Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Trends Microbiol ; 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39304419

ABSTRACT

Traditionally, antifungal resistance (AFR) has received much less attention compared with bacterial resistance to antibiotics. However, global changes, pandemics, and emerging new fungal infections have highlighted global health consequences of AFR. The recent report of the World Health Organisation (WHO) has identified fungal priority pathogens, and recognised AFR among the greatest global health threats. This is particularly important given the significant increase in fungal infections linked to climate change and pandemics. Environmental factors play critical roles in AFR and fungal infections, as many clinically relevant fungal pathogens and AFR originate from the environment (mainly soil). In addition, the environment serves as a potential rich source for the discovery of new antifungal agents, including mycoviruses and bacterial probiotics, which hold promise for effective therapies. In this article, we summarise the environmental pathways of AFR development and spread among high priority fungal pathogens, and propose potential mechanisms of AFR development and spread. We identify a research priority list to address key knowledge gaps in our understanding of environmental AFR. Further, we propose an integrated roadmap for predictive risk management of AFR that is critical for effective surveillance and forecasting of public health outcomes under current and future climatic conditions.

2.
Front Microbiol ; 15: 1380199, 2024.
Article in English | MEDLINE | ID: mdl-39171270

ABSTRACT

Diverse and complex microbiomes are found in virtually every environment on Earth. Bacteria and fungi often co-dominate environmental microbiomes, and there is growing recognition that bacterial-fungal interactions (BFI) have significant impacts on the functioning of their associated microbiomes, environments, and hosts. Investigating BFI in vitro remains a challenge, particularly when attempting to examine interactions at multiple scales of system complexity. Fabricated devices can provide control over both biotic composition and abiotic factors within an experiment to enable the characterization of diverse BFI phenotypes such as modulation of growth rate, production of biomolecules, and alterations to physical movements. Engineered devices ranging from microfluidic chips to simulated rhizosphere systems have been and will continue to be invaluable to BFI research, and it is anticipated that such devices will continue to be developed for diverse applications in the field. This will allow researchers to address specific questions regarding the nature of BFI and how they impact larger microbiome and environmental processes such as biogeochemical cycles, plant productivity, and overall ecosystem resilience. Devices that are currently used for experimental investigations of bacteria, fungi, and BFI are discussed herein along with some of the associated challenges and several recommendations for future device design and applications.

3.
Front Vet Sci ; 11: 1401561, 2024.
Article in English | MEDLINE | ID: mdl-39021414

ABSTRACT

Introduction: Stringent regulations in pig farming, such as antibiotic control and the ban on certain additives and disinfectants, complicate disease control efforts. Despite the evolution of microbial communities inside the house environment, they maintain stability over the years, exhibiting characteristics specific to each type of production and, in some cases, unique to a particular company or farm production type. In addition, some infectious diseases are recurrent in specific farms, while other farms never present these diseases, suggesting a connection between the presence of these microorganisms in animals or their environment. Therefore, the aim of this study was to characterise environmental microbiomes of farms with high and low sanitary status, establishing the relationships between both, health status, environmental microbial ecology and its functionality. Methods: For this purpose, 6 pig farms were environmentally sampled. Farms were affiliated with a production company that handle the majority of the pigs slaughtered in Spain. This study investigated the relationship among high health and low health status farms using high throughput 16S rRNA gene sequencing. In addition, to identify ecologically relevant functions and potential pathogens based on the 16S rRNA gene sequences obtained, functional Annotation with PROkaryotic TAXa (FAPROTAX) was performed. Results and Discussion: This study reveals notable differences in microbial communities between farms with persistent health issues and those with good health outcomes, suggesting a need for protocols tailored to address specific challenges. The variation in microbial populations among farms underscores the need for specific and eco-friendly cleaning and disinfection protocols. These measures are key to enhancing the sustainability of livestock farming, ensuring safer products and boosting competitive edge in the market.

6.
One Health ; 18: 100701, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38468609

ABSTRACT

One Health Systems Science. The three subsystems of One Health (ecosystem, human and animal health) are integrated in the Systems Science concept, where objects or adaptive agents (circles) interact with a dynamic environment, and Systems Thinking can lead it intervations (Systems Design) generating a change in One Health outcomes. Real-time genomic data retrieved from the three subsystems porvide information fo Systems Thinking and Systems Design.Unlabelled Image.

7.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38305133

ABSTRACT

A comprehensive profiling of microbial diversity is essential to understand the ecosystem functions. Universal primer sets such as the 515Y/926R could amplify a part of 16S and 18S rRNA and infer the diversity of prokaryotes and eukaryotes. However, the analyses of mixed sequencing data pose a bioinformatics challenge; the 16S and 18S rRNA sequences need to be separated first and analysed individually/independently due to variations in the amplicon length. This study describes an alternative strategy, a merging and concatenation workflow, to analyse the mixed amplicon data without separating the 16S and 18S rRNA sequences. The workflow was tested with 24 mock community (MC) samples, and the analyses resolved the composition of prokaryotes and eukaryotes adequately. In addition, there was a strong correlation (cor = 0.950; P-value = 4.754e-10) between the observed and expected abundances in the MC samples, which suggests that the computational approach could infer the microbial proportions accurately. Further, 18 samples collected from the Sundarbans mangrove region were analysed as a case study. The analyses identified Proteobacteria, Bacteroidota, Actinobacteriota, Cyanobacteria, and Crenarchaeota as dominant bacterial phyla and eukaryotic divisions such as Metazoa, Gyrista, Cryptophyta, Chlorophyta, and Dinoflagellata were found to be dominant in the samples. Thus, the results support the applicability of the method in environmental microbiome research. The merging and concatenation workflow presented here requires considerably less computational resources and uses widely/commonly used bioinformatics packages, saving researchers analyses time (for equivalent sample numbers, compared to the conventional approach) required to infer the diversity of major microbial domains from mixed amplicon data at comparable accuracy.


Subject(s)
Microbiota , RNA, Ribosomal, 18S/genetics , Workflow , Microbiota/genetics , Bacteria/genetics , High-Throughput Nucleotide Sequencing/methods , Computational Biology , RNA, Ribosomal, 16S/genetics
8.
Front Microbiol ; 15: 1348171, 2024.
Article in English | MEDLINE | ID: mdl-38389541

ABSTRACT

Introduction: Intensive beef cattle production systems are frequently implicated as a source of bacteria that can be transferred to nearby humans and animals via effluent water, manure used as fertilizer, or airborne particulate matter. It is crucial to understand microbial population dynamics due to manure pack desiccation, antibiotic usage, and antibiotic alternatives within beef cattle and their associated feedyard environment. Understanding how bacterial communities change in the presence of antibiotics can also improve management practices for reducing the spread of foodborne bacteria. Methods: In this study, we aimed to compare the microbiomes within cattle feces, the feedyard environment and artificially produced airborne particulate matter as a function of pen change and treatment with tylosin or probiotics. We utilized 16S rRNA sequencing to compare bacterial communities among sample types, study days, and treatment groups. Results: Bacterial community diversity varied as a function of sampling day and pen change (old or new) within fecal and manure pack samples. Manure pack samples from old pens and new pens contained diverse communities of bacteria on days 0 and 84; however, by day 119 of the study these taxonomic differences were less evident. Particulate matter samples exhibited significant differences in community diversity and predominant bacterial taