Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 696
Filter
1.
Cell Mol Life Sci ; 81(1): 304, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009859

ABSTRACT

The autophagy-lysosomal pathway plays a critical role in the clearance of tau protein aggregates that deposit in the brain in tauopathies, and defects in this system are associated with disease pathogenesis. Here, we report that expression of Tau35, a tauopathy-associated carboxy-terminal fragment of tau, leads to lipid accumulation in cell lines and primary cortical neurons. Our findings suggest that this is likely due to a deleterious block of autophagic clearance and lysosomal degradative capacity by Tau35. Notably, upon induction of autophagy by Torin 1, Tau35 inhibited nuclear translocation of transcription factor EB (TFEB), a key regulator of lysosomal biogenesis. Both cell lines and primary cortical neurons expressing Tau35 also exhibited changes in endosomal protein expression. These findings implicate autophagic and endolysosomal dysfunction as key pathological mechanisms through which disease-associated tau fragments could lead to the development and progression of tauopathy.


Subject(s)
Autophagy , Endosomes , Lipid Metabolism , Lysosomes , Neurons , tau Proteins , tau Proteins/metabolism , tau Proteins/genetics , Lysosomes/metabolism , Humans , Neurons/metabolism , Animals , Endosomes/metabolism , Tauopathies/metabolism , Tauopathies/pathology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Mice
2.
Bioessays ; : e2400026, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991978

ABSTRACT

Receptor tyrosine kinases exhibit ligand-induced activity and uptake into cells via endocytosis. In the case of epidermal growth factor (EGF) receptor (EGFR), the resulting endosomes are trafficked to the perinuclear region, where dephosphorylation of receptors occurs, which are subsequently directed to degradation. Traveling endosomes bearing phosphorylated EGFRs are subjected to the activity of cytoplasmic phosphatases as well as interactions with the endoplasmic reticulum (ER). The peri-nuclear region harbors ER-embedded phosphatases, a component of the EGFR-bearing endosome-ER contact site. The ER is also emerging as a central player in spatiotemporal control of endosomal motility, positioning, tubulation, and fission. Past studies strongly suggest that the physical interaction between the ER and endosomes forms a reaction "unit" for EGFR dephosphorylation. Independently, endosomes have been implicated to enable quantization of EGFR signals by modulation of the phosphorylation levels. Here, we review the distinct mechanisms by which endosomes form the logistical means for signal quantization and speculate on the role of the ER.

3.
J Virol ; 98(7): e0043324, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38888346

ABSTRACT

The cellular endosomal sorting complex required for transport (ESCRT) system comprises five distinct components and is involved in many different physiological processes. Recent studies have shown that different viruses rely upon the host ESCRT system for viral infection. However, whether this system is involved in white spot syndrome virus (WSSV) infection remains unclear. Here, we identified 24 homologs of ESCRT subunits in kuruma shrimp, Marsupenaeus japonicus, and found that some key components were strongly upregulated in shrimp after WSSV infection. Knockdown of key components of the ESCRT system using RNA interference inhibited virus replication, suggesting that the ESCRT system is beneficial for WSSV infection. We further focused on TSG101, a crucial member of the ESCRT-I family that plays a central role in recognizing cargo and activating the ESCRT-II and ESCRT-III complexes. TSG101 colocalized with WSSV in hemocytes. The addition of N16 (a TSG101 inhibitor) markedly decreased WSSV replication. TSG101 and ALIX of the ESCRT system interact with WSSV envelope proteins. The host proteins TSG101, RAB5, and RAB7, the viral protein VP28, and DNA were detected in endosomes isolated from hemocytes of WSSV-infected shrimp. Knockdown of Rab5 and Rab7 expression reduced viral replication. Taken together, these results suggest that the ESCRT system is hijacked by WSSV for transport through the early to late endosome pathway. Our work identified a novel requirement for the intracellular trafficking and infection of WSSV, and provided novel therapeutic targets for the prevention and control of WSSV in shrimp aquaculture. IMPORTANCE: Viruses utilize the ESCRT machinery in a variety of strategies for their replication and infection. This study revealed that the interaction of ESCRT complexes with WSSV envelope proteins plays a crucial role in WSSV infection in shrimp. The ESCRT system is conserved in the shrimp Marsupenaeus japonicus, and 24 homologs of the ESCRT system were identified in the shrimp. WSSV exploits the ESCRT system for transport and propagation via the interaction of envelope proteins with host TSG101 and ALIX in an endosome pathway-dependent manner. Understanding the underlying mechanisms of WSSV infection is important for disease control and breeding in shrimp aquaculture.


Subject(s)
DNA-Binding Proteins , Endosomal Sorting Complexes Required for Transport , Penaeidae , Virus Replication , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/physiology , White spot syndrome virus 1/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Penaeidae/virology , Penaeidae/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Endosomes/metabolism , Endosomes/virology , Hemocytes/virology , Hemocytes/metabolism , Host-Pathogen Interactions , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , RNA Interference
4.
Cells ; 13(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38891055

ABSTRACT

Intracellular cargo delivery via distinct transport routes relies on vesicle carriers. A key trafficking route distributes cargo taken up by clathrin-mediated endocytosis (CME) via early endosomes. The highly dynamic nature of the endosome network presents a challenge for its quantitative analysis, and theoretical modelling approaches can assist in elucidating the organization of the endosome trafficking system. Here, we introduce a new computational modelling approach for assessment of endosome distributions. We employed a model of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with inherited mutations causing dilated cardiomyopathy (DCM). In this model, vesicle distribution is defective due to impaired CME-dependent signaling, resulting in plasma membrane-localized early endosomes. We recapitulated this in iPSC-CMs carrying two different mutations, TPM1-L185F and TnT-R141W (MUT), using 3D confocal imaging as well as super-resolution STED microscopy. We computed scaled distance distributions of EEA1-positive vesicles based on a spherical approximation of the cell. Employing this approach, 3D spherical modelling identified a bi-modal segregation of early endosome populations in MUT iPSC-CMs, compared to WT controls. Moreover, spherical modelling confirmed reversion of the bi-modal vesicle localization in RhoA II-treated MUT iPSC-CMs. This reflects restored, homogeneous distribution of early endosomes within MUT iPSC-CMs following rescue of CME-dependent signaling via RhoA II-dependent RhoA activation. Overall, our approach enables assessment of early endosome distribution in cell-based disease models. This new method may provide further insight into the dynamics of endosome networks in different physiological scenarios.


Subject(s)
Endosomes , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Humans , Induced Pluripotent Stem Cells/metabolism , Endosomes/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Endocytosis , Mutation/genetics , Computer Simulation , rhoA GTP-Binding Protein/metabolism , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Imaging, Three-Dimensional , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Models, Biological , Tropomyosin/metabolism , Tropomyosin/genetics
5.
Front Cell Infect Microbiol ; 14: 1394019, 2024.
Article in English | MEDLINE | ID: mdl-38841112

