Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.739
Filter
1.
Front Microbiol ; 15: 1463335, 2024.
Article in English | MEDLINE | ID: mdl-39360328

ABSTRACT

Introduction: Poor graft function (PGF), characterized by myelosuppression, represents a significant challenge following allogeneic hematopoietic stem cell transplantation (allo-HSCT) with human cytomegalovirus (HCMV) being established as a risk factor for PGF. However, the underlying mechanism remains unclear. Bone marrow endothelial progenitor cells (BM-EPCs) play an important role in supporting hematopoiesis and their dysfunction contributes to PGF development. We aim to explore the effects of CMV on BM-EPCs and its underlying mechanism. Methods: We investigated the compromised functionality of EPCs derived from individuals diagnosed with HCMV viremia accompanied by PGF, as well as after infected by HCMV AD 169 strain in vitro, characterized by decreased cell proliferation, tube formation, migration and hematopoietic support, and increased apoptosis and secretion of TGF-ß1. Results: We demonstrated that HCMV-induced TGF-ß1 secretion by BM-EPCs played a dominant role in hematopoiesis suppression in vitro experiment. Moreover, HCMV down-regulates Vitamin D receptor (VDR) and subsequently activates p38 MAPK pathway to promote TGF-ß1 secretion by BM-EPCs. Discussion: HCMV could infect BM-EPCs and lead to their dysfunction. The secretion of TGF-ß1 by BM-EPCs is enhanced by CMV through the activation of p38 MAPK via a VDR-dependent mechanism, ultimately leading to compromised support for hematopoietic progenitors by BM EPCs, which May significantly contribute to the pathogenesis of PGF following allo-HSCT and provide innovative therapeutic strategies targeting PGF.

2.
Mol Med Rep ; 30(6)2024 Dec.
Article in English | MEDLINE | ID: mdl-39364751

ABSTRACT

The present study aimed to investigate the role of microRNA (miR)­221­3p in endothelial progenitor cells (EPCs) treated with lipoprotein(a) [LP(a)]. EPCs were identified using immunofluorescence assays and miR­221­3p levels were measured using reverse transcription­quantitative PCR. EPC migration was detected using Transwell assays, proliferation was measured by staining with 5­ethynyl­2'­deoxyuridine and adhesion was assessed by microscopy. Flow cytometry was used to measure apoptosis and protein expression was detected using western blotting. A dual­luciferase reporter assay was used to confirm the target interactions. The proliferation, migration, adhesion and angiogenesis of EPCs were decreased, and apoptosis was increased after treatment with LP(a). These effects were weakened by transfection with miR­221­3p inhibitor. The negative effects of LP(a) on EPCs were also weakened by overexpression of silent information regulator 1 (SIRT1). Inhibition of the RAF/MEK/ERK signaling pathway blocked the effects of SIRT1 overexpression. In conclusion, miR­221­3p inhibitor transfection activated the RAF/MEK/ERK signaling pathway through SIRT1, promoted the proliferation, migration, adhesion and angiogenesis of EPCs, and reduced apoptosis.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Endothelial Progenitor Cells , Lipoprotein(a) , MAP Kinase Signaling System , MicroRNAs , Sirtuin 1 , MicroRNAs/genetics , MicroRNAs/metabolism , Endothelial Progenitor Cells/metabolism , Sirtuin 1/metabolism , Sirtuin 1/genetics , Apoptosis/genetics , Humans , Lipoprotein(a)/metabolism , Down-Regulation , raf Kinases/metabolism , raf Kinases/genetics , Cell Adhesion/genetics , Neovascularization, Physiologic/genetics , Cells, Cultured , Signal Transduction , Animals , Angiogenesis
3.
Ann Med ; 56(1): 2404186, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39283034

ABSTRACT

BACKGROUND: Diabetic foot ulcers (DFUs) are a common and serious complication of diabetes, often leading to amputation and decreased quality of life. Current treatment methods have limited success rates, highlighting the need for new approaches. This study investigates the potential of tibial transverse transport (TTT) to promote wound healing in DFUs. METHODS: To test this hypothesis, the study used New Zealand White rabbits to establish a diabetic model and simulate foot ulcers, followed by the treatment of unilateral TTT or bilateral TTT. The study employed histological analysis, flow cytometry, ELISA, and qPCR to assess the impact of TTT on tissue repair and endothelial progenitor cell (EPC) mobilization and homing, aiming to understand the underlying biological processes in wound healing. RESULTS: TTT significantly enhanced wound healing in diabetic rabbit foot ulcers. Specifically, bilateral TTT led to complete wound healing by day 19, faster than the unilateral TTT group, which healed by day 26, and the sham operation group, which nearly healed by day 37. Histological analysis showed improved tissue architecture, collagen deposition, and neovascularization in TTT-treated groups. Furthermore, TTT treatment resulted in a significant increase in VEGFR2 expression and VEGFR2/Tie-2 positive cells, particularly in the bilateral group. These findings were corroborated by qPCR results, which showed increased expression of VEGFA and CXCL12 by TTT. Conclusions: TTT may be a promising treatment for DFUs, significantly enhancing wound healing by stimulating EPC mobilization and homing mediated angiogenesis. This novel approach could substantially improve treatment outcomes for diabetic patients with chronic foot ulcers.


