Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Anaerobe ; 47: 201-208, 2017 10.
Article in English | MEDLINE | ID: mdl-28627377

ABSTRACT

The search for new, effective and safe antimicrobial compounds from plant sources has continued to play an important role in the maintenance of human health since ancient times. Such compounds can be used to help to eradicate microorganisms from the root canal system, preventing/healing periapical diseases. Mikania glomerata (Spreng.), commonly known as "guaco," is a native climbing plant from Brazil that displays a wide range of pharmacological properties. Many of its activities have been attributed to its phytochemical composition, which is mainly composed of diterpenes, such as ent-kaurenoic acid (KA). The present study evaluated the potential activity of an ent-kaurenoic-rich (KA) extract from Mikania glomerata (i.e. Mikania glomerata extract/MGE) and its major compound KA against bacteria that can cause endodontic infections. Time-kill assays were conducted and the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), anti-biofilm activity, and synergistic antimicrobial activity of MGE and KA were determined. The MGE exhibited MIC and MBC values, which ranged from 6.25 to 100 µg/mL and 12.5 to 200 µg/mL respectively. The MIC and MBC results obtained for the KA, ranged from 3.12 to 100 µg/mL and 3.12 to 200 µg/mL respectively. Time-kill and anti-biofilm activity assays conducted for KA at concentrations between 3.12 and 12.5 µg/mL exhibited bactericidal activity between 6 and 72 h of incubation and 50% inhibition of biofilm formation for Porphyromonas gingivalis (clinical isolate), Propionibacterium acnes (ATCC 6919), Prevotella nigrescens (ATCC 33563), P. melaninogenica (ATCC 25845), Aggregatibacter actinomycetemcomitans (ATCC 43717). For synergistic antimicrobial activity, KA combined with chlorhexidine dichlorohydrate (CHD) had an additive effect with increased efficacy against P. gingivalis (clinical isolate) compared to CHD alone. It was concluded that M. glomerata extract and its major compound ent-kaurenoic acid (KA) showed in vitro antibacterial activity, the latter being a potential biofilm inhibitory agent. They may play important roles in the search for novel sources of agents that can act against bacteria present in endodontic infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Infections/microbiology , Diterpenes/pharmacology , Mikania/chemistry , Plant Extracts/pharmacology , Pulpitis/microbiology , Anti-Bacterial Agents/isolation & purification , Bacteria/isolation & purification , Biofilms/drug effects , Brazil , Chlorhexidine/pharmacology , Diterpenes/isolation & purification , Drug Synergism , Humans , Microbial Sensitivity Tests , Microbial Viability/drug effects , Plant Extracts/isolation & purification
2.
Genet Mol Biol ; 35(2): 448-54, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22888294

ABSTRACT

We surveyed the substitution patterns in the ent-kaurenoic acid oxidase (KAO) gene in 11 species of Oryzeae with an outgroup in the Ehrhartoidaea. The synonymous and non-synonymous substitution rates showed a high positive correlation with each other, but were negatively correlated with codon usage bias and GC content at third codon positions. The substitution rate was heterogenous among lineages. Likelihood-ratio tests showed that the non-synonymous/synonymous rate ratio changed significantly among lineages. Site-specific models provided no evidence for positive selection of particular amino acid sites in any codon of the KAO gene. This finding suggested that the significant rate heterogeneity among some lineages may have been caused by variability in the relaxation of the selective constraint among lineages or by neutral processes.

SELECTION OF CITATIONS
SEARCH DETAIL