the general order model diminished from 1.124 × 10-3 to 9.458 × 10-14 with an increasing concentration. In summary, the leftover stone from the Bactris guineensis plant can be utilized to develop activated carbon, particularly when activated using zinc chloride. This material shows promise for efficiently adsorbing propranolol and potentially other emerging pollutants.
Subject(s)
Arecaceae , Water Pollutants, Chemical , Thermodynamics , Propranolol , Fruit/chemistry , Adsorption , Porosity , Kinetics , Water Pollutants, Chemical/analysis , Spectroscopy, Fourier Transform Infrared , Hydrogen-Ion ConcentrationABSTRACT
Coastal lagoons are ecosystems that are considered providers of a variety species of commercial value to the humans. However, they are currently threatened by a variety of anthropogenic-derived impacts, including environmental pollution by microplastics (MPs). For these reasons, it is necessary to identify suitable biomonitors for monitoring MP activities in aquatic environments and for estimating human ingestion of MPs from the consumption of commercial shellfish species. Therefore, our aims were to identify the anthropogenic activities that supply MPs into a coastal lagoon in the southern Gulf of Mexico and their variety; to determine whether oysters (Crassostrea virginica) are suitable biomonitors to perform MPs monitoring activities and to conduct an estimation of how many MPs could a human consume by the ingestion of a commercial portion of oysters harvested in this coastal lagoon. Our results noted that MP concentrations from water and sediment collected in Laguna de Terminos were 210,000 and 11.3 times higher than values reported in other protected areas worldwide. MPs chemical composition revealed that fishing and urban activities supply mainly polyethylene (21.1 %), poly (butadiene) diol (12.6 %) and polyethylene terephthalate (9.5 %). It was also determined that oysters did not reflect the spatial distribution of MPs within the study area and that a human could consume up to 806.1 MPs per 237.1 g serving of an oyster cocktail. Finally, a coastal lagoon polluted with MPs increases the risk of affecting species used for human consumption.
Subject(s)
Crassostrea , Water Pollutants, Chemical , Animals , Humans , Microplastics , Ecosystem , Plastics , Shellfish , Water Pollutants, Chemical/analysis , Environmental Monitoring/methodsABSTRACT
In recent years the concern with emerging pollutants in water has become more prominent, especially pharmaceutical residues, such as antibiotics due to the influence to increase antibacterial resistance. Further, conventional wastewater treatment methods have not demonstrated efficiency for the complete degradation of these compounds, or they have limitations to treat a large volume of waste. In this sense, this study aims to investigate the degradation of amoxicillin, one of the most prescribed antibiotics, in wastewater via supercritical water gasification (SCWG) using a continuous flow reactor. For this purpose, the process operating conditions of temperature, feed flow rate, and concentration of H2O2 was evaluated using Experimental Design and Response Surface Methodology techniques and optimized by Differential Evolution methodology. Total organic carbon (TOC) removal, chemical oxygen demand (COD) degradability, reaction time, amoxicillin degradation rate, toxicity of degradation by-products, and gaseous products were evaluated. The use of SCWG for treatment achieved 78.4% of the TOC removal for the industrial wastewater. In the gaseous products, hydrogen was the majority component. Furthermore, high-performance liquid chromatography analyses demonstrated that the antibiotic amoxicillin was degraded. For a mass flow rate of 15 mg/min of amoxicillin fed into the reaction system, 14.4 mg/min was degraded. Toxicity tests with microcrustacean Artemia salina showed slight toxicity to treated wastewater. Despite that, the outcomes reveal the SCWG has great potential to degrade amoxicillin and may be applied to treat several pharmaceutical pollutants. Aside from this, carbon-rich effluents may lead to a significant energy gaseous product, especially, hydrogen and syngas.
Subject(s)
Wastewater , Water Pollutants, Chemical , Amoxicillin , Anti-Bacterial Agents , Water/chemistry , Waste Disposal, Fluid/methods , Hydrogen Peroxide , Gases , Hydrogen/chemistry , Water Pollutants, Chemical/chemistry , Carbon , Pharmaceutical PreparationsABSTRACT
The biomagnification and biodilution of inorganic pollutants, have a close correlation on the structure and function of trophic change behavior; sea turtles represent an excellent bioindicator model to identify their impact in marine ecosystems. To understand pollution effects on marine ecosystems, we quantified the bioconcentration of 50 inorganic elements in the blood and scute tissues of three nesting species of sea turtles (Chelonia mydas, Eretmochelys imbricata and Caretta caretta), collected in Quintana Roo State from July 2017 to August 2018. As a general trend, essential mineral elements with toxic potential showed the highest concentrations in both tissues; significant increase concentration of arsenic, mercury, and cerium levels was observed with increasing trophic levels indicating its biomagnification while a significant decrease in manganese and bismuth showed a biodilution effect. We expect that our findings can be used as baseline data in future biomonitoring and contamination risk assessment programs in the region.
