Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
Genes (Basel) ; 15(2)2024 02 02.
Article in English | MEDLINE | ID: mdl-38397191

ABSTRACT

Entamoeba histolytica, the causative agent of amebiasis, is the third leading cause of death among parasitic diseases globally. Its life cycle includes encystation, which has been mostly studied in Entamoeba invadens, responsible for reptilian amebiasis. However, the molecular mechanisms underlying this process are not fully understood. Therefore, we focused on the identification and characterization of Myb proteins, which regulate the expression of encystation-related genes in various protozoan parasites. Through bioinformatic analysis, we identified 48 genes in E. invadens encoding MYB-domain-containing proteins. These were classified into single-repeat 1R (20), 2R-MYB proteins (27), and one 4R-MYB protein. The in-silico analysis suggests that these proteins are multifunctional, participating in transcriptional regulation, chromatin remodeling, telomere maintenance, and splicing. Transcriptomic data analysis revealed expression signatures of eimyb genes, suggesting a potential orchestration in the regulation of early and late encystation-excystation genes. Furthermore, we identified probable target genes associated with reproduction, the meiotic cell cycle, ubiquitin-dependent protein catabolism, and endosomal transport. In conclusion, our findings suggest that E. invadens Myb proteins regulate stage-specific proteins and a wide array of cellular processes. This study provides a foundation for further exploration of the molecular mechanisms governing encystation and unveils potential targets for therapeutic intervention in amebiasis.


Subject(s)
Amebiasis , Entamoeba histolytica , Entamoeba , Humans , Entamoeba/genetics , Entamoeba/metabolism , Entamoeba histolytica/genetics , Gene Expression Profiling , Gene Expression Regulation
2.
Parasitol Int ; 99: 102844, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38103862

ABSTRACT

The protozoan parasite Entamoeba histolytica causes amoebiasis, a global public health problem. Amoebiasis is solely transmitted by cysts that are produced from proliferative trophozoites by encystation in the large intestine of humans. During encystation, various metabolites, pathways, and cascades sequentially orchestrate the morphological and physiological changes required to produce cysts. Cholesteryl sulfate (CS) has recently been revealed to be among the key molecules that control the morphological and physiological changes of encystation by exerting pleiotropic effects. CS promotes the rounding of encysting Entamoeba cells and maintains this spherical morphology as encysting cells are surrounded by the cyst wall, a prerequisite for resistance against environmental stresses. CS is also involved in the development of membrane impermeability, another prerequisite for resistance. The initiation of cyst wall formation is, however, CS-independent. Here, we overview CS-dependent and -independent processes during encystation and discuss their functional linkage. We also discuss a potential transcriptional cascade that controls the processes necessary to produce dormant Entamoeba cysts.


Subject(s)
Amebiasis , Cysts , Entamoeba histolytica , Entamoeba , Humans , Entamoeba/metabolism
3.
Front Cell Infect Microbiol ; 13: 1220589, 2023.
Article in English | MEDLINE | ID: mdl-37790914

ABSTRACT

Multinucleated Giant Cells (MGCs) are specialized cells that develop from the fusion of multiple cells, and their presence is commonly observed in human cells during various infections. However, MGC formation is not restricted to infections alone but can also occur through different mechanisms, such as endoreplication and abortive cell cycle. These processes lead to the formation of polyploid cells, eventually resulting in the formation of MGCs. In Entamoeba, a protozoan parasite that causes amoebic dysentery and liver abscesses in humans, the formation of MGCs is a unique phenomenon and not been reported in any other protozoa. This organism is exposed to various hostile environmental conditions, including changes in temperature, pH, and nutrient availability, which can lead to stress and damage to its cells. The formation of MGCs in Entamoeba is thought to be a survival strategy to cope with these adverse conditions. This organism forms MGCs through cell aggregation and fusion in response to osmotic and heat stress. The MGCs in Entamoeba are thought to have increased resistance to various stresses and can survive longer than normal cells under adverse conditions. This increased survival could be due to the presence of multiple nuclei, which could provide redundancy in case of DNA damage or mutations. Additionally, MGCs may play a role in the virulence of Entamoeba as they are found in the inflammatory foci of amoebic liver abscesses and other infections caused by Entamoeba. The presence of MGCs in these infections suggests that they may contribute to the pathogenesis of the disease. Overall, this article offers valuable insights into the intriguing phenomenon of MGC formation in Entamoeba. By unraveling the mechanisms behind this process and examining its implications, researchers can gain a deeper understanding of the complex biology of Entamoeba and potentially identify new targets for therapeutic interventions. The study of MGCs in Entamoeba serves as a gateway to exploring the broader field of cell fusion in various organisms, providing a foundation for future investigations into related cellular processes and their significance in health and disease.


