Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Language
Publication year range
1.
Heliyon ; 10(8): e29309, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38628761

ABSTRACT

This study conducts a numerical comparison of the thermal performance of three distinct working fluids (pure water, TiO2, and SiO2 water-based nanofluids) within an evacuated tube solar collector using Computational Fluid Dynamics. The study evaluates thermohydraulic performance alongside global and local entropy generation rates, while considering variations in solar radiation values and inlet mass flow rates. Results indicate that nanofluids demonstrate superior performance under low solar radiation, exhibiting higher outlet temperatures, velocities, thermal efficiency, and exergy efficiency compared to pure water. However, at the higher solar radiation level, the efficiency of SiO2 water-based nanofluid diminishes due to its impact on specific heat. Furthermore, the entropy generation analysis reveals significant reductions with TiO2 water-based nanofluid in all the phenomena considered (up to 79 %). The SiO2 nanofluid performance aligns closely with pure water under high radiation value. This investigation offers valuable insights into the utilization of nanofluids in solar collectors across diverse operating conditions, emphasizing their pivotal role in enhancing overall performance.

2.
Entropy (Basel) ; 25(4)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37190409

ABSTRACT

In this work, a numerical analysis of three different flat plate solar collectors was conducted using their entropy generation rates. Specifically, the Computational Fluid Dynamics (CFD) technique was used to compare the detailed performance of conventional and zigzag tube geometries of flat plate solar collectors (FPCs) in terms of their entropy generation rates. The effects of fluid viscosity, heat transfer, and heat loss of the flat plate solar collectors were considered for the local and global entropy generation rate analyses. Variations on the inlet volumetric flow rate of the FPCs from 1.0 to 9.0 L/min were simulated under the average solar radiation for one year in the state of Guanajuato, Mexico. The results illustrate and discuss the temperatures, pressures, and global entropy generation rates for volumetric flow variations. The velocity, temperature, and pressure distributions and the maps of the local entropy generation rates inside the collectors are presented and analyzed for the case with a flow rate of 3.0 L/min. These results demonstrate that the zigzag geometries achieved higher outlet temperatures and greater entropy generation rates than the conventional geometry for all the volumetric flow rates considered.

3.
Proc Inst Mech Eng H ; 236(11): 1675-1684, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36177975

ABSTRACT

A detailed numerical analysis is carried out in a real human thoracic aorta by means of the Computational Fluid Dynamics (CFD) for the prediction of the atherosclerosis lesion. Common hemodynamics parameters, such as, the oscillatory shear index (OSI) and the time average wall shear stress (TAWSS) are used for the prediction of the atherosclerosis lesion. Furthermore, the entropy generation rate is considered to obtain the main irreversibilities that occurs inside the thoracic aorta for the prediction of the atherosclerosis lesion. The model considers the blood flow inside the thoracic aorta in an unsteady state. The results show contours of velocity, streams lines, velocity profiles and the comparison of the hemodynamics parameters OSI versus TAWSS. Moreover, contours of the entropy generation rate are showed inside the aorta. The time averaged entropy generation rate (TAEGR) is obtained as a result of the entropy generation analysis. Finally, TAEGR index is compared and discussed with the common hemodynamics parameters, OSI and TAWSS. The accuracy to detect prone locations to atherosclerotic development in the real aorta using the TAEGR in comparison to the OSI and the TAWSS is in good agreement.


Subject(s)
Aorta, Thoracic , Atherosclerosis , Humans , Aorta, Thoracic/physiology , Entropy , Hemodynamics/physiology , Hydrodynamics , Stress, Mechanical , Models, Cardiovascular , Blood Flow Velocity/physiology
4.
Entropy (Basel) ; 22(1)2020 Jan 10.
Article in English | MEDLINE | ID: mdl-33285861

ABSTRACT

Heat exchangers play an important role in different industrial processes; therefore, it is important to characterize these devices to improve their efficiency by guaranteeing the efficient use of energy. In this study, we carry out a numerical analysis of flow dynamics, heat transfer, and entropy generation inside a heat exchanger; an aqueous medium used for oil extraction flows through the exchanger. Hot water flows on the shell side; nanoparticles have been added to the water in order to improve heat transfer toward the cold aqueous medium flowing on the tube side. The aqueous medium must reach a certain temperature in order to obtain its oil extraction properties. The analysis is performed for different Richardson numbers (Ri = 0.1-10), nanofluid volume fractions (φ = 0.00-0.06), and heat exchanger heights (H = 0.6-1.0). Results are presented in terms of Nusselt number, total entropy generation, Bejan number, and performance evaluation criterion. Results showed that heat exchanger performance increases with the increase in Ri when Ri > 1 and when reducing H.