Subject(s)
Arsenic , Mercury , Turtles , Animals , Bioaccumulation , EcosystemABSTRACT
In this study, the residual pods of the forest species Erythrina speciosa were carbonized with ZnCl2 to obtain porous activated carbon and investigated for the adsorptive removal of the drug paracetamol (PCM) from water. The PCM adsorption onto activated carbon is favored at acidic solution pH. The isothermal studies confirmed that increasing the temperature from 298 to 328 K decreased the adsorption capacity from 65 mg g-1 to 50.4 mg g-1 (C0 = 175 mg L-1). The Freundlich model showed a better fit of the equilibrium isotherms. Thermodynamic studies confirmed the exothermic nature (ΔH0 = -39.1066 kJ mol-1). Kinetic data indicates that the external mass transfer occurs in the first minutes followed by the surface diffusion, considering that the linear driving force model described the experimental data. The application of the material in the treatment of a simulated effluent with natural conditions was promising, presenting a removal of 76.45%. Therefore, it can be concluded that the application of residual pods of the forest species Erythrina speciosa carbonized with ZnCl2 is highly efficient in the removal of the drug paracetamol and also in mixtures containing other pharmaceutical substances.
Subject(s)
COVID-19 , Erythrina , Water Pollutants, Chemical , Charcoal/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Acetaminophen , Kinetics , Analgesics , Hydrogen-Ion ConcentrationABSTRACT
This study describes the synthesis of Cu/Nb2O5, Fe/Nb2O5, and Cu-Fe/Nb2O5 catalysts obtained by incorporating copper and/or iron metals into niobium pentoxide (Nb2O5). The new materials were characterized by the following techniques: Thermogravimetric Analysis (TA), surface and pore analysis, X-ray diffractometry (XRD), and Fourier Transform Infrared Spectroscopy (FT-IR). The catalyst was applied in the photocatalytic degradation of salicylic acid (SA). The influence of different parameters (calcined temperature, pH, and metal addition) on the photocatalytic reaction was evaluated. The results indicated that catalysts containing copper were more active and pH influenced the SA degradation process. SA removal results indicated that Cu/Nb2O5 photocatalyst presented a 1.5 fold higher degradation after 120 min in comparison to Cu-Fe/Nb2O5 and 4.6 fold higher than Fe/Nb2O5 catalyst, all them calcined at 400 °C. In tests carried out in the presence of formic acid, increasing the pH from about 3 to 7 allowed an almost 3.4-fold increase in SA degradation for the Cu-Fe/Nb2O5 catalyst calcined at 400 °C.
Subject(s)
Copper , Niobium/chemistry , Oxides/chemistry , Catalysis , Iron/chemistry , Metals , Salicylic Acid , Spectroscopy, Fourier Transform InfraredABSTRACT
Triclosan (TCS) is a synthetic broad-spectrum antimicrobial agent commonly used world-wide in a range of personal care and sanitizing products detected frequently in aquatic ecosystems. The aim of this study was to examine biochemical markers responses triggered by TCS in Danio rerio and in a native South American fish species (Corydoras paleatus). Further, an integrated approach comparing both test fish species was undertaken. These fish organisms were exposed to 100 or 189 µg TCS/L for 48 h. The activities of catalase (CAT), glutathione-s-transferase (GST), superoxide dismutase (SOD), and lipid peroxidation levels (LPO) and total antioxidant capacity against peroxyl radicals (ACAP) were determined in liver, gills, and brain. Acetylcholinesterase activity (AChE) was measured in the brain. Multivariate analysis showed that the most sensitive hepatic parameters were activities of GST and SOD for C. paleatus while LPO levels were for D. rerio. In gills the same parameters were responsive for C. paleatus but CAT in D. rerio. ACAP and GST activity were responsive parameters in brain of both species. Integrated biomarker responses (IBR) index demonstrated similar trends in both species suggesting this parameter might serve as a useful tool for quantification of integrated responses induced by TCS.