Subject(s)
Giant Cells , Monocytes , Humans , Monocytes/metabolism , Cells, Cultured , Cell Nucleus , Osteoclasts
4.
Mol Microbiol ; 2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37424153

ABSTRACT

It is interesting to identify factors involved in the regulation of the encystation of Entamoeba histolytica that differentiate trophozoites into cysts. Evolutionarily conserved three amino acid loop extension (TALE) homeodomain proteins act as transcription factors and execute a variety of functions that are essential for life. A TALE homeodomain (EhHbox) protein-encoding gene has been identified in E. histolytica (Eh) that is highly upregulated during heat shock, glucose, and serum starvation. Its ortholog, EiHbox1, a putative homeobox protein in E. invadens (Ei), is also highly upregulated during the early hours of encystation, glucose starvation, and heat shock. They belong to the PBX family of TALE homeobox proteins and have conserved residues in the homeodomain that are essential for DNA binding. Both are localized in the nucleus during encystation and under different stress conditions. The electrophoretic mobility shift assay confirmed that the recombinant GST-EhHbox binds to the reported TGACAG and TGATTGAT motifs. Down-regulation of EiHbox1 by gene silencing reduced Chitin synthase, Jacob, and increased Jessie gene expression, resulting in defective cysts and decreased encystation efficiency and viability. Overall, our results suggest that the TALE homeobox family has been conserved during evolution and acts as a transcription factor to control the differentiation of Entamoeba by regulating the key encystation-induced genes.

5.
Front Cell Infect Microbiol ; 13: 1201394, 2023.
Article in English | MEDLINE | ID: mdl-37469604

ABSTRACT

Background: Entamoeba gingivalis (E. gingivalis) is an anaerobic protozoan that is strongly associated with inflamed periodontal pockets. It is able to invade the mucosal epithelium of the human host, where it can feed on epithelial cells and elicit a severe innate immune response. Unlike other Entamoeba species, it is considered that E. gingivalis cannot form cysts, because it is a non-infectious protozoan. The lack of encystation capability would make it susceptible to periodontal treatment. However, it is not clear how the human host becomes infected with E. gingivalis trophozoites. We investigated the ability of E. gingivalis to encapsulate in response to an unfavorable environment in vitro. Methods: Different strains of E. gingivalis, isolated from inflamed periodontal pocket samples, were cultured for 8 days in the presence or absence of the antimicrobials amoxycillin and metronidazole. To reveal cyst formation, we investigated the morphology and ultrastructure of the amoeba by light, fluorescence, transmission and scanning electron microscopy. We also used the fluorescent dye calcofluor white M2R to demonstrate chitin present in the cyst wall. Results: We observed exocysts and an intra-cystic space separating the encapsulated trophozoite from the environment. Remarkably, cysts showed a smooth surface, polygonal edges and smaller size compared to free-living trophozoites. In addition, encapsulated trophozoites that detached from the cyst wall had a dense cytoplasma without phagocytic vesicles. The cyst walls consisted of chitin as in other Entamoba species. The encapsulated trophozoids were mononuclear after antibioticinduced encapsulation. Discussion: We conclude that E. gingivalis cyst formation has significant implications for dissemination and infection and may explain why established treatment approaches often fail to halt periodontal tissue destruction during periodontitis and peri-implantitis.


