Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Comput Biol Med ; 182: 109184, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39353297

ABSTRACT

PROBLEM: Diagnosing Autism Spectrum Disorder (ASD) remains a significant challenge, especially in regions where access to specialists is limited. Computer-based approaches offer a promising solution to make diagnosis more accessible. Eye tracking has emerged as a valuable technique in aiding the diagnosis of ASD. Typically, individuals' gaze patterns are monitored while they view videos designed according to established paradigms. In a previous study, we developed a method to classify individuals as having ASD or Typical Development (TD) by processing eye-tracking data using Random Forest ensembles, with a focus on a paradigm known as joint attention. AIM: This article aims to enhance our previous work by evaluating alternative algorithms and ensemble strategies, with a particular emphasis on the role of anticipation features in diagnosis. METHODS: Utilizing stimuli based on joint attention and the concept of "floating regions of interest" from our earlier research, we identified features that indicate gaze anticipation or delay. We then tested seven class balancing strategies, applied seven dimensionality reduction algorithms, and combined them with five different classifier induction algorithms. Finally, we employed the stacking technique to construct an ensemble model. RESULTS: Our findings showed a significant improvement, achieving an F1-score of 95.5%, compared to the 82% F1-score from our previous work, through the use of a heterogeneous stacking meta-classifier composed of diverse induction algorithms. CONCLUSION: While there remains an opportunity to explore new algorithms and features, the approach proposed in this article has the potential to be applied in clinical practice, contributing to increased accessibility to ASD diagnosis.

2.
Bioengineering (Basel) ; 11(9)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39329626

ABSTRACT

In this paper, a method for the classification of anomalous heartbeats from compressed ECG signals is proposed. The method operating on signals acquired by compressed sensing is based on a feature extraction stage consisting of the evaluation of the Discrete Cosine Transform (DCT) coefficients of the compressed signal and a classification stage performed by means of a set of k-nearest neighbor ensemble classifiers. The method was preliminarily tested on five classes of anomalous heartbeats, and it achieved a classification accuracy of 99.40%.

3.
BMC Med Imaging ; 24(1): 177, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030508

ABSTRACT

BACKGROUND: Cancer pathology shows disease development and associated molecular features. It provides extensive phenotypic information that is cancer-predictive and has potential implications for planning treatment. Based on the exceptional performance of computational approaches in the field of digital pathogenic, the use of rich phenotypic information in digital pathology images has enabled us to identify low-level gliomas (LGG) from high-grade gliomas (HGG). Because the differences between the textures are so slight, utilizing just one feature or a small number of features produces poor categorization results. METHODS: In this work, multiple feature extraction methods that can extract distinct features from the texture of histopathology image data are used to compare the classification outcomes. The successful feature extraction algorithms GLCM, LBP, multi-LBGLCM, GLRLM, color moment features, and RSHD have been chosen in this paper. LBP and GLCM algorithms are combined to create LBGLCM. The LBGLCM feature extraction approach is extended in this study to multiple scales using an image pyramid, which is defined by sampling the image both in space and scale. The preprocessing stage is first used to enhance the contrast of the images and remove noise and illumination effects. The feature extraction stage is then carried out to extract several important features (texture and color) from histopathology images. Third, the feature fusion and reduction step is put into practice to decrease the number of features that are processed, reducing the computation time of the suggested system. The classification stage is created at the end to categorize various brain cancer grades. We performed our analysis on the 821 whole-slide pathology images from glioma patients in the Cancer Genome Atlas (TCGA) dataset. Two types of brain cancer are included in the dataset: GBM and LGG (grades II and III). 506 GBM images and 315 LGG images are included in our analysis, guaranteeing representation of various tumor grades and histopathological features. RESULTS: The fusion of textural and color characteristics was validated in the glioma patients using the 10-fold cross-validation technique with an accuracy equals to 95.8%, sensitivity equals to 96.4%, DSC equals to 96.7%, and specificity equals to 97.1%. The combination of the color and texture characteristics produced significantly better accuracy, which supported their synergistic significance in the predictive model. The result indicates that the textural characteristics can be an objective, accurate, and comprehensive glioma prediction when paired with conventional imagery. CONCLUSION: The results outperform current approaches for identifying LGG from HGG and provide competitive performance in classifying four categories of glioma in the literature. The proposed model can help stratify patients in clinical studies, choose patients for targeted therapy, and customize specific treatment schedules.


Subject(s)
Algorithms , Brain Neoplasms , Color , Glioma , Neoplasm Grading , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/classification , Glioma/diagnostic imaging , Glioma/pathology , Glioma/classification , Diagnosis, Computer-Assisted/methods , Image Interpretation, Computer-Assisted/methods
4.
Diagnostics (Basel) ; 14(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732366

ABSTRACT

We present a deep learning (DL) network-based approach for detecting and semantically segmenting two specific types of tuberculosis (TB) lesions in chest X-ray (CXR) images. In the proposed method, we use a basic U-Net model and its enhanced versions to detect, classify, and segment TB lesions in CXR images. The model architectures used in this study are U-Net, Attention U-Net, U-Net++, Attention U-Net++, and pyramid spatial pooling (PSP) Attention U-Net++, which are optimized and compared based on the test results of each model to find the best parameters. Finally, we use four ensemble approaches which combine the top five models to further improve lesion classification and segmentation results. In the training stage, we use data augmentation and preprocessing methods to increase the number and strength of lesion features in CXR images, respectively. Our dataset consists of 110 training, 14 validation, and 98 test images. The experimental results show that the proposed ensemble model achieves a maximum mean intersection-over-union (MIoU) of 0.70, a mean precision rate of 0.88, a mean recall rate of 0.75, a mean F1-score of 0.81, and an accuracy of 1.0, which are all better than those of only using a single-network model. The proposed method can be used by clinicians as a diagnostic tool assisting in the examination of TB lesions in CXR images.

5.
Comput Biol Med ; 173: 108345, 2024 May.
Article in English | MEDLINE | ID: mdl-38564852

ABSTRACT

Due to their widespread prevalence and impact on quality of life, cardiovascular diseases (CVD) pose a considerable global health burden. Early detection and intervention can reduce the incidence, severity, and progression of CVD and prevent premature death. The application of machine learning (ML) techniques to early CVD detection is therefore a valuable approach. In this paper, A stack-based ensemble classifier with an aggregation layer and the dependent ordered weighted averaging (DOWA) operator is proposed for detecting cardiovascular diseases. We propose transforming features using the Johnson transformation technique and normalizing feature distributions. Three diverse first-level classifiers are selected based on their accuracy, and predictions are combined using the aggregation layer and DOWA. A linear support vector machine (SVM) meta-classifier makes the final classification. Adding the aggregation layer to the stacking classifier improves classification accuracy significantly, according to the study. The accuracy is enhanced by 5%, resulting in an impressive overall accuracy of 94.05%. Moreover, the proposed system significantly increases the area under the receiver operating characteristic (ROC) curve compared to recent studies, reaching 97.14%. It further reinforces the classifier's reliability and effectiveness in classifying cardiovascular disease by distinguishing between positive and negative instances. With improved accuracy and a high area under the curve (AUC), the proposed classifier exhibits robustness and superior performance in the detection of cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/diagnosis , Quality of Life , Reproducibility of Results , Machine Learning , ROC Curve
6.
PeerJ Comput Sci ; 10: e1862, 2024.
Article in English | MEDLINE | ID: mdl-38435579

ABSTRACT

Background: Artificial intelligence technologies have great potential in classifying neurodegenerative diseases such as Alzheimer's and Parkinson's. These technologies can aid in early diagnosis, enhance classification accuracy, and improve patient access to appropriate treatments. For this purpose, we focused on AI-based auto-diagnosis of Alzheimer's disease, Parkinson's disease, and healthy MRI images. Methods: In the current study, a deep hybrid network based on an ensemble classifier and convolutional neural network was designed. First, a very deep super-resolution neural network was adapted to improve the resolution of MRI images. Low and high-level features were extracted from the images processed with the hybrid deep convolutional neural network. Finally, these deep features are given as input to the k-nearest neighbor (KNN)-based random subspace ensemble classifier. Results: A 3-class dataset containing publicly available MRI images was utilized to test the proposed architecture. In experimental works, the proposed model produced 99.11% accuracy, 98.75% sensitivity, 99.54% specificity, 98.65% precision, and 98.70% F1-score performance values. The results indicate that our AI system has the potential to provide valuable diagnostic assistance in clinical settings.