TTT accelerates wound healing in diabetic rabbit instep ulcers, with both unilateral and bilateral surgeries effective, and bilateral TTT showing enhanced efficacy.TTT boosts angiogenesis and collagen fiber formation, leading to increased granulation tissue and re-epithelialization of wounds.TTT induces the mobilization and homing of endothelial progenitor cells to promote angiogenesis and wound healing.


Subject(s)
Diabetic Foot , Endothelial Progenitor Cells , Neovascularization, Physiologic , Wound Healing , Animals , Diabetic Foot/therapy , Diabetic Foot/physiopathology , Diabetic Foot/pathology , Rabbits , Endothelial Progenitor Cells/metabolism , Tibia/pathology , Disease Models, Animal , Male , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/physiopathology , Cell Movement
4.
Stem Cell Res Ther ; 15(1): 295, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39256862

ABSTRACT

BACKGROUND: Premature infants requiring mechanical ventilation and supplemental oxygen for respiratory support are at increased risk for bronchopulmonary dysplasia (BPD), wherein inflammation have been proposed as a driver of hyperoxia-induced injuries, including persistent loss of endothelial progenitor cells (EPCs), impaired vascularization and eventual alveolar simplification in BPD lungs. However, the underlying mechanisms linking these phenomena remain poorly defined. METHODS: We used clodronate liposomes to deplete macrophages in a mouse model of neonatal hyperoxia-induced lung injury to evaluate if EPC loss in BPD lungs could be an effect of macrophage infiltration. We further generated in vitro culture systems initiated with cord blood (CB)-derived CD34+ EPCs and neonatal macrophages either polarized from CB-derived monocytes or isolated from tracheal aspirates of human preterm infants requiring mechanical ventilation and oxygen supplementation, to identify EV-transmitted molecular mechanism that is critical for inhibitory actions of hyperoxic macrophages on EPCs. RESULTS: Initial experiments using mouse model identified the crucial role of macrophage infiltration in eliciting significant reduction of c-Kit+ EPCs in BPD lungs. Further examination of this concept in human system, we found that hyperoxia-exposed neonatal macrophages hamper human CD34+ EPC maintenance and impair endothelial function in the differentiated progeny via the EV transmission of miR-23a-3p. Notably, treatment with antagomiR-23a-3p to silence miR-23a-3p in vivo enhances c-Kit+ EPC maintenance, and increases capillary density, and consequently mitigates simplified alveolarization in BPD lungs. CONCLUSION: Our findings highlight the importance of pulmonary intercellular communication in the pathophysiology of BPD, by identifying a linkage through vesicle transfer of miR-23a-3p from hyperoxic macrophages to EPCs, and thus demonstrating potential for novel therapeutic target in BPD.


Subject(s)
Endothelial Progenitor Cells , Extracellular Vesicles , Hyperoxia , Lung Injury , Macrophages , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Animals , Endothelial Progenitor Cells/metabolism , Hyperoxia/metabolism , Extracellular Vesicles/metabolism , Mice , Macrophages/metabolism , Lung Injury/pathology , Lung Injury/metabolism , Infant, Newborn , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/pathology , Bronchopulmonary Dysplasia/genetics , Animals, Newborn , Disease Models, Animal
5.
Int J Mol Sci ; 25(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39337516