ABSTRACT

Introduction: Coxiella burnetii is a gram-negative obligate intracellular bacterium and a zoonotic pathogen that causes human Q fever. The lack of effective antibiotics and a licensed vaccine for Coxiella in the U.S. warrants further research into Coxiella pathogenesis. Within the host cells, Coxiella replicates in an acidic phagolysosome-like vacuole termed Coxiella-containing vacuole (CCV). Previously, we have shown that the CCV pH is critical for Coxiella survival and that the Coxiella Type 4B secretion system regulates CCV pH by inhibiting the host endosomal maturation pathway. However, the trafficking pattern of the 'immature' endosomes in Coxiella- infected cells remained unclear. Methods: We transfected HeLa cells with GFP-tagged Rab proteins and subsequently infected them with mCherry-Coxiella to visualize Rab protein localization. Infected cells were immunostained with anti-Rab antibodies to confirm the Rab localization to the CCV, to quantitate Rab11a and Rab35- positive CCVs, and to quantitate total recycling endosome content of infected cells. A dual-hit siRNA mediated knockdown combined with either immunofluorescent assay or an agarose-based colony-forming unit assay were used to measure the effects of Rab11a and Rab35 knockdown on CCV area and Coxiella intracellular growth. Results: The CCV localization screen with host Rab proteins revealed that recycling endosome-associated proteins Rab11a and Rab35 localize to the CCV during infection, suggesting that CCV interacts with host recycling endosomes during maturation. Interestingly, only a subset of CCVs were Rab11a or Rab35-positive at any given time point. Quantitation of Rab11a/Rab35-positive CCVs revealed that while Rab11a interacts with the CCV more at 3 dpi, Rab35 is significantly more prevalent at CCVs at 6 dpi, suggesting that the CCV preferentially interacts with Rab11a and Rab35 depending on the stage of infection. Furthermore, we observed a significant increase in Rab11a and Rab35 fluorescent intensity in Coxiella-infected cells compared to mock, suggesting that Coxiella increases the recycling endosome content in infected cells. Finally, siRNA-mediated knockdown of Rab11a and Rab35 resulted in significantly smaller CCVs and reduced Coxiella intracellular growth, suggesting that recycling endosomal Rab proteins are essential for CCV expansion and bacterial multiplication. Discussion: Our data, for the first time, show that the CCV dynamically interacts with host recycling endosomes for Coxiella intracellular survival and potentially uncovers novel host cell factors essential for Coxiella pathogenesis.


Subject(s)
Coxiella burnetii , Endosomes , Host-Pathogen Interactions , Vacuoles , rab GTP-Binding Proteins , Coxiella burnetii/metabolism , Coxiella burnetii/growth & development , Coxiella burnetii/genetics , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Humans , Vacuoles/metabolism , Vacuoles/microbiology , HeLa Cells , Endosomes/metabolism , Endosomes/microbiology , Q Fever/microbiology , Q Fever/metabolism
6.
bioRxiv ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38903077

ABSTRACT

Dynein cytoplasmic 1 light intermediate chain 1 (LIC1, DYNC1LI1) is a core subunit of the dynein motor complex. The LIC1 subunit also interacts with various cargo adaptors to regulate Rab-mediated endosomal recycling and lysosomal degradation. Defects in this gene are predicted to alter dynein motor function, Rab binding capabilities, and cytoplasmic cargo trafficking. Here, we have identified a dync1li1 zebrafish mutant, harboring a premature stop codon at the exon 12/13 splice acceptor site, that displays increased angiogenesis. In vitro, LIC1-deficient human endothelial cells display increases in cell surface levels of the pro-angiogenic receptor VEGFR2, SRC phosphorylation, and Rab11-mediated endosomal recycling. In vivo, endothelial-specific expression of constitutively active Rab11a leads to excessive angiogenesis, similar to the dync1li1 mutants. Increased angiogenesis is also evident in zebrafish harboring mutations in rilpl1/2, the adaptor proteins that promote Rab docking to Lic1 to mediate lysosomal targeting. These findings suggest that LIC1 and the Rab-adaptor proteins RILPL1 and 2 restrict angiogenesis by promoting degradation of VEGFR2-containing recycling endosomes. Disruption of LIC1- and RILPL1/2-mediated lysosomal targeting increases Rab11-mediated recycling endosome activity, promoting excessive SRC signaling and angiogenesis.

7.
bioRxiv ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38895253

ABSTRACT

Rab4 GTPase organizes endosomal sorting essential for maintaining the balance between recycling and degradative pathways. Rab4 localizes to many cargos whose transport in neurons is critical for regulating neurotransmission and neuronal health. Furthermore, elevated Rab4 levels in the CNS are associated with synaptic atrophy and neurodegeneration in Drosophila and humans, respectively. However, how the transport of Rab4-associated vesicles is regulated in neurons remains unknown. Using in vivo time-lapse imaging of Drosophila larvae, we show that activation of insulin signaling via Dilp2 and dInR increases the anterograde velocity, run length, and flux of Rab4 vesicles in the axons. Molecularly, we show that activation of neuronal insulin signaling further activates Vps34, elevates the levels of PI(3)P on Rab4-associated vesicles, recruits Klp98A (a PI(3)P-binding kinesin-3 motor) and activates their anterograde transport. Together, these observations delineate the role of insulin signaling in regulating axonal transport and synaptic homeostasis.