7.
Sci Rep ; 14(1): 5890, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38467705

ABSTRACT

In the realm of healthcare, the demand for swift and precise diagnostic tools has been steadily increasing. This study delves into a comprehensive performance analysis of three pre-trained convolutional neural network (CNN) architectures: ResNet50, DenseNet121, and Inception-ResNet-v2. To ensure the broad applicability of our approach, we curated a large-scale dataset comprising a diverse collection of chest X-ray images, that included both positive and negative cases of COVID-19. The models' performance was evaluated using separate datasets for internal validation (from the same source as the training images) and external validation (from different sources). Our examination uncovered a significant drop in network efficacy, registering a 10.66% reduction for ResNet50, a 36.33% decline for DenseNet121, and a 19.55% decrease for Inception-ResNet-v2 in terms of accuracy. Best results were obtained with DenseNet121 achieving the highest accuracy at 96.71% in internal validation and Inception-ResNet-v2 attaining 76.70% accuracy in external validation. Furthermore, we introduced a model ensemble approach aimed at improving network performance when making inferences on images from diverse sources beyond their training data. The proposed method uses uncertainty-based weighting by calculating the entropy in order to assign appropriate weights to the outputs of each network. Our results showcase the effectiveness of the ensemble method in enhancing accuracy up to 97.38% for internal validation and 81.18% for external validation, while maintaining a balanced ability to detect both positive and negative cases.


Subject(s)
COVID-19 , Thorax , Humans , X-Rays , Thorax/diagnostic imaging , COVID-19/diagnostic imaging , Entropy , Health Facilities
8.
Sensors (Basel) ; 23(23)2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38067959

ABSTRACT

The Internet of Things (IoT) is a powerful technology that connect its users worldwide with everyday objects without any human interference. On the contrary, the utilization of IoT infrastructure in different fields such as smart homes, healthcare and transportation also raises potential risks of attacks and anomalies caused through node security breaches. Therefore, an Intrusion Detection System (IDS) must be developed to largely scale up the security of IoT technologies. This paper proposes a Logistic Regression based Ensemble Classifier (LREC) for effective IDS implementation. The LREC combines AdaBoost and Random Forest (RF) to develop an effective classifier using the iterative ensemble approach. The issue of data imbalance is avoided by using the adaptive synthetic sampling (ADASYN) approach. Further, inappropriate features are eliminated using recursive feature elimination (RFE). There are two different datasets, namely BoT-IoT and TON-IoT, for analyzing the proposed RFE-LREC method. The RFE-LREC is analyzed on the basis of accuracy, recall, precision, F1-score, false alarm rate (FAR), receiver operating characteristic (ROC) curve, true negative rate (TNR) and Matthews correlation coefficient (MCC). The existing researches, namely NetFlow-based feature set, TL-IDS and LSTM, are used to compare with the RFE-LREC. The classification accuracy of RFE-LREC for the BoT-IoT dataset is 99.99%, which is higher when compared to those of TL-IDS and LSTM.

9.
Sensors (Basel) ; 23(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37765916

ABSTRACT

Technological advancements in healthcare, production, automobile, and aviation industries have shifted working styles from manual to automatic. This automation requires smart, intellectual, and safe machinery to develop an accurate and efficient brain-computer interface (BCI) system. However, developing such BCI systems requires effective processing and analysis of human physiology. Electroencephalography (EEG) is one such technique that provides a low-cost, portable, non-invasive, and safe solution for BCI systems. However, the non-stationary and nonlinear nature of EEG signals makes it difficult for experts to perform accurate subjective analyses. Hence, there is an urgent need for the development of automatic mental state detection. This paper presents the classification of three mental states using an ensemble of the tunable Q wavelet transform, the multilevel discrete wavelet transform, and the flexible analytic wavelet transform. Various features are extracted from the subbands of EEG signals during focused, unfocused, and drowsy states. Separate and fused features from ensemble decomposition are classified using an optimized ensemble classifier. Our analysis shows that the fusion of features results in a dimensionality reduction. The proposed model obtained the highest accuracies of 92.45% and 97.8% with ten-fold cross-validation and the iterative majority voting technique. The proposed method is suitable for real-time mental state detection to improve BCI systems.