ABSTRACT

Adult stem cell therapy via intramyocardial injection of autologous CD34+ stem cells has been shown to improve exercise capacity and reduce angina frequency and mortality in patients with refractory angina (RA). However, the cost of such therapy is a limitation to its adoption in clinical practice. Our goal was to determine whether the less costly, less invasive, and widely accessible, FDA-approved alternative treatment for RA patients, known as enhanced external counterpulsation (EECP), mobilizes endogenous CD34+ stem cells and whether such mobilization is associated with the clinical benefits seen with intramyocardial injection. We monitored changes in circulating levels of CD34+/CD133+ and CD34+/KDR+ cells in RA patients undergoing EECP therapy and in a comparator cohort of RA patients undergoing an exercise regimen known as cardiac rehabilitation. Changes in exercise capacity in both cohorts were monitored by measuring treadmill times (TT), double product (DP) scores, and Canadian Cardiovascular Society (CCS) angina scores between pre- and post-treatment treadmill stress tests. Circulating levels of CD34+/CD133+ cells increased in patients undergoing EECP and were significant (ß = -2.38, p = 0.012) predictors of improved exercise capacity in these patients. CD34+/CD133+ cells isolated from RA patients could differentiate into endothelial cells, and their numbers increased during EECP therapy. Our results support the hypothesis that mobilized CD34+/CD133+ cells repair vascular damage and increase collateral circulation in RA patients. They further support clinical interventions that can mobilize adult CD34+ stem cells as therapy for patients with RA and other vascular diseases.


Subject(s)
AC133 Antigen , Angina Pectoris , Antigens, CD34 , Counterpulsation , Endothelial Progenitor Cells , Humans , AC133 Antigen/metabolism , Antigens, CD34/metabolism , Female , Male , Angina Pectoris/therapy , Angina Pectoris/blood , Angina Pectoris/metabolism , Middle Aged , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/cytology , Aged , Counterpulsation/methods , Hematopoietic Stem Cell Mobilization/methods
6.
Arthritis Res Ther ; 26(1): 170, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342288

ABSTRACT

INTRODUCTION: Endothelial progenitor cells (EPCs) are essential for maintenance of vascular homeostasis and stability, key processes in the pathogenesis of systemic lupus erythematosus (SLE). However, the role and phenotypic characterization of EPCs populations in SLE have not been completely elucidated. OBJECTIVE: To identify EPCs specific subpopulations in patients with SLE using a novel flow cytometry tool. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from patients with SLE and healthy controls (HC). mRNA and surface protein expression were determined by quantitative PCR (qPCR) and flow cytometry. Clusters identification and characterization were performed using tSNE-CUDA dimensionality reduction algorithms. RESULTS: tSNE-CUDA analysis identified eight different clusters in PBMCs from HC and patients with SLE. Three of these clusters had EPC-like phenotype and the expression was elevated in patients with SLE. Moreover, four SLE-associated subclusters were found mainly expressed in patients with SLE, being only present in patients in remission with SLE and significantly associated with the 2021 Definition of Remission in SLE. Importantly, we also identified specific clusters in SLE patients with organ damage, according to the Systemic Lupus International Collaborating Clinics (SLICC)/American College of Rheumatology damage index (SDI). These clusters showed an EPC-like phenotype, but the expression of angiogenic markers was lower compared to HC or patients without organ damage, suggesting an impaired angiogenic function. CONCLUSION: Our novel approach identified clusters of EPCs in patients with SLE that are associated with remission and damage. Therefore, these clusters might be useful biomarkers to predict disease progression and severity in SLE pathogenesis.


Subject(s)
Biomarkers , Endothelial Progenitor Cells , Flow Cytometry , Lupus Erythematosus, Systemic , Humans , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/blood , Endothelial Progenitor Cells/metabolism , Female , Biomarkers/metabolism , Adult , Male , Middle Aged , Flow Cytometry/methods , Remission Induction , Leukocytes, Mononuclear/metabolism
7.
J Immunoassay Immunochem ; 45(5): 481-491, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39135454

ABSTRACT

Multiple myeloma (MM) is a prevalent yet incurable hematologic malignancy. Despite the proven efficacy of proteasome inhibitors in treating MM, resistance to Bortezomib-based treatments persists in a subset of patients. This case control study explores the potential of circulating endothelial progenitor cells (EPCs) as biomarkers for predicting response to Proteasome Inhibitor based therapy combined with Dexamethasone in MM patients. This study was conducted on 105 MM patients receiving bortezomib plus dexamethasone therapy and 90 healthy individuals as a control group. Utilizing 8-color multi-parameter flow cytometry, we assessed the levels of circulating EPCs, identified through CD34 FITC and CD309 PE markers at diagnosis and after one treatment cycle (4 weeks). Our findings revealed that patients exhibiting poor response to therapy showed significantly higher CD34/CD309 values than those with a good response (p < 0.001). The delineation of response based on CD34/CD309 expression was established with a cutoff ≤ 0.9 for percentage (yielding 100% sensitivity and 94.1% specificity) and ≤ 12.5 for absolute value (also with 100% sensitivity and 94.1% specificity). These results underscore the potential of EPC population levels, as quantified by CD34/CD309, to serve as a predictive biomarker for immunomodulatory treatment in MM patients undergoing Proteasome Inhibitor and Dexamethasone therapy.