8.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928424

ABSTRACT

The SLC35 (Solute Carrier 35) family members acting as nucleotide sugar transporters are typically localized in the endoplasmic reticulum or Golgi apparatus. It is, therefore, intriguing that some reports document the presence of orphan transporters SLC35F1 and SLC35F6 within the endosomal and lysosomal system. Here, we compared the subcellular distribution of these proteins and found that they are concentrated in separate compartments; i.e., recycling endosomes for SLC35F1 and lysosomes for SLC35F6. Swapping the C-terminal tail of these proteins resulted in a switch of localization, with SLC35F1 being trafficked to lysosomes while SLC35F6 remained in endosomes. This suggested the presence of specific sorting signals in these C-terminal regions. Using site-directed mutagenesis, fluorescence microscopy, and cell surface biotinylation assays, we found that the EQERLL360 signal located in the cytoplasmic tail of human SLC35F6 is involved in its lysosomal sorting (as previously shown for this conserved sequence in mouse SLC35F6), and that SLC35F1 localization in the recycling pathway depends on two YXXΦ-type signals: a Y367KQF sequence facilitates its internalization from the plasma membrane, while a Y392TSL motif prevents its transport to lysosomes, likely by promoting SLC35F1 recycling to the cell surface. Taken together, these results support that some SLC35 members may function at different levels of the endosomal and lysosomal system.


Subject(s)
Endosomes , Lysosomes , Humans , Amino Acid Sequence , Cell Membrane/metabolism , Endosomes/metabolism , Golgi Apparatus/metabolism , HEK293 Cells , HeLa Cells , Lysosomes/metabolism , Nucleotide Transport Proteins/metabolism , Nucleotide Transport Proteins/genetics , Protein Sorting Signals , Protein Transport
9.
Bio Protoc ; 14(9): e4979, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38737505

ABSTRACT

The cation-independent mannose 6-phosphate receptors (CI-M6PR) bind newly synthesized mannose 6-phosphate (Man-6-P)-tagged enzymes in the Golgi and transport them to late endosomes/lysosomes, providing them with degradative functions. Following the cargo delivery, empty receptors are recycled via early/recycling endosomes back to the trans-Golgi network (TGN) retrogradely in a dynein-dependent motion. One of the most widely used methods for studying the retrograde trafficking of CI-M6PR involves employing the CD8α-CI-M6PR chimera. This chimera, comprising a CD8 ectodomain fused with the cytoplasmic tail of the CI-M6PR receptor, allows for labeling at the plasma membrane, followed by trafficking only in a retrograde direction. Previous studies utilizing the CD8α-CI-M6PR chimera have focused mainly on colocalization studies with various endocytic markers under steady-state conditions. This protocol extends the application of the CD8α-CI-M6PR chimera to live cell imaging, followed by a quantitative analysis of its motion towards the Golgi. Additionally, we present an approach to quantify parameters such as speed and track lengths associated with the motility of CD8α-CI-M6PR endosomes using the Fiji plugin TrackMate. Key features • This assay is adapted from the methodology by Prof. Matthew Seaman for studying the retrograde trafficking of CI-M6PR by expressing CD8α-CI-M6PR chimera in HeLa cells. • The experiments include live-cell imaging of surface-labeled CD8α-CI-M6PR molecules, followed by a chase in cells. • Allows the monitoring of real-time motion of CD8α-CI-M6PR endosomes and facilitates calculation of kinetic parameters associated with endosome trajectories, e.g., speed and distance (run lengths).