5.
Entropy (Basel) ; 21(1)2019 Jan 21.
Article in English | MEDLINE | ID: mdl-33266814

ABSTRACT

Forecasting data center cooling demand remains a primary thermal management challenge in an increasingly larger global energy-consuming industry. This paper proposes a dynamic modeling approach to evaluate two different strategies for delivering cold air into a data center room. The common cooling method provides air through perforated floor tiles by means of a centralized distribution system, hindering flow management at the aisle level. We propose an idealized system such that five overhead heat exchangers are located above the aisle and handle the entire server cooling demand. In one case, the overhead heat exchangers force the airflow downwards into the aisle (Overhead Downward Flow (ODF)); in the other case, the flow is forced to move upwards (Overhead Upward Flow (OUF)). A complete fluid dynamic, heat transfer, and thermodynamic analysis is proposed to model the system's thermal performance under both steady state and transient conditions. Inside the servers and heat exchangers, the flow and heat transfer processes are modeled using a set of differential equations solved in MATLAB™ 2017a. This solution is coupled with ANSYS-Fluent™ 18, which computes the three-dimensional velocity, temperature, and turbulence on the Airside. The two approaches proposed (ODF and OUF) are evaluated and compared by estimating their cooling effectiveness and the local Entropy Generation. The latter allows identifying the zones within the room responsible for increasing the inefficiencies (irreversibilities) of the system. Both approaches demonstrated similar performance, with a small advantage shown by OUF. The results of this investigation demonstrated a promising approach of data center on-demand cooling scenarios.

6.
Entropy (Basel) ; 21(7)2019 Jul 03.
Article in English | MEDLINE | ID: mdl-33267369

ABSTRACT

A multiobjective optimization of an organic Rankine cycle (ORC) evaporator, operating with toluene as the working fluid, is presented in this paper for waste heat recovery (WHR) from the exhaust gases of a 2 MW Jenbacher JMS 612 GS-N.L. gas internal combustion engine. Indirect evaporation between the exhaust gas and the organic fluid in the parallel plate heat exchanger (ITC2) implied irreversible heat transfer and high investment costs, which were considered as objective functions to be minimized. Energy and exergy balances were applied to the system components, in addition to the phenomenological equations in the ITC2, to calculate global energy indicators, such as the thermal efficiency of the configuration, the heat recovery efficiency, the overall energy conversion efficiency, the absolute increase of engine thermal efficiency, and the reduction of the break-specific fuel consumption of the system, of the system integrated with the gas engine. The results allowed calculation of the plate spacing, plate height, plate width, and chevron angle that minimized the investment cost and entropy generation of the equipment, reaching 22.04 m2 in the heat transfer area, 693.87 kW in the energy transfer by heat recovery from the exhaust gas, and 41.6% in the overall thermal efficiency of the ORC as a bottoming cycle for the engine. This type of result contributes to the inclusion of this technology in the industrial sector as a consequence of the improvement in thermal efficiency and economic viability.

7.
An. acad. bras. ciênc ; 89(1,supl): 717-743, May. 2017. tab, graf
Article in English | LILACS | ID: biblio-886650

ABSTRACT

Abstract A performance assessment of active magnetocaloric regenerators using entropy generation minimization is presented. The model consists of the Brinkman-Forchheimer equation to describe the fluid flow and coupled energy equations for the fluid and solid phases. Entropy generation contributions due to axial heat conduction, fluid friction and interstitial heat transfer are considered. Based on the velocity and temperature profiles, local rates of entropy generation per unit volume were integrated to give the cycle-average entropy generation in the regenerator, which is the objective function of the optimization procedure. The solid matrix is a bed of gadolinium spherical particles and the working fluid is water. Performance evaluation criteria of fixed cross-section (face) area (FA) and variable geometry (VG) are incorporated into the optimization procedure to identify the most appropriate parameters and operating conditions under fixed constraints of specified temperature span and cooling capacity.

SELECTION OF CITATIONS
SEARCH DETAIL