Subject(s)
Antigens, CD34 , Bortezomib , Endothelial Progenitor Cells , Multiple Myeloma , Humans , Bortezomib/pharmacology , Bortezomib/therapeutic use , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Multiple Myeloma/diagnosis , Male , Female , Middle Aged , Antigens, CD34/blood , Endothelial Progenitor Cells/drug effects , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/pathology , Aged , Prognosis , Adult , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Case-Control Studies , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
8.
Mater Today Bio ; 28: 101174, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39211289

ABSTRACT

Articular cartilage regeneration is a major challenge in orthopedic medicine. Endothelial progenitor cells (EPCs) are a promising cell source for regenerative medicine applications. However, their roles and functions in cartilage regeneration are not well understood. Additionally, thermosensitive chitosan hydrogels have been widely used in tissue engineering, but further development of these hydrogels incorporating vascular lineage cells for cartilage repair is insufficient. Thus, this study aimed to characterize the ability of EPCs to undergo endothelial-mesenchymal stem cell transdifferentiation and chondrogenic differentiation and investigate the ability of chondrogenic EPC-seeded thermosensitive chitosan-graft-poly (N-isopropylacrylamide) (CEPC-CSPN) scaffolds to improve healing in a rabbit osteochondral defect (OCD) model. EPCs were isolated and endothelial-to-mesenchymal transition (EndMT) was induced by transforming growth factor-ß1 (TGF-ß1); these EPCs are subsequently termed transdifferentiated EPCs (tEPCs). The stem cell-like properties and chondrogenic potential of tEPCs were evaluated by a series of in vitro assays. Furthermore, the effect of CEPC-CSPN scaffolds on OCD repair was evaluated. Our in vitro results confirmed that treatment of EPC with TGF-ß1 induced EndMT and the acquisition of stem cell-like properties, producing tEPCs. Upon inducing chondrogenic differentiation of tEPCs (CEPCs), the cells exhibited significantly enhanced chondrogenesis and chondrocyte surface markers after 25 days. The TGF-ß1-induced differentiation of EPCs is mediated by both the TGF-ß/Smad and extracellular signal-regulated kinase (Erk) pathways. The CEPC-CSPN scaffold reconstructed well-integrated translucent cartilage and repaired subchondral bone in vivo, exhibiting regenerative capacity. Collectively, our results suggest that the CEPC-CSPN scaffold induces OCD repair, representing a promising approach to articular cartilage regeneration.

9.
Br J Haematol ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189039

ABSTRACT

Bone marrow endothelial progenitor cells (BM EPCs) are crucial in supporting haematopoietic regeneration, while the BM EPCs of haematological patients with chemotherapy-induced thrombocytopenia (CIT) are unavoidably damaged. Therefore, the present study aimed to examine the effect of thrombopoietin (TPO) on the recovery of BM EPCs of CIT patients and to identify the underlying mechanisms. The cell functions were determined by 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil)-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake and fluorescein isothiocyanate (FITC)-labeled Ulex europaeus agglutinin-I (FITC-UEA-I) binding assay, as well as proliferation, migration and tube formation experiments. Endothelial cells were transfected with METTL16 lentivirus, followed by methylated RNA immunoprecipitation sequencing. Zebrafish with vascular defect was used as the in vivo model. TPO significantly improved the quantity and functions of BM EPCs from CIT patients in vitro and restored the subintestinal vein area of zebrafish with vascular defect in vivo. Mechanically, TPO enhanced the BM EPC functions through Akt signal mediated by METTL16, which was downregulated in BM EPCs of CIT patients and involved in the regulation of endothelial functions. The present study demonstrates that TPO improves the recovery of BM EPCs from CIT patients with haematological malignancies via METTL16/Akt signalling, which provides new insights into the role of TPO in treating CIT in addition to direct megakaryopoiesis.