Subject(s)
Cysts , Entamoeba , Animals , Humans , Trophozoites , Cysts/ultrastructure , Anti-Bacterial Agents , Chitin
6.
Life (Basel) ; 13(7)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37511904

ABSTRACT

Entamoeba histolytica is a parasitic protozoan that causes diarrheal disease in approximately 100 million people worldwide every year. E. histolytica has two forms, the growing trophozoite and the infectious cyst. Trophozoites colonizing the large intestine form cysts that are released into the environment. The ingestion of the cysts in contaminated food and water continues the disease cycle. Here, we investigated the role of glycogen in trophozoite growth and encystation. Glycogen is thought to provide precursors for the synthesis of chitin, a major component of the protective cyst wall. We propose that glycogen also serves as an energy source during metabolic adaptation to different nutrient environments. We examined the role of glycogen in E. histolytica by analyzing the growth and encystation of RNAi strains with reduced expression of the single gene-encoding glycogen synthase (GYS) or two of three genes encoding glycogen phosphorylase (PYG). The GYS RNAi strain had a greatly reduced glycogen accumulation, and both the GYS and PYG RNAi strains exhibited reduced growth in the glucose-poor medium. Both RNAi strains also showed reduced cyst production. Our results suggest glycogen synthesis and degradation are vital to the growth and adaptation of E. histolytica to a low-glucose environment such as that encountered in the large intestine.

7.
Front Mol Biosci ; 10: 1212082, 2023.
Article in English | MEDLINE | ID: mdl-37363402

ABSTRACT

Entamoeba histolytica is the causative agent of amoebiasis. DNA replication studies in E. histolytica first started with the ribosomal RNA genes located on episomal circles. Unlike most plasmids, Entamoeba histolytica rDNA circles lacked a fixed origin. Replication initiated from multiple sites on the episome, and these were preferentially used under different growth conditions. In synchronized cells the early origins mapped within the rDNA transcription unit, while at later times an origin in the promoter-proximal upstream intergenic spacer was activated. This is reminiscent of eukaryotic chromosomal replication where multiple potential origins are used. Biochemical studies on replication and recombination proteins in Entamoeba histolytica picked up momentum once the genome sequence was available. Sequence search revealed homologs of DNA replication and recombination proteins, including meiotic genes. The replicative DNA polymerases identified included the α, δ, ε of polymerase family B; lesion repair polymerases Rev1 and Rev3; a translesion repair polymerase of family A, and five families of polymerases related to family B2. Biochemical analysis of EhDNApolA confirmed its polymerase activity with expected kinetic constants. It could perform strand displacement, and translesion synthesis. The purified EhDNApolB2 had polymerase and exonuclease activities, and could efficiently bypass some types of DNA lesions. The single DNA ligase (EhDNAligI) was similar to eukaryotic DNA ligase I. It was a high-fidelity DNA ligase, likely involved in both replication and repair. Its interaction with EhPCNA was also demonstrated. The recombination-related proteins biochemically characterized were EhRad51 and EhDmc1. Both shared the canonical properties of a recombinase and could catalyse strand exchange over long DNA stretches. Presence of Dmc1 indicates the likelihood of meiosis in this parasite. Direct evidence of recombination in Entamoeba histolytica was provided by use of inverted repeat sequences located on plasmids or chromosomes. In response to a variety of stress conditions, and during encystation in Entamoeba invadens, recombination-related genes were upregulated and homologous recombination was enhanced. These data suggest that homologous recombination could have critical roles in trophozoite growth and stage conversion. Availability of biochemically characterized replication and recombination proteins is an important resource for exploration of novel anti-amoebic drug targets.

8.
Microorganisms ; 11(4)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37110414

ABSTRACT

Some members of the genus Acanthamoeba are facultative pathogens typically with a biphasic lifestyle: trophozoites and cysts. Acanthamoeba is capable of infecting the cornea, resulting in Acanthamoeba keratitis. The cyst is one of the key components for the persistence of infection. Gene expression during Acanthamoeba encystation showed an upregulation of glutathione S-transferase (GST) genes and other closely related proteins. mRNA sequencing showed GST, and five genes with similar sequences were upregulated after 24 h of inducing encystation. GST overexpression was verified with qPCR using the HPRT and the cyst-specific protein 21 genes as controls. The GST inhibitor ethacrynic acid was found to decrease cell viability by 70%. These results indicate a role of GST in successful encystation, possibly by maintaining redox balance. GST and associated processes could be targets for potential treatments alongside regular therapies to reduce relapses of Acanthamoeba infection.

9.
mBio ; 14(2): e0345022, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36809068

ABSTRACT

tRNA-derived fragments have been reported in many different organisms and have diverse cellular roles, such as regulating gene expression, inhibiting protein translation, silencing transposable elements, and modulating cell proliferation. In particular, tRNA halves, a class of tRNA fragments produced by the cleavage of tRNAs in the anti-codon loop, have been widely reported to accumulate under stress and regulate translation in cells. Here, we report the presence of tRNA-derived fragments in Entamoeba, with tRNA halves being the most abundant. We further established that tRNA halves accumulate in the parasites upon different stress stimuli such as oxidative stress, heat shock, and serum starvation. We also observed differential expression of tRNA halves during developmental changes of trophozoite-to-cyst conversion, with various tRNA halves accumulating during early encystation. In contrast to other systems, the stress response does not appear to be mediated by a few specific tRNA halves, as multiple tRNAs appear to be processed during the various stresses. Furthermore, we identified some tRNA-derived fragments associated with Entamoeba Argonaute proteins, EhAgo2-2 and EhAgo2-3, which have a preference for different tRNA-derived fragment species. Finally, we show that tRNA halves are packaged inside extracellular vesicles secreted by amoebas. The ubiquitous presence of tRNA-derived fragments, their association with the Argonaute proteins, and the accumulation of tRNA halves during multiple different stresses, including encystation, suggest a nuanced level of gene expression regulation mediated by different tRNA-derived fragments in Entamoeba. IMPORTANCE In the present study, we report for the first time the presence of tRNA-derived fragments in Entamoeba. tRNA-derived fragments were identified by bioinformatics analyses of small-RNA sequencing data sets from the parasites and also confirmed experimentally. We found that tRNA halves accumulated in parasites exposed to environmental stress or during the developmental process of encystation. We also found that shorter tRNA-derived fragments are bound to Entamoeba Argonaute proteins, indicating that they may have a potential role in the Argonaute-mediated RNA-interference pathway, which mediates robust gene silencing in Entamoeba. We noticed that in response to heat shock, the protein translation levels were elevated in the parasites. This effect was reversed in the presence of an analog of leucine, which also reduced the levels of the tRNA halves in the stressed cells. Our results suggest that tRNA-derived fragments in Entamoeba have a possible role in regulating gene expression during environmental stress.


Subject(s)
Entamoeba histolytica , Entamoeba , Entamoeba histolytica/genetics , Entamoeba histolytica/metabolism , Argonaute Proteins/genetics , Entamoeba/genetics , Stress, Physiological/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism
10.
J Appl Microbiol ; 134(1)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36626774

ABSTRACT

AIMS: To determine the anti-amoebic activity of benzofuran/benzothiophene-possessing compounds against Acanthamoeba castellanii of the T4 genotype. METHOD AND RESULTS: A series of benzofuran/benzothiophene-possessing compounds were tested for their anti-amoebic activities, in particular, to block encystation and excystation processes in amoebae. Cytotoxicity of the compounds were evaluated using lactate dehydrogenase (LDH) assays. The amoebicidal assay results revealed significant anti-amoebic effects against A. castellanii. Compounds 1p and 1e showed the highest amoebicidal activity, eliminating 68% and 64% of the amoebae, respectively. These compounds remarkably repressed both the encystation and excystation processes in A. castellanii. Furthermore, the selected compounds presented minimal cytotoxic properties against human cells, as well as considerably abridged amoeba-mediated cytopathogenicity when compared to the amoebae alone. CONCLUSIONS: Our findings show that benzofuran/benzothiophene derivatives depict potent anti-amoebic activities; thus these compounds should be used as promising and novel agents in the rationale development of therapeutic strategies against Acanthamoeba infections.


Subject(s)
Acanthamoeba castellanii , Amebicides , Amoeba , Benzofurans , Humans , Acanthamoeba castellanii/genetics , Genotype , Benzofurans/pharmacology
11.
Vet Parasitol ; 314: 109868, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36603452

ABSTRACT

Encystation in Cryptocaryon irritans is a fundamental process for environmental resistance and development. Autophagy participates in the encystation of ciliates, and rapamycin can induce autophagy in the cells. A set of genes and metabolites related to autophagy and encystation are highly elaborative. The existence of these genes and metabolites and their role are well characterized. However, little is known about their role in protozoans such as ciliates. The newly produced C. irritans protomonts were exposed to an optimal concentration of rapamycin (1400 nM), and the survival, encystation, microstructure/ultrastructure, transcriptomic and metabolomic profile in treated and control protomonts were investigated. The results showed that exposure of protomonts to rapamycin at 4 h significantly lowered the survival and encystation rates to 91.62 % and 98.44 % compared to the control group (100 %, p ≤ 0.05). Morphological alterations observed in light microscopy and transmission electron microscopy (TEM) demonstrated that the drug significantly changed cell symmetry by causing the formation of various autophagic vacuoles/vesicles. The transcriptome sequencing of rapamycin-treated protomont revealed that 2249 (1837 up-regulated and 977 down-regulated) differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that 226 DEGs were successfully annotated in 21 pathways (p˂0.05), including most enriched pathways apoptosis and phagosome with 25 and 24 DEGs, respectively. Most unigenes were assigned to autophagy-related pathways; 24 DEGs were classified into phagosomes, and 15 DEGs were assigned to lysosome pathways. Cytoskeleton and cell progression-associated genes were down-regulated. Besides, cell death-inducing proteins were up-regulated. The metabolomic analysis revealed exposure to rapamycin treatment enhanced protomont metabolites, including L-Cysteine, which is related to autophagy. Rapamycin had influenced the gene and metabolites of protomont; activating autophagy with inhibition of mechanistic target of rapamycin, (mTOR). The process negatively influences protomont morphology, encystation, and survival. Further autophagy-related gene silencing can be investigated via genome sequencing of C. irritans to study encystation.


Subject(s)
Ciliophora Infections , Ciliophora , Hymenostomatida , Animals , Ciliophora/genetics , Ciliophora/ultrastructure , Ciliophora Infections/veterinary , Gene Expression Profiling/veterinary , Hymenostomatida/genetics , Metabolomics , Transcriptome , Sirolimus/pharmacology
12.
Exp Parasitol ; 246: 108474, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36708943

ABSTRACT

Acanthamoeba castellanii causes granulomatous amoebic encephalitis, an uncommon but severe brain infection and sight-threatening Acanthamoeba keratitis. Most of the currently used anti-amoebic treatments are not always effective, due to persistence of the cyst stage, and recurrence can occur. Here in this study we synthesize cinnamic acid and lactobionic acid-based magnetic nanoparticles (MNPs) using co-precipitation technique. These nanoformulations were characterized by Fourier transform infrared spectroscopy and Atomic form microscopy. The drugs alone (Hesperidin, Curcumin and Amphotericin B), magnetic NPs alone, and drug-loaded nano-formulations were evaluated at a concentration of 100 µg/mL for antiamoebic activity against a clinical isolate of A. castellanii. Amoebicidal assays revealed that drugs and conjugation of drugs and NPs further enhanced amoebicidal effects of drug-loaded nanoformulations. Drugs and drug-loaded nanoformulations inhibited both encystation and excystation of amoebae. In addition, drugs and drug-loaded nanoformulations inhibited parasite binding capability to the host cells. Neither drugs nor drug-loaded nanoformulations showed cytotoxic effects against host cells and considerably reduced parasite-mediated host cell death. Overall, these findings imply that conjugation of medically approved drugs with MNPs produce potent anti-Acanthamoebic effects, which could eventually lead to the development of therapeutic medications.


Subject(s)
Acanthamoeba castellanii , Amebiasis , Amebicides , Metal Nanoparticles , Humans , Metal Nanoparticles/chemistry , Amebiasis/parasitology , Amebicides/chemistry
13.
Parasitol Res ; 122(2): 509-517, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36526927

ABSTRACT

Encystment is crucial for defense and reproduction in Cryptocaryon irritans. Therefore, understanding the encystment-related events in the protomont stage can help prevent and control C. irritans. Autophagy promotes protozoan parasite encystation. However, 3MA can inhibit autophagy. In this study, the effects of autophagy inhibition on encystation, survival rate, ultrastructural features, and metabolomic profiles of C. irritans, were evaluated using protomonts treated with 3MA (20 mM). The treatment with 3MA for about 4 h significantly lowered survival and encystation rates of protomonts to about 86.44% and 76.08%, respectively. Microstructural observations showed that the 3MA-treated protomonts showed deformed cell membranes and the cytoplasmic content spill. Furthermore, observation of the ultrastructure of 3MA-treated protomonts showed the destruction of organelles (Golgi bodies and mucocyst) and a lack of autophagosomes. However, no abnormality was observed in the control experiments. Furthermore, the metabolic analysis revealed suppression of metabolites, such as lipids, amino acids, and carbohydrates. These results demonstrate that 3MA can inhibit autophagy in C. irritans, thus hindering encystation, suppressing the metabolism of metabolites, and altering morphological ultrastructure in these parasites.