10.
Front Microbiol ; 15: 1393127, 2024.
Article in English | MEDLINE | ID: mdl-38690369

ABSTRACT

Bovine respiratory syncytial virus (BRSV) is an RNA virus with envelope that causes acute, febrile, and highly infectious respiratory diseases in cattle. However, the manner and mechanism of BRSV entry into cells remain unclear. In this study, we aimed to explore the entry manner of BRSV into MDBK cells and its regulatory mechanism. Our findings, based on virus titer, virus copies, western blot and IFA analysis, indicate that BRSV enters MDBK cells through endocytosis, relying on dynamin, specifically via clathrin-mediated endocytosis rather than caveolin-mediated endocytosis and micropinocytosis. We observed that the entered BRSV initially localizes in early endosomes and subsequently localizes in late endosomes. Additionally, our results of western blot, virus titer and virus copies demonstrate that BRSV entry through clathrin-mediated endocytosis is regulated by PI3K-Akt and Src-JNK signaling pathways. Overall, our study suggests that BRSV enters MDBK cells through clathrin-mediated endocytosis, entered BRSV is trafficked to late endosome via early endosome, BRSV entry through clathrin-mediated endocytosis is regulated by PI3K-Akt and Src-JNK signaling pathways.

11.
FEBS J ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38706230

ABSTRACT

In eukaryotes, the spatiotemporal control of endolysosomal organelles is central to the maintenance of homeostasis. By providing an interface between the cytoplasm and external environment, the endolysosomal system is placed at the forefront of the response to a wide range of stresses faced by cells. Endosomes are equipped with a dedicated set of membrane-associated proteins that ensure endosomal functions as well as crosstalk with the secretory or the autophagy pathways. Morphodynamical processes operate through local spatialization of subdomains, enabling specific remodeling and membrane contact capabilities. Consequently, the plasticity of endolysosomal organelles can be considered a robust and flexible tool exploited by cells to cope with homeostatic deviations. In this review, we provide insights into how the cellular responses to various stresses (osmotic, UV, nutrient deprivation, or pathogen infections) rely on the adaptation of the endolysosomal system morphodynamics.

12.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791143

ABSTRACT

In all cell types, small EVs, very abundant extracellular vesicles, are generated and accumulated within MVB endocytic cisternae. Upon MVB fusion and exocytosis with the plasma membrane, the EVs are released to the extracellular space. In the central nervous system, the release of neuronal EVs was believed to occur only from the surface of the body and dendrites. About 15 years ago, MVB cisternae and EVs were shown to exist and function at synaptic boutons, the terminals' pre- and post-synaptic structures essential for canonical neurotransmitter release. Recent studies have revealed that synaptic EVs are peculiar in many respects and heterogeneous with respect to other neuronal EVs. The distribution of synaptic EVs and the effect of their specific molecules are found at critical sites of their distribution. The role of synaptic EVs could consist of the modulation of canonical neurotransmitter release or a distinct, non-canonical form of neurotransmission. Additional roles of synaptic EVs are still not completely known. In the future, additional investigations will clarify the role of synaptic EVs in pathology, concerning, for example, circuits, trans-synaptic transmission, diagnosis and the therapy of diseases.


Subject(s)
Extracellular Vesicles , Neurons , Signal Transduction , Synapses , Synaptic Transmission , Humans , Extracellular Vesicles/metabolism , Animals , Neurons/metabolism , Synapses/metabolism , Exocytosis , Neurotransmitter Agents/metabolism , Synaptic Vesicles/metabolism
13.
Virol Sin ; 39(3): 501-512, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38789039

ABSTRACT

The infection caused by porcine epidemic diarrhea virus (PEDV) is associated with high mortality in piglets worldwide. Host factors involved in the efficient replication of PEDV, however, remain largely unknown. Our recent proteomic study in the virus-host interaction network revealed a significant increase in the accumulation of CALML5 (EF-hand protein calmodulin-like 5) following PEDV infection. A further study unveiled a biphasic increase of CALML5 in 2 and 12 â€‹h after viral infection. Similar trends were observed in the intestines of piglets in the early and late stages of the PEDV challenge. Moreover, CALML5 depletion reduced PEDV mRNA and protein levels, leading to a one-order-of-magnitude decrease in virus titer. At the early stage of PEDV infection, CALML5 affected the endosomal trafficking pathway by regulating the expression of endosomal sorting complex related cellular proteins. CALML5 depletion also suppressed IFN-ß and IL-6 production in the PEDV-infected cells, thereby indicating its involvement in negatively regulating the innate immune response. Our study reveals the biological function of CALML5 in the virology field and offers new insights into the PEDV-host cell interaction.