10.
Tissue Cell ; 90: 102527, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39181089

ABSTRACT

Chronic kidney disease (CKD) and end-stage renal disease (ESRD) are prevalent and debilitating conditions with a significant impact on patients' quality of life. In this study, we conducted a comprehensive investigation into the histological characteristics of renal progenitor/stem cells (RPCs), renal mesenchymal stem-like cells, and endothelial progenitor cells (EPCs) in CKD and ESRD patients. Additionally, we performed a molecular docking analysis to explore potential drug-receptor interactions involving common medications prescribed to CKD patients. Our histological examination revealed a noteworthy increase in the number of CD24- and CD133-positive cells in CKD and ESRD patients, representing RPCs. These cells are implicated in kidney repair and regeneration, underscoring their potential role in CKD management. Moreover, we observed an elevation in the number of EPCs within the kidneys of CKD and ESRD patients, suggesting a protective role of EPCs in kidney preservation. The molecular docking analysis unveiled intriguing insights into potential drug interventions. Notably, digoxin exhibited the highest in-silico binding affinity to numerous receptors associated with the functions of RPCs, renal mesenchymal stem-like cells, and EPCs, emphasizing the potential multifaceted effects of this cardiac glycoside in CKD patients. Other drugs, including apixaban, glimepiride, and glibenclamide, also displayed strong in-silico affinities to specific receptors, indicating their potential influence on various renal cell functions. In conclusion, this study provides valuable insights into the histological alterations in renal cell populations in CKD and ESRD patients and underscores the potential roles of RPCs and EPCs in kidney repair and preservation. The molecular docking analysis reveals the complex interactions between common drugs and renal cells, suggesting the need for further in-vitro and in-vivo research to fully understand these relationships. These findings contribute to our understanding of CKD and offer new avenues for research into potential therapeutic interventions.


Subject(s)
Endothelial Progenitor Cells , Kidney Failure, Chronic , Mesenchymal Stem Cells , Molecular Docking Simulation , Renal Insufficiency, Chronic , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Kidney Failure, Chronic/pathology , Kidney Failure, Chronic/metabolism , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/pathology , Kidney/pathology , Kidney/metabolism , Male , Female , Middle Aged , Aged , Adult
11.
Sci Rep ; 14(1): 18469, 2024 08 09.
Article in English | MEDLINE | ID: mdl-39122748

ABSTRACT

Endothelial progenitor cells (EPCs) play a crucial role in maintaining vascular health and aiding in the repair of damaged blood vessels. However, the specific impact of EPCs-derived exosomes on vascular endothelial cell injury caused by lipopolysaccharide (LPS) remains inadequately understood. This study aims to explore the potential benefits of EPC-exosomes in mitigating LPS-induced vascular injury and to elucidate the underlying mechanism. Initially, EPCs were isolated from mouse peripheral blood, and their identity was confirmed through flow cytometry and immunocytochemistry. Subsequently, the exosomes derived from EPCs were identified using transmission electron microscopy (TEM) and western blot analysis. A sepsis model was induced by subjecting brain microvascular endothelial cells (BMECs) to LPS-induced injury. Both EPC and their exosomes demonstrated a significant increase in BMECs proliferation, reduced apoptosis, decreased levels of pro-inflammatory factors (TNF-α, IL-6, and caspase-3), and enhanced sprouting and angiogenesis of BMECs. Notable, the Exosomes demonstrated a more pronounced impact on these parameters. Furthermore, both EPCs and Exosomes exhibited significantly increased levels of miR-126a-5p, with the Exosomes showing a more substantial enhancement. These findings suggest that supplementing exosomal miR-126a-5p from EPCs can provide protective effects on BMECs, offering a potential therapeutic option for treating sepsis-induced microvascular endothelial cell injury.


Subject(s)
Brain , Endothelial Cells , Endothelial Progenitor Cells , Exosomes , Lipopolysaccharides , MicroRNAs , Exosomes/metabolism , Animals , Endothelial Progenitor Cells/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Lipopolysaccharides/toxicity , Mice , Brain/metabolism , Brain/pathology , Endothelial Cells/metabolism , Apoptosis , Cell Proliferation , Microvessels/metabolism , Male , Sepsis/metabolism , Mice, Inbred C57BL
12.
Regen Ther ; 26: 458-468, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39100534