Subject(s)
Ciliophora Infections , Ciliophora , Fish Diseases , Hymenostomatida , Perciformes , Animals , Ciliophora/physiology , Ciliophora Infections/parasitology , Perciformes/parasitology , Autophagy , Fish Diseases/parasitology
14.
Cont Lens Anterior Eye ; 46(2): 101758, 2023 04.
Article in English | MEDLINE | ID: mdl-36243521

ABSTRACT

PURPOSE: This aim of this study was to assess anti-parasitic properties of deep eutectic solvents against eye pathogen, Acanthamoeba, often associated with the use of contact lens. METHODS: Assays were performed to investigate the effects of various Methyltrioctylammonium chloride-based deep eutectic solvents on Acanthamoeba castellanii, comprising amoebicidal assays, encystment assays, excystment assays, cytotoxicity assays by measuring lactate dehydrogenase release from human cells, and cytopathogenicity assays to determine parasite-mediated host cell death. RESULTS: In a 2 h incubation period, DES-B, DES-C, DES-D, and DES-E exhibited up to 85 % amoebicidal activity at micromolar doses, which was enhanced further following 24 h incubation. When tested in encystment assays, selected deep eutectic solvents abolished cyst formation and were able to block excystment of A. castellanii. All solvents exhibited minimal human cell cytotoxicity except DES-D. Finally, all tested deep eutectic solvents inhibited amoeba-mediated cytopathogenicity, except DES-B. CONCLUSIONS: Deep eutectic solvents show potent antiamoebic effects. These findings are promising and could lead to the development of novel contact lens disinfectants, as well as opening several avenues to explore the molecular mechanisms, various doses and incubation periods, and use of different bases against Acanthamoeba castellanii.


Subject(s)
Acanthamoeba castellanii , Amebicides , Humans , Deep Eutectic Solvents , Amebicides/pharmacology , Quaternary Ammonium Compounds/pharmacology , Contact Lens Solutions/pharmacology
15.
Pathogens ; 13(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38251328

ABSTRACT

The "Wattle and Daub" model of cyst wall formation in Entamoeba invadens has been used to explain encystment in Entamoeba histolytica, the causal agent of amoebiasis, and this process could be a potential target for new antiamoebic drugs. In this study, we studied the morphological stages of chitin wall formation in E. invadens in more detail using fluorescent chitin-binding dyes and the immunolocalization of cyst wall proteins. It was found that chitin deposition was mainly initiated on the cell surface at a specific point or at different points at the same time. The cystic wall grew outward and gradually covered the entire surface of the cyst over time, following the model of Wattle and Daub. The onset of chitin deposition was guided by the localization of chitin synthase 1 to the plasma membrane, occurring on the basis of the Jacob lectin in the cell membrane. During encystation, F-actin was reorganized into the cortical region within the early stages of encystation and remained intact until the completion of the chitin wall. The disruption of actin polymerization in the cortical region inhibited proper wall formation, producing wall-less cysts or cysts with defective chitin walls, indicating the importance of the cortical actin cytoskeleton for proper cyst wall formation.

16.
Parasit Vectors ; 15(1): 360, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36207732

ABSTRACT

BACKGROUND: Encystation is one of the two processes comprising the life cycle of Giardia lamblia, a protozoan pathogen with tetraploid genome. Giardia lamblia Myb2 (GlMyb2) is a distinct encystation-induced transcription factor whose binding sites are found in the promoter regions of many encystation-induced genes, including its own. METHODS: Two sequential CRISPR/Cas9 experiments were performed to remove four glmyb2 alleles. The expression level of G. lamblia cyst wall protein 1 (GlCWP1), a well-known target gene of GlMyb2, was measured via western blotting and immunofluorescence assays. Chromatin immunoprecipitation experiments using anti-GlMyb2 antibodies were performed on the encysting G. lamblia cells. Quantitative real-time PCR was performed to confirm an expression of candidate GlMyb2-regulated genes by comparing the transcript level for each target candidate in wild-type and knockout mutant Giardia. The promoter region of glcwp1 was analyzed via deletion and point mutagenesis of the putative GlMyb2 binding sites in luciferase reporters. RESULTS: Characterization of the null glmyb2 mutant indicated loss of functions related to encystation, i.e. cyst formation, and expression of GlCWP1. The addition of the wild-type glmyb2 gene to the null mutant restored the defects in encystation. Chromatin immunoprecipitation experiments revealed dozens of target genes. Nineteen genes were confirmed as GlMyb2 regulons, which include the glmyb2 gene, six for cyst wall proteins, five for signal transduction, two for transporter, two for metabolic enzymes, and three with unknown functions. Detailed analysis on the promoter region of glcwp1 defined three GlMyb2 binding sites important in its encystation-induced expression. CONCLUSIONS: Our data confirm that GlMyb2 acts as a transcription activator especially during encystation by comparing the glmyb2 knockout mutant with the wild type. Further investigation using glmyb2 null mutant will provide knowledge regarding transcriptional apparatus required for the encystation process of G. lamblia.


Subject(s)
Cysts , Giardia lamblia , Giardia lamblia/genetics , Giardia lamblia/metabolism , Humans , Mutagenesis , Protozoan Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Antibiotics (Basel) ; 11(9)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36139962

ABSTRACT

We examined the antiamoebic effect of several imidazothiazole derivatives on Acanthamoeba castellanii of the T4 genotype. Trypan blue exclusion assays and haemocytometer counting were used to determine the reduction in A. castellanii trophozoite proliferation, in response to treatment with these compounds. To determine the effects of these compounds on host cells, lactate dehydrogenase assay was performed using HeLa cell lines. Amoebicidal assays revealed that the tested compounds at concentrations of 50 µM significantly inhibited amoebae trophozoites compared to controls. Compounds 1m and 1zb showed the highest amoebicidal effects eradicating 70% and 67% of A. castellanii, respectively. The compounds blocked both the encystation and excystation process in A. castellanii. Compounds 1m and 1zb blocked 61% and 55%, respectively, of amoeba binding to human cells. Moreover, the compounds showed minimal cytotoxic effects against host cells and considerably reduced amoeba-mediated host cell death. Overall, our study revealed that compounds 1m and 1zb have excellent antiamoebic potential, and should be considered in the development of curative antiamoebic medications in future studies. Further work is critical to determine the translational value of these findings.

18.
Cell Rep ; 40(7): 111224, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35977499

ABSTRACT

Toxoplasma gondii possesses sphingolipid synthesis capabilities and is equipped to salvage lipids from its host. The contribution of these two routes of lipid acquisition during parasite development is unclear. As part of a complete ceramide synthesis pathway, T. gondii expresses two serine palmitoyltransferases (TgSPT1 and TgSPT2) and a dihydroceramide desaturase. After deletion of these genes, we determine their role in parasite development in vitro and in vivo during acute and chronic infection. Detailed phenotyping through lipidomic approaches reveal a perturbed sphingolipidome in these mutants, characterized by a drastic reduction in ceramides and ceramide phosphoethanolamines but not sphingomyelins. Critically, parasites lacking TgSPT1 display decreased fitness, marked by reduced growth rates and a selective defect in rhoptry discharge in the form of secretory vesicles, causing an invasion defect. Disruption of de novo ceramide synthesis modestly affects acute infection in vivo but severely reduces cyst burden in the brain of chronically infected mice.


Subject(s)
Toxoplasma , Animals , Ceramides/metabolism , Mice , Protozoan Proteins/metabolism , Toxoplasma/metabolism
19.
PeerJ ; 10: e13657, 2022.
Article in English | MEDLINE | ID: mdl-35811814

ABSTRACT

Background: Curcumin is an active compound derived from turmeric, Curcuma longa, and is known for its benefits to human health. The amoebicidal activity of curcumin against Acanthamoeba triangularis was recently discovered. However, a physiological change of intracellular pathways related to A. triangularis encystation mechanism, including autophagy in the surviving amoeba after curcumin treatment, has never been reported. This study aims to investigate the effect of curcumin on the survival of A. triangularis under nutrient starvation and nutrient-rich condition, as well as to evaluate the A. triangularis encystation and a physiological change of Acanthamoeba autophagy at the mRNA level. Methods: In this study, A. triangularis amoebas were treated with a sublethal dose of curcumin under nutrient starvation and nutrient-rich condition and the surviving amoebas was investigated. Cysts formation and vacuolization were examined by microscopy and transcriptional expression of autophagy-related genes and other encystation-related genes were evaluated by real-time PCR. Results: A. triangularis cysts were formed under nutrient starvation. However, in the presence of the autophagy inhibitor, 3-methyladenine (3-MA), the percentage of cysts was significantly reduced. Interestingly, in the presence of curcumin, most of the parasites remained in the trophozoite stage in both the starvation and nutrient-rich condition. In vacuolization analysis, the percentage of amoebas with enlarged vacuole was increased upon starvation. However, the percentage was significantly declined in the presence of curcumin and 3-MA. Molecular analysis of A. triangularis autophagy-related (ATG) genes showed that the mRNA expression of the ATG genes, ATG3, ATG8b, ATG12, ATG16, under the starvation with curcumin was at a basal level along the treatment. The results were similar to those of the curcumin-treated amoebas under a nutrient-rich condition, except AcATG16 which increased later. On the other hand, mRNA expression of encystation-related genes, cellulose synthase and serine proteinase, remained unchanged during the first 18 h, but significantly increased at 24 h post treatment. Conclusion: Curcumin inhibits cyst formation in surviving trophozoites, which may result from its effect on mRNA expression of key Acanthamoeba ATG-related genes. However, further investigation into the mechanism of curcumin in A. triangularis trophozoites arrest and its association with autophagy or other encystation-related pathways is needed to support the future use of curcumin.


Subject(s)
Acanthamoeba , Amoeba , Curcumin , Animals , Humans , Acanthamoeba/genetics , Curcumin/pharmacology , Trophozoites/physiology
20.
Exp Parasitol ; 240: 108330, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35868573

ABSTRACT

BACKGROUND: Acanthamoeba keratitis is a painful, sight-threatening infection. It is commonly associated with the use of contact lens. Several lines of evidence suggest inadequate contact lens solutions especially against the cyst forms of pathogenic Acanthamoeba, indicating the need to develop effective disinfectants. OBJECTIVE: In this work, the application and assessment of montmorillonite clay (Mt-clay), cetylpyridinium chloride (CPC) and cetylpyridinium chloride-montmorillonite clay complex (CPC-Mt) against keratitis-causing A. castellanii belonging to the T4 genotype was studied. METHODS: Adhesion to human cells and amoeba-mediated cytopathogenicity assays were conducted to determine the impact of Mt-clay, CPC and CPC-Mt complex on amoeba-mediated binding and host cell death. Furthermore, assays were also performed to determine inhibitory effects of Mt-clay, CPC and CPC-Mt complex on encystment and excystment. In addition, the cytotoxicity of Mt-clay, CPC and CPC-Mt complex against human cells was examined. RESULTS: The results revealed that CPC and CPC-Mt complex presented significant antiamoebic effects against A. castellanii at microgram dose. Also, the CPC and CPC-Mt complex inhibited amoebae binding to host cells. Furthermore, CPC and CPC-Mt complex, were found to inhibit the encystment and excystment processes. Finally, CPC and CPC-Mt complex showed minimal host cell cytotoxicity. These results show that CPC and CPC-Mt complex exhibit potent anti-acanthamoebic properties. CONCLUSION: Given the ease of usage, safety, cost-effectiveness and long-term stability, CPC and CPC-Mt complex can prove to be an excellent choice in the rational development of contact-lens disinfectants to eradicate pathogenic Acanthamoeba effectively.


Subject(s)
Acanthamoeba Keratitis , Acanthamoeba castellanii , Contact Lenses , Acanthamoeba Keratitis/etiology , Acanthamoeba Keratitis/prevention & control , Bentonite/pharmacology , Cetylpyridinium/pharmacology , Clay , Contact Lens Solutions/pharmacology , Contact Lenses/adverse effects , Disinfection/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...