Subject(s)
Calmodulin , Endosomes , Immunity, Innate , Porcine epidemic diarrhea virus , Virus Replication , Animals , Porcine epidemic diarrhea virus/immunology , Porcine epidemic diarrhea virus/physiology , Swine , Calmodulin/metabolism , Calmodulin/genetics , Endosomes/metabolism , Endosomes/virology , Host-Pathogen Interactions/immunology , Swine Diseases/virology , Swine Diseases/immunology , Vero Cells , Chlorocebus aethiops , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Interferon-beta/genetics , Interferon-beta/immunology , Interferon-beta/metabolism
14.
Genetics ; 227(3)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38752295

ABSTRACT

Cryptococcus neoformans is a fungal pathogen of the top critical priority recognized by the World Health Organization. This clinically important fungus also serves as a eukaryotic model organism. A variety of resources have been generated to facilitate investigation of the C. neoformans species complex, including congenic pairs, well-annotated genomes, genetic editing tools, and gene deletion sets. Here, we generated a set of strains with all major organelles fluorescently marked. We tested short organelle-specific targeting sequences and successfully labeled the following organelles by fusing the targeting sequences with a fluorescence protein: the plasma membrane, the nucleus, the peroxisome, and the mitochondrion. We used native cryptococcal Golgi and late endosomal proteins fused with a fluorescent protein to label these two organelles. These fluorescence markers were verified via colocalization using organelle-specific dyes. All the constructs for the fluorescent protein tags were integrated in an intergenic safe haven region. These organelle-marked strains were examined for growth and various phenotypes. We demonstrated that these tagged strains could be employed to track cryptococcal interaction with the host in phagocytosis assays. These strains also allowed us to discover remarkable differences in the dynamics of proteins targeted to different organelles during sexual reproduction. Additionally, we revealed that "dormant" spores transcribed and synthesized their own proteins and trafficked the proteins to the appropriate subcellular compartments, demonstrating that spores are metabolically active. We anticipate that these newly generated fluorescent markers will greatly facilitate further investigation of cryptococcal biology and pathogenesis.


Subject(s)
Cryptococcus neoformans , Cryptococcus neoformans/genetics , Cryptococcus neoformans/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Animals , Cryptococcosis/microbiology , Phagocytosis , Mice , Organelles/metabolism , Mitochondria/metabolism , Mitochondria/genetics
15.
Biochim Biophys Acta Mol Cell Res ; 1871(6): 119748, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38723678

ABSTRACT

The Ser/Thr kinase protein kinase-D1 (PKD1) is involved in induction of various cell physiological processes in the heart such as myocellular hypertrophy and inflammation, which may turn maladaptive during long-term stimulation. Of special interest is a key role of PKD1 in the regulation of cardiac substrate metabolism. Glucose and fatty acids are the most important substrates for cardiac energy provision, and the ratio at which they are utilized determines the health status of the heart. Cardiac glucose uptake is mainly regulated by translocation of the glucose transporter GLUT4 from intracellular stores (endosomes) to the sarcolemma, and fatty acid uptake via a parallel translocation of fatty acid transporter CD36 from endosomes to the sarcolemma. PKD1 is involved in the regulation of GLUT4 translocation, but not CD36 translocation, giving it the ability to modulate glucose uptake without affecting fatty acid uptake, thereby altering the cardiac substrate balance. PKD1 would therefore serve as an attractive target to combat cardiac metabolic diseases with a tilted substrate balance, such as diabetic cardiomyopathy. However, PKD1 activation also elicits cardiac hypertrophy and inflammation. Therefore, identification of the events upstream and downstream of PKD1 may provide superior therapeutic targets to alter the cardiac substrate balance. Recent studies have identified the lipid kinase phosphatidylinositol 4-kinase IIIß (PI4KIIIß) as signaling hub downstream of PKD1 to selectively stimulate GLUT4-mediated myocardial glucose uptake without inducing hypertrophy. Taken together, the PKD1 signaling pathway serves a pivotal role in cardiac glucose metabolism and is a promising target to selectively modulate glucose uptake in cardiac disease.