Subject(s)
Algorithms , Brain-Computer Interfaces , Humans , Electroencephalography/methods , Wavelet Analysis , Signal Processing, Computer-Assisted
10.
J Cancer Res Clin Oncol ; 149(16): 14519-14534, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37567985

ABSTRACT

INTRODUCTION: Advances in technology have led to the emergence of computerized diagnostic systems as intelligent medical assistants. Machine learning approaches cannot replace professional humans, but they can change the treatment of diseases such as cancer and be used as medical assistants. BACKGROUND: Breast cancer treatment can be very effective, especially when the disease is detected in the early stages. Feature selection and classification are common data mining techniques in machine learning that can provide breast cancer diagnosis with high speed, low cost and high precision. METHODOLOGY: This paper proposes a new intelligent approach using an integrated filter-evolutionary search-based feature selection and an optimized ensemble classifier for breast cancer diagnosis. The selected features mainly relate to the viable solution as the selected features are successfully used in the breast cancer disease classification process. The proposed feature selection method selects the most informative features from the original feature set by integrating adaptive thresholder information gain-based feature selection and evolutionary gravity-search-based feature selection. Meanwhile, classification model is done by proposing a new intelligent multi-layer perceptron neural network-based ensemble classifier. RESULTS: The simulation results show that the proposed method provides better performance compared to the state-of-the-art algorithms in terms of various criteria such as accuracy, sensitivity and specificity. Specifically, the proposed method achieves an average accuracy of 99.42% on WBCD, WDBC and WPBC datasets from Wisconsin database with only 56.7% of features. CONCLUSION: Systems based on intelligent medical assistants configured with machine learning approaches are an important step toward helping doctors to detect breast cancer early.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnosis , Diagnosis, Computer-Assisted/methods , Algorithms , Neural Networks, Computer , Computer Simulation
11.
Biomed Signal Process Control ; : 105026, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37361196

ABSTRACT

Since the year 2019, the entire world has been facing the most hazardous and contagious disease as Corona Virus Disease 2019 (COVID-19). Based on the symptoms, the virus can be identified and diagnosed. Amongst, cough is the primary syndrome to detect COVID-19. Existing method requires a long processing time. Early screening and detection is a complex task. To surmount the research drawbacks, a novel ensemble-based deep learning model is designed on heuristic development. The prime intention of the designed work is to detect COVID-19 disease using cough audio signals. At the initial stage, the source signals are fetched and undergo for signal decomposition phase by Empirical Mean Curve Decomposition (EMCD). Consequently, the decomposed signal is called "Mel Frequency Cepstral Coefficients (MFCC), spectral features, and statistical features". Further, all three features are fused and provide the optimal weighted features with the optimal weight value with the help of "Modified Cat and Mouse Based Optimizer (MCMBO)". Lastly, the optimal weighted features are fed as input to the Optimized Deep Ensemble Classifier (ODEC) that is fused together with various classifiers such as "Radial Basis Function (RBF), Long-Short Term Memory (LSTM), and Deep Neural Network (DNN)". In order to attain the best detection results, the parameters in ODEC are optimized by the MCMBO algorithm. Throughout the validation, the designed method attains 96% and 92% concerning accuracy and precision. Thus, result analysis elucidates that the proposed work achieves the desired detective value that aids practitioners to early diagnose COVID-19 ailments.

12.
Heliyon ; 9(4): e15098, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37123937

ABSTRACT

In this paper, we propose a novel multi-stream video classifier for infant needs detection. The proposed system is an ensemble-based system that combines several machine learning to improve the overall result of the state-of-the-art algorithms. It is a multi-stream in the sense that it combines the output predictions of both audio and images of infants from every single classifier employed in the system for a unified result. This produces better performance and results compared to the previous other research techniques, which relied on only one of these modalities. For training and testing the proposed system, from the Dunstan Baby Language video collection, we built three separate datasets for videos, images, and sounds encompassing the five primary infant needs that require predicting. These are: hunger, have wind, uncomfortable (require diaper change), wants to burp or tired, with a total of 3348 samples. We used four different ensemble algorithms for the best reachable performance. The proposed algorithm improves the overall accuracies of each single classifier from a low of 51% to a high of 99%. The proposed method also improves the accuracy of the classification process by about 9% compared to the state-of-the-art approaches, which was 90%.