ABSTRACT

Purpose: Venous leg ulcers (VLUs) are prevalent chronic wounds with limited treatment options. This study aimed to investigate the potential of berberine to enhance endothelial progenitor cell (EPC) function in VLU healing. Methods: Histopathological changes and inflammatory cytokine levels in a deep venous thrombosis (DVT) mouse model were assessed using HE staining and ELISA assays. A luciferase reporter assay was employed to identify the miR-21-3p and RRAGB targeting relationship. EPC proliferation, migration, and tube formation were evaluated through CCK-8, Transwell, and tubule formation assays, while the mTOR pathway and autophagy-related proteins were analyzed by immunofluorescence staining and western blotting. Results: Berberine significantly improved EPC functions, such as proliferation, migration, and tube formation in vitro, and enhanced in vivo EPC-mediated wound healing in a DVT mouse model. Furthermore, miR-21-3p was downregulated in EPCs from VLU patients, and its overexpression improved model EPC functions. Mechanistically, RRAGB, which regulates the mTOR pathway, was identified as a potential miR-21-3p target in EPCs. Overexpression of RRAGB inhibited autophagic activity and impaired EPC function. Conclusion: Berberine shows promise in ameliorating EPC function and promoting wound healing in VLUs. The regulation of the miR-21-3p/RRAGB axis by berberine could offer a promising therapeutic approach for managing VLUs.

13.
Front Cell Neurosci ; 18: 1456775, 2024.
Article in English | MEDLINE | ID: mdl-39193428

ABSTRACT

Cerebral aneurysm (CA) is a significant health concern that results from pathological dilations of blood vessels in the brain and can lead to severe and potentially life-threatening conditions. While the pathogenesis of CA is complex, emerging studies suggest that endothelial progenitor cells (EPCs) play a crucial role. In this paper, we conducted a comprehensive literature review to investigate the potential role of EPCs in the pathogenesis and treatment of CA. Current research indicates that a decreased count and dysfunction of EPCs disrupt the balance between endothelial dysfunction and repair, thus increasing the risk of CA formation. Reversing these EPCs abnormalities may reduce the progression of vascular degeneration after aneurysm induction, indicating EPCs as a promising target for developing new therapeutic strategies to facilitate CA repair. This has motivated researchers to develop novel treatment options, including drug applications, endovascular-combined and tissue engineering therapies. Although preclinical studies have shown promising results, there is still a considerable way to go before clinical translation and eventual benefits for patients. Nonetheless, these findings offer hope for improving the treatment and management of this condition.

14.
Stem Cell Rev Rep ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39186241

ABSTRACT

Endothelial progenitor cells (EPCs) are stem cells that can repair injured blood vessels through neovascularisation. This is achieved through secretion of growth factors and endothelial maturation. EPC numbers and function have been studied to determine their diagnostic, prognostic and therapeutic potential in many ischaemic diseases such as stroke. However their activation homing and migration is not definitively understood in stroke patients. In this study, we profiled the non-stroke control group recruited into the Dunhill Medical Trust Endothelial Progenitor Cell Study. Demographic, clinical and plasma levels of angiogenic regulators of participants were analysed to determine if there was any correlation with EPC numbers, subtypes and function. Participants with diabetes had significantly supressed EPC numbers (CD45-CD34 + CD133 + KDR+) and CD34 + KDR + and KDR + EPC subtypes. Male participants had significantly lower EPC numbers compared to female participants and the proliferative capacity of endothelial colony forming cells significantly decreased with increasing participant age. Pro-angiogenic proteins such as granulocyte colony-stimulating factor and stromal cell-derived factor were positively correlated with both undifferentiated and endothelial-committed EPC subtype numbers (CD133+, KDR+, CD34 + CD133+, CD34 + KDR+), whereas anti-angiogenic proteins such as thrombospondin-1 showed a negative correlation with undifferentiated EPC subtypes (CD133+, CD34 + CD133+) but a positive correlation with endothelial-committed EPC subtype numbers (KDR+, CD34 + KDR+). These results show that EPC numbers and subtypes are affected by many factors and larger studies which can analyse and deconvolute the interactions between comorbidities, plasma biomarker levels and EPC are needed.

15.
Int J Mol Sci ; 25(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39201580

ABSTRACT

Congenital heart disease (CHD) can be complicated by pulmonary arterial hypertension (PAH). Cardiopulmonary bypass (CPB) for corrective surgery may cause endothelial dysfunction, involving endothelin-1 (ET-1), circulating endothelial cells (CECs), and endothelial progenitor cells (EPCs). These markers can gauge disease severity, but their levels in children's peripheral blood still lack consensus for prognostic value. The aim of our study was to investigate changes in ET-1, cytokines, and the absolute numbers (Ɲ) of CECs and EPCs in children 24 h before and 48 h after CPB surgery to identify high-risk patients of complications. A cohort of 56 children was included: 41 cases with CHD-PAH (22 with high pulmonary flow and 19 with low pulmonary flow) and 15 control cases. We observed that Ɲ-CECs increased in both CHD groups and that Ɲ-EPCs decreased in the immediate post-surgical period, and there was a strong negative correlation between ET-1 and CEC before surgery, along with significant changes in ET-1, IL8, IL6, and CEC levels. Our findings support the understanding of endothelial cell precursors' role in endogenous repair and contribute to knowledge about endothelial dysfunction in CHD.