Subject(s)
Glucose Transporter Type 4 , Glucose , Myocardium , Protein Kinase C , Protein Transport , Signal Transduction , Glucose Transporter Type 4/metabolism , Humans , Myocardium/metabolism , Animals , Protein Kinase C/metabolism , Protein Kinase C/genetics , Glucose/metabolism , CD36 Antigens/metabolism , CD36 Antigens/genetics , Fatty Acids/metabolism
16.
Kidney Int ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797325

ABSTRACT

ZFYVE21 is an ancient, endosome-associated protein that is highly expressed in endothelial cells (ECs) but whose function(s) in vivo are undefined. Here, we identified ZFYVE21 as an essential regulator of vascular barrier function in the aging kidney. ZFYVE21 levels significantly decline in ECs in aged human and mouse kidneys. To investigate attendant effects, we generated EC-specific Zfyve21-/- reporter mice. These knockout mice developed accelerated aging phenotypes including reduced endothelial nitric oxide (ENOS) activity, failure to thrive, and kidney insufficiency. Kidneys from Zfyve21 EC-/- mice showed interstitial edema and glomerular EC injury. ZFYVE21-mediated phenotypes were not programmed developmentally as loss of ZFYVE21 in ECs during adulthood phenocopied its loss prenatally, and a nitric oxide donor normalized kidney function in adult hosts. Using live cell imaging and human kidney organ cultures, we found that in a GTPase Rab5- and protein kinase Akt-dependent manner, ZFYVE21 reduced vesicular levels of inhibitory caveolin-1 and promoted transfer of Golgi-derived ENOS to a perinuclear Rab5+ vesicular population to functionally sustain ENOS activity. Thus, our work defines a ZFYVE21- mediated trafficking mechanism sustaining ENOS activity and demonstrates the relevance of this pathway for maintaining kidney function with aging.

17.
Biochem Soc Trans ; 52(3): 1233-1241, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38747700

ABSTRACT

PROPPINs constitute a conserved protein family with multiple members being expressed in many eukaryotes. PROPPINs have mainly been investigated for their role in autophagy, where they co-operate with several core factors for autophagosome formation. Recently, novel functions of these proteins on endo-lysosomal compartments have emerged. PROPPINs support the division of these organelles and the formation of tubulo-vesicular cargo carriers that mediate protein exit from them, such as those generated by the Retromer coat. In both cases, PROPPINs provide membrane fission activity. Integrating information from yeast and human cells this review summarizes the most important molecular features that allow these proteins to facilitate membrane fission and thus provide a critical element to endo-lysosomal protein traffic.


Subject(s)
Autophagy , Endosomes , Lysosomes , Humans , Lysosomes/metabolism , Autophagy/physiology , Endosomes/metabolism , Animals , Protein Transport , Intracellular Membranes/metabolism
18.
Front Mol Neurosci ; 17: 1009404, 2024.
Article in English | MEDLINE | ID: mdl-38660384

ABSTRACT

Brain-derived neurotrophic factor (BDNF) and its tropomyosin receptor kinase B (TrkB) are important signaling proteins that regulate dendritic growth and maintenance in the central nervous system (CNS). After binding of BDNF, TrkB is endocytosed into endosomes and continues signaling within the cell soma, dendrites, and axon. In previous studies, we showed that BDNF signaling initiated in axons triggers long-distance signaling, inducing dendritic arborization in a CREB-dependent manner in cell bodies, processes that depend on axonal dynein and TrkB activities. The binding of BDNF to TrkB triggers the activation of different signaling pathways, including the ERK, PLC-γ and PI3K-mTOR pathways, to induce dendritic growth and synaptic plasticity. How TrkB downstream pathways regulate long-distance signaling is unclear. Here, we studied the role of PLC-γ-Ca2+ in BDNF-induced long-distance signaling using compartmentalized microfluidic cultures. We found that dendritic branching and CREB phosphorylation induced by axonal BDNF stimulation require the activation of PLC-γ in the axons of cortical neurons. Locally, in axons, BDNF increases PLC-γ phosphorylation and induces intracellular Ca2+ waves in a PLC-γ-dependent manner. In parallel, we observed that BDNF-containing signaling endosomes transport to the cell body was dependent on PLC-γ activity and intracellular Ca2+ stores. Furthermore, the activity of PLC-γ is required for BDNF-dependent TrkB endocytosis, suggesting a role for the TrkB/PLC-γ signaling pathway in axonal signaling endosome formation.