13.
J Digit Imaging ; 36(4): 1460-1479, 2023 08.
Article in English | MEDLINE | ID: mdl-37145248

ABSTRACT

An automated diagnosis system is crucial for helping radiologists identify brain abnormalities efficiently. The convolutional neural network (CNN) algorithm of deep learning has the advantage of automated feature extraction beneficial for an automated diagnosis system. However, several challenges in the CNN-based classifiers of medical images, such as a lack of labeled data and class imbalance problems, can significantly hinder the performance. Meanwhile, the expertise of multiple clinicians may be required to achieve accurate diagnoses, which can be reflected in the use of multiple algorithms. In this paper, we present Deep-Stacked CNN, a deep heterogeneous model based on stacked generalization to harness the advantages of different CNN-based classifiers. The model aims to improve robustness in the task of multi-class brain disease classification when we have no opportunity to train single CNNs on sufficient data. We propose two levels of learning processes to obtain the desired model. At the first level, different pre-trained CNNs fine-tuned via transfer learning will be selected as the base classifiers through several procedures. Each base classifier has a unique expert-like character, which provides diversity to the diagnosis outcomes. At the second level, the base classifiers are stacked together through neural network, representing the meta-learner that best combines their outputs and generates the final prediction. The proposed Deep-Stacked CNN obtained an accuracy of 99.14% when evaluated on the untouched dataset. This model shows its superiority over existing methods in the same domain. It also requires fewer parameters and computations while maintaining outstanding performance.


Subject(s)
Brain Diseases , Neural Networks, Computer , Humans , Magnetic Resonance Imaging/methods , Algorithms , Brain Diseases/diagnostic imaging , Brain/diagnostic imaging
14.
Photodiagnosis Photodyn Ther ; 42: 103629, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37244451

ABSTRACT

BACKGROUND: Dry Age-related macular degeneration (AMD), which affects the older population, can lead to blindness when left untreated. Preventing vision loss in elderly needs early identification. Dry-AMD diagnosis is still time-consuming and very subjective, depending on the ophthalmologist. Setting up a thorough eye-screening system to find Dry-AMD is a very difficult task. METHODOLOGY: This study aims to develop a weighted majority voting (WMV) ensemble-based prediction model to diagnose Dry-AMD. The WMV approach combines the predictions from base-classifiers and chooses the class with greatest vote based on assigned weights to each classifier. A novel feature extraction method is used along the retinal pigment epithelium (RPE) layer, with the number of windows calculated for each picture playing an important part in identifying Dry-AMD/normal images using the WMV methodology. Pre-processing using hybrid-median filter followed by scale-invariant feature transform based segmentation of RPE layer and curvature flattening of retina is employed to measure exact thickness of RPE layer. RESULT: The proposed model is trained on 70% of the OCT image database (OCTID) and evaluated on remaining OCTID and SD-OCT Noor dataset. Model has achieved accuracy of 96.15% and 96.94%, respectively. The suggested algorithm's effectiveness in Dry-AMD identification is demonstrated by comparison with alternative approaches. Even though the suggested model is only trained on the OCTID, it has performed well when tested on additional dataset. CONCLUSION: The suggested architecture can be used for quick eye-screening for early identification of Dry-AMD. The recommended method may be applied in real-time since it requires fewer complexity and learning-variables.


Subject(s)
Macular Degeneration , Photochemotherapy , Humans , Aged , Macular Degeneration/diagnostic imaging , Tomography, Optical Coherence/methods , Photochemotherapy/methods , Photosensitizing Agents , Retina
15.
J Cancer Res Clin Oncol ; 149(11): 9337-9348, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37202580