Subject(s)
Cardiopulmonary Bypass , Cytokines , Endothelial Cells , Endothelial Progenitor Cells , Endothelin-1 , Heart Defects, Congenital , Humans , Endothelin-1/blood , Endothelin-1/metabolism , Endothelial Progenitor Cells/metabolism , Heart Defects, Congenital/surgery , Heart Defects, Congenital/blood , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/pathology , Male , Female , Cardiopulmonary Bypass/adverse effects , Endothelial Cells/metabolism , Cytokines/blood , Cytokines/metabolism , Child , Child, Preschool , Infant , Biomarkers/blood , Case-Control Studies
16.
J Cell Mol Med ; 28(13): e18523, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957039

ABSTRACT

This research explores the role of microRNA in senescence of human endothelial progenitor cells (EPCs) induced by replication. Hsa-miR-134-5p was found up-regulated in senescent EPCs where overexpression improved angiogenic activity. Hsa-miR-134-5p, which targeted transforming growth factor ß-activated kinase 1-binding protein 1 (TAB1) gene, down-regulated TAB1 protein, and inhibited phosphorylation of p38 mitogen-activated protein kinase (p38) in hsa-miR-134-5p-overexpressed senescent EPCs. Treatment with siRNA specific to TAB1 (TAB1si) down-regulated TAB1 protein and subsequently inhibited p38 activation in senescent EPCs. Treatment with TAB1si and p38 inhibitor, respectively, showed angiogenic improvement. In parallel, transforming growth factor Beta 1 (TGF-ß1) was down-regulated in hsa-miR-134-5p-overexpressed senescent EPCs and addition of TGF-ß1 suppressed the angiogenic improvement. Analysis of peripheral blood mononuclear cells (PBMCs) disclosed expression levels of hsa-miR-134-5p altered in adult life, reaching a peak before 65 years, and then falling in advanced age. Calculation of the Framingham risk score showed the score inversely correlates with the hsa-miR-134-5p expression level. In summary, hsa-miR-134-5p is involved in the regulation of senescence-related change of angiogenic activity via TAB1-p38 signalling and via TGF-ß1 reduction. Hsa-miR-134-5p has a potential cellular rejuvenation effect in human senescent EPCs. Detection of human PBMC-derived hsa-miR-134-5p predicts cardiovascular risk.


Subject(s)
Adaptor Proteins, Signal Transducing , Cardiovascular Diseases , Cellular Senescence , Endothelial Progenitor Cells , Leukocytes, Mononuclear , MicroRNAs , p38 Mitogen-Activated Protein Kinases , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Endothelial Progenitor Cells/metabolism , Cellular Senescence/genetics , Leukocytes, Mononuclear/metabolism , Middle Aged , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Male , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Female , Aged , Neovascularization, Physiologic/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Adult , Risk Factors
17.
Am J Transl Res ; 16(6): 2278-2289, 2024.
Article in English | MEDLINE | ID: mdl-39006266

ABSTRACT

OBJECTIVES: Endothelial progenitor cells (EPCs) play a crucial role in acquired angiogenesis and endothelial injury repair. Transient receptor potential canonical channel 4 (TRPC4), a key component of store-operated calcium channels, is essential for EPC function. While the role of TRPCs has been clarified in vascular diseases, the relationship between TRPC4 and EPC function, along with the underlying molecular mechanisms, remains unclear and requires further elucidation. METHODS: EPCs were isolated from canine bone marrow and identified by morphology and flow cytometry. TRPC4 was transfected into EPCs using lentivirus or negative control, and its expression was assessed using real-time polymerase chain reaction (RT-PCR). Proliferation, migration, and tube formation were evaluated using Cell Counting Kit-8 (CCK-8), Transwell, and Matrigel assays, respectively. Levels of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1) were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS: TRPC4 mRNA expression was significantly reduced in TRPC4-short hairpin RNA (shRNA) transfected EPCs compared to the normal control (NC)-shRNA groups. Migration and tube formation were significantly decreased after TRPC4 silencing, while proliferation showed no difference. Additionally, levels of SDF-1 and VEGF in EPCs were markedly reduced following TRPC4 silencing. CONCLUSION: TRPC4 plays a crucial role in regulating angiogenesis in EPCs. Silencing of TRPC4 can lead to decreased angiogenesis by inhibiting VEGF and SDF-1 expression, suggesting that TRPC4 knockdown might be a novel therapeutic strategy for vascular diseases.

18.
Stem Cells Dev ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39030822

ABSTRACT

Endothelial cells (ECs) are a multifaceted component of the vascular system with roles in immunity, maintaining tissue fluid balance, and vascular tone. Dysregulation or dysfunction of ECs can have far-reaching implications, leading pathologies ranging from cardiovascular diseases, such as hypertension and atherosclerosis, ischemia, chronic kidney disease, blood-brain barrier integrity, dementia, and tumor metastasis. Recent advancements in regenerative medicine have highlighted the potential of stem cell-derived ECs, particularly from induced pluripotent stem cells, to treat ischemic tissues, as well as models of vascular integrity. This review summarizes what is known in the generation of ECs with an emphasis on tissue-specific ECs and EC subphenotypes important in the development of targeted cell-based therapies for patient treatment.

19.
Acta Pharmacol Sin ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060522

ABSTRACT

Delta like non-canonical Notch ligand 1 (DLK1), as a member of epidermal growth factor-like family, plays a critical role in somatic growth, tissue development and possibly tissue renewal. Though previous studies had indicated that DLK1 contributed to adipogenesis and myogenesis, it's still controversial whether DLK1 affects angiogenesis and how it interacts with Notch signaling with numerous conflicting reports from different models. Based on our preliminary finding that DLK1 expression was up-regulated in mice ischemic gastrocnemius and in the border zone of infarcted myocardium, we administered either recombinant DLK1 (rDLK1) or PBS in C57BL/6 mice after establishment of hindlimb ischemia (HLI) and myocardial infarction (MI), respectively. Exogenous rDLK1 administration significantly improved both blood perfusion of mice ischemic hindlimbs and muscle motor function on the 3rd, 7th day after HLI, by promoting neovascularization. Similar effect on neovascularization was verified in mice on the 28th day after MI as well as improvement of cardiac failure. Correspondingly, the number of CD34+KDR+ cells, indicated as endothelial progenitor cells (EPCs), was significantly in mice ischemic gastrocnemius by rDLK1 administration, which was abrogated by DAPT as the specific inhibitor of Notch intracellular domain (NICD). Furthermore, bone marrow mononuclear cells were obtained from C57BL/6 mice and differentiated to EPCs ex vivo. Incubation with rDLK1 triggered Notch1 mRNA and NICD protein expressions in EPCs as exposed to hypoxia and serum deprivation, promoting EPCs proliferation, migration, anti-apoptosis and tube formation. Otherwise, rDLK1 incubation significantly decreased intracellular and mitochondrial reactive oxygen species, increased ATP content and mitochondrial membrane potential, downregulated short isoform of OPA-1 expression whereas upregulated mitofusin (-1, -2) expression in EPCs by Notch1 signaling, which were all abrogated by DAPT. In summary, the present study unveils the pro-angiogenesis and its mechanism of rDLK1 through activation of Notch1 signaling in endothelial progenitor cells.

20.
Cell Biosci ; 14(1): 72, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840175

ABSTRACT

Cardiovascular diseases (CVDs) have emerged as a predominant threat to human health, surpassing the incidence and mortality rates of neoplastic diseases. Extracellular vesicles (EVs) serve as vital mediators in intercellular communication and material exchange. Endothelial progenitor cells (EPCs), recognized as precursors of vascular endothelial cells (ECs), have garnered considerable attention in recent years due to the potential therapeutic value of their derived extracellular vesicles (EPC-EVs) in the context of CVDs. This comprehensive review systematically explores the origins, characteristics, and functions of EPCs, alongside the classification, properties, biogenesis, and extraction techniques of EVs, with particular emphasis on their protective roles in CVDs. Additionally, we delve into the essential bioactive components of EPC-EVs, including microRNAs, long non-coding RNAs, and proteins, analyzing their beneficial effects in promoting angiogenesis, anti-inflammatory and anti-oxidant activities, anti-fibrosis, anti-apoptosis, and myocardial regeneration. Furthermore, this review comprehensively investigates the therapeutic potential of EPC-EVs across various CVDs, encompassing acute myocardial infarction, myocardial ischemia-reperfusion injury, atherosclerosis, non-ischemic cardiomyopathies, and diabetic cardiovascular disease. Lastly, we summarize the potential challenges associated with the clinical application of EPC-EVs and outline future directions, aiming to offer a valuable resource for both theoretical insights and practical applications of EPC-EVs in managing CVDs.

SELECTION OF CITATIONS
SEARCH DETAIL