Subject(s)
Anti-Infective Agents, Local/toxicity , Biomarkers , Oxidative Stress/drug effects , Triclosan/toxicity , Water Pollutants, Chemical/toxicity , Animals , Brain/drug effects , Brain/enzymology , Catfishes , Gills/drug effects , Gills/enzymology , Liver/drug effects , Liver/enzymology , ZebrafishABSTRACT
Microplastics are currently considered widespread marine pollutants, accumulating in sediments and shorelines around the world. Spatial distribution of microplastics in marine sediments is consequence of a combination of multiple factors (naturals and anthropics). We evaluated the drivers' factors of the abundance and distribution of two microplastics morphotypes (fibers and fragments) in surface sediments (5 cm deep) on SW Atlantic beaches with different plastics waste contribution along the coastline. Beach geomorphology, sediment grain size, distance to the urban area, continental waters discharge and human activities were the analyzed factors. Fibers abundance was significantly highest in pocket beaches, moderately exposed and closest to the urban center, while the fragments abundance was highest in beaches with stormwater outfall. The fine sand and the high recreational level were also factors driving the abundance of both morphotypes. Therefore, plastic morphotype and abundance vary according to the determining factors.
Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Bathing Beaches , Environmental Monitoring , Geologic Sediments , Humans , Microplastics , Plastics , Water Pollutants, Chemical/analysisABSTRACT
The occurrence, persistence, and accumulation of antibiotics and non-steroidal anti-inflammatory drugs (NSAIDs) represent a new environmental problem due to their harmful effects on human and aquatic life. A suitable absorbent for a particular type of pollutant does not necessarily absorb other types of compounds, so knowing the compatibility between a particular pollutant and a potential absorbent before experimentation seems to be fundamental. In this work, the molecular interactions between some pharmaceuticals (amoxicillin, ibuprofen, and tetracycline derivatives) with two potential absorbers, chitosan and graphene oxide models (pyrene, GO-1, and coronene, GO-2), were studied using the ωB97X-D/6-311G(2d,p) level of theory. The energetic interaction order found was amoxicillin/chitosan > amoxicillin/GO-1 > amoxicillin/GO-2 > ibuprofen/chitosan > ibuprofen/GO-2 > ibuprofen/GO-1, the negative sign for the interaction energy in all complex formations confirms good compatibility, while the size of Eint between 24-34 kcal/mol indicates physisorption processes. Moreover, the free energies of complex formation were negative, confirming the spontaneity of the processes. The larger interaction of amoxicillin Gos, compared to ibuprofen Gos, is consistent with previously reported experimental results, demonstrating the exceptional predictability of these methods. The second-order perturbation theory analysis shows that the amoxicillin complexes are mainly driven by hydrogen bonds, while van der Waals interactions with chitosan and hydrophobic interactions with graphene oxides are modelled for the ibuprofen complexes. Energy decomposition analysis (EDA) shows that electrostatic energy is a major contributor to the stabilization energy in all cases. The results obtained in this work promote the use of graphene oxides and chitosan as potential adsorbents for the removal of these emerging pollutants from water.
ABSTRACT
Electrochemical sensors appear as low-cost, rapid, easy to use, and in situ devices for determination of diverse analytes in a liquid solution. In that context, conducting polymers are much-explored sensor building materials because of their semiconductivity, structural versatility, multiple synthetic pathways, and stability in environmental conditions. In this state-of-the-art review, synthetic processes, morphological characterization, and nanostructure formation are analyzed for relevant literature about electrochemical sensors based on conducting polymers for the determination of molecules that (i) have a fundamental role in the human body function regulation, and (ii) are considered as water emergent pollutants. Special focus is put on the different types of micro- and nanostructures generated for the polymer itself or the combination with different materials in a composite, and how the rough morphology of the conducting polymers based electrochemical sensors affect their limit of detection. Polypyrroles, polyanilines, and polythiophenes appear as the most recurrent conducting polymers for the construction of electrochemical sensors. These conducting polymers are usually built starting from bifunctional precursor monomers resulting in linear and branched polymer structures; however, opportunities for sensitivity enhancement in electrochemical sensors have been recently reported by using conjugated microporous polymers synthesized from multifunctional monomers.