ABSTRACT

INTRODUCTION: Epidemiological studies show that breast cancer is the most common cancer in women in the world. Breast cancer treatment can be very effective, especially when the disease is detected in the early stages. The goal can be achieved by using large-scale breast cancer data with the machine learning models METHODS: This paper proposes a new intelligent approach using an optimized ensemble classifier for breast cancer diagnosis. The classification is done by proposing a new intelligent Group Method of Data Handling (GMDH) neural network-based ensemble classifier. This method improves the performance of the machine learning technique by using a Teaching-Learning-Based Optimization (TLBO) algorithm to optimize the hyperparameters of the classifier. Meanwhile, we use TLBO as an evolutionary method to address the problem of appropriate feature selection in breast cancer data. RESULTS: The simulation results show that the proposed method has a better accuracy between 7 and 26% compared to the best results of the existing equivalent algorithms. CONCLUSION: According to the obtained results, we suggest the proposed algorithm as an intelligent medical assistant system for breast cancer diagnosis.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/diagnosis , Algorithms , Neural Networks, Computer , Computer Simulation , Machine Learning
16.
J Cancer Res Clin Oncol ; 149(10): 7609-7627, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36995408

ABSTRACT

INTRODUCTION: Feature selection in the face of high-dimensional data can reduce overfitting and learning time, and at the same time improve the accuracy and efficiency of the system. Since there are many irrelevant and redundant features in breast cancer diagnosis, removing such features leads to more accurate prediction and reduced decision time when dealing with large-scale data. Meanwhile, ensemble classifiers are powerful techniques to improve the prediction performance of classification models, where several individual classifier models are combined to achieve higher accuracy. METHODS: In this paper, an ensemble classifier algorithm based on multilayer perceptron neural network is proposed for the classification task, in which the parameters (e.g., number of hidden layers, number of neurons in each hidden layer, and weights of links) are adjusted based on an evolutionary approach. Meanwhile, this paper uses a hybrid dimensionality reduction technique based on principal component analysis and information gain to address this problem. RESULTS: The effectiveness of the proposed algorithm was evaluated based on the Wisconsin breast cancer database. In particular, the proposed algorithm provides an average of 17% better accuracy compared to the best results obtained from the existing state-of-the-art methods. CONCLUSION: Experimental results show that the proposed algorithm can be used as an intelligent medical assistant system for breast cancer diagnosis.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnosis , Algorithms , Neural Networks, Computer , Databases, Factual
17.
Front Endocrinol (Lausanne) ; 14: 1026187, 2023.
Article in English | MEDLINE | ID: mdl-36864831

ABSTRACT

Background: Gene expression (GE) data have shown promise as a novel tool to aid in the diagnosis of childhood growth hormone deficiency (GHD) when comparing GHD children to normal children. The aim of this study was to assess the utility of GE data in the diagnosis of GHD in childhood and adolescence using non-GHD short stature children as a control group. Methods: GE data was obtained from patients undergoing growth hormone stimulation testing. Data were taken for the 271 genes whose expression was utilized in our previous study. The synthetic minority oversampling technique was used to balance the dataset and a random forest algorithm applied to predict GHD status. Results: 24 patients were recruited to the study and eight subsequently diagnosed with GHD. There were no significant differences in gender, age, auxology (height SDS, weight SDS, BMI SDS) or biochemistry (IGF-I SDS, IGFBP-3 SDS) between the GHD and non-GHD subjects. A random forest algorithm gave an AUC of 0.97 (95% CI 0.93 - 1.0) for the diagnosis of GHD. Conclusion: This study demonstrates highly accurate diagnosis of childhood GHD using a combination of GE data and random forest analysis.


Subject(s)
Dwarfism , Growth Hormone , Transcriptome , Adolescent , Child , Humans , Control Groups , Gene Expression Profiling , Growth Hormone/deficiency
18.
Sensors (Basel) ; 23(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36772390