19.
J Photochem Photobiol B ; 255: 112919, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677261

ABSTRACT

Endolysosomes perform a wide range of cellular functions, including nutrient sensing, macromolecule digestion and recycling, as well as plasma membrane repair. Because of their high activity in cancerous cells, endolysosomes are attractive targets for the development of novel cancer treatments. Light-activated compounds termed photosensitizers (PS) can catalyze the oxidation of specific biomolecules and intracellular organelles. To selectively damage endosomes and lysosomes, HT-29 colorectal cancer cells were incubated with nanomolar concentrations of meso-tetraphenylporphine disulfonate (TPPS2a), an amphiphilic PS taken up via endocytosis and activated by green light (522 nm, 2.1 J.cm-1). Several cellular responses were characterized by a combination of immunofluorescence and immunoblotting assays. We showed that TPPS2a photosensitization blocked autophagic flux without extensive endolysosomal membrane rupture. Nevertheless, there was a severe functional failure of endolysosomes due to a decrease in CTSD (cathepsin D, 55%) and CTSB (cathepsin B, 52%) maturation. PSAP (prosaposin) processing (into saposins) was also considerably impaired, a fact that could be detrimental to glycosphingolipid homeostasis. Therefore, photosensitization of HT-29 cells previously incubated with a low concentration of TPPS2a promotes endolysosomal dysfunction, an effect that can be used to improve cancer therapies.


Subject(s)
Autophagy , Lysosomes , Photosensitizing Agents , Humans , HT29 Cells , Lysosomes/metabolism , Lysosomes/drug effects , Autophagy/drug effects , Autophagy/radiation effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Endosomes/metabolism , Endosomes/drug effects , Cathepsins/metabolism , Cathepsins/antagonists & inhibitors , Light , Porphyrins/pharmacology , Porphyrins/chemistry , Cathepsin D/metabolism , Cathepsin B/metabolism
20.
Genetics ; 227(2)2024 06 05.
Article in English | MEDLINE | ID: mdl-38581414

ABSTRACT

In humans, MAPK8IP3 (also known as JIP3) is a neurodevelopmental disorder-associated gene. In Caenorhabditis elegans, the UNC-16 ortholog of the MAPK8IP3 protein can regulate the termination of axon growth. However, its role in this process is not well understood. Here, we report that UNC-16 promotes axon termination through a process that includes the LRK-1 (LRRK-1/LRRK-2) kinase and the WDFY-3 (WDFY3/Alfy) selective autophagy protein. Genetic analysis suggests that UNC-16 promotes axon termination through an interaction between its RH1 domain and the dynein complex. Loss of unc-16 function causes accumulation of late endosomes specifically in the distal axon. Moreover, we observe synergistic interactions between loss of unc-16 function and disruptors of endolysosomal function, indicating that the endolysosomal system promotes axon termination. We also find that the axon termination defects caused by loss of UNC-16 function require the function of a genetic pathway that includes lrk-1 and wdfy-3, 2 genes that have been implicated in autophagy. These observations suggest a model where UNC-16 promotes axon termination by interacting with the endolysosomal system to regulate a pathway that includes LRK-1 and WDFY-3.


Subject(s)
Axons , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Endosomes , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Axons/metabolism , Endosomes/metabolism , Autophagy , Dyneins/metabolism , Dyneins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Protein Serine-Threonine Kinases , Adaptor Proteins, Signal Transducing
SELECTION OF CITATIONS
SEARCH DETAIL
...