ABSTRACT

Nowadays, machine learning (ML) is a revolutionary and cutting-edge technology widely used in the medical domain and health informatics in the diagnosis and prognosis of cardiovascular diseases especially. Therefore, we propose a ML-based soft-voting ensemble classifier (SVEC) for the predictive modeling of acute coronary syndrome (ACS) outcomes such as STEMI and NSTEMI, discharge reasons for the patients admitted in the hospitals, and death types for the affected patients during the hospital stay. We used the Korea Acute Myocardial Infarction Registry (KAMIR-NIH) dataset, which has 13,104 patients' data containing 551 features. After data extraction and preprocessing, we used the 125 useful features and applied the SMOTETomek hybrid sampling technique to oversample the data imbalance of minority classes. Our proposed SVEC applied three ML algorithms, such as random forest, extra tree, and the gradient-boosting machine for predictive modeling of our target variables, and compared with the performances of all base classifiers. The experiments showed that the SVEC outperformed other ML-based predictive models in accuracy (99.0733%), precision (99.0742%), recall (99.0734%), F1-score (99.9719%), and the area under the ROC curve (AUC) (99.9702%). Overall, the performance of the SVEC was better than other applied models, but the AUC was slightly lower than the extra tree classifier for the predictive modeling of ACS outcomes. The proposed predictive model outperformed other ML-based models; hence it can be used practically in hospitals for the diagnosis and prediction of heart problems so that timely detection of proper treatments can be chosen, and the occurrence of disease predicted more accurately.


Subject(s)
Acute Coronary Syndrome , Humans , Length of Stay , Acute Coronary Syndrome/diagnosis , Prognosis , Algorithms , Machine Learning
19.
Diagnostics (Basel) ; 13(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36766666

ABSTRACT

Automatic brain tumor detection in MR Images is one of the basic applications of machine vision in medical image processing, which, despite much research, still needs further development. Using multiple machine learning techniques as an ensemble system is one of the solutions that can be effective in achieving this goal. In this paper, a novel method for diagnosing brain tumors by combining data mining and machine learning techniques has been proposed. In the proposed method, each image is initially pre-processed to eliminate its background region and identify brain tissue. The Social Spider Optimization (SSO) algorithm is then utilized to segment the MRI Images. The MRI Images segmentation allows for a more precise identification of the tumor region in the image. In the next step, the distinctive features of the image are extracted using the SVD technique. In addition to removing redundant information, this strategy boosts the speed of the processing at the classification stage. Finally, a combination of the algorithms Naïve Bayes, Support vector machine and K-nearest neighbor is used to classify the extracted features and detect brain tumors. Each of the three algorithms performs feature classification individually, and the final output of the proposed model is created by integrating the three independent outputs and voting the results. The results indicate that the proposed method can diagnose brain tumors in the BRATS 2014 dataset with an average accuracy of 98.61%, sensitivity of 95.79% and specificity of 99.71%. Additionally, the proposed method could diagnose brain tumors in the BTD20 database with an average accuracy of 99.13%, sensitivity of 99% and specificity of 99.26%. These results show a significant improvement compared to previous efforts. The findings confirm that using the image segmentation technique, as well as the ensemble learning, is effective in improving the efficiency of the proposed method.

20.
Int J Med Inform ; 171: 105001, 2023 03.
Article in English | MEDLINE | ID: mdl-36708665

ABSTRACT

Effective sleep monitoring from electroencephalogram (EEG) signals is meaningful for the diagnosis of sleep disorders, such as sleep Apnea, Insomnia, Snoring, Sleep Hypoventilation, and restless legs syndrome. Hence, developing an automatic sleep stage scoring method based on EEGs has attracted extensive research attention in recent years. The existing methods of sleep stage classification are insufficient to investigate waveform patterns, texture patterns, and temporal transformation of EEG signals, which are most associated with sleep stages scoring. To address these issues, we proposed an intelligence model based on multi-channels texture colour analysis to automatically classify sleep staging. In the proposed model, a short-time Fourier transform is applied to each EEG 30 s segment to convert it into an image form. Then the resulted spectrum image is analysed using Multiple channels Information Local Binary Pattern (MILBP). The extracted information using MILBP is then deployed to differentiate EEG sleep stages. The extracted features are tested, and the most effective ones are used to the represented EEG sleep stages. The selected characteristics are fed to an ensemble classifier integrated with a genetic algorithm which is used to select the optimal weight for each classifier, to classify EEG signal into designated sleep stages. The experimental results on two benchmark sleep datasets showed that the proposed model obtained the best performance compared with several baseline methods, including accuracy of 0.96 and 0.95, and F1-score of 0.94 and 0.93, thus demonstrating the effectiveness of our proposed model.


Subject(s)
Sleep Stages , Sleep , Humans , Electroencephalography/methods
SELECTION OF CITATIONS
SEARCH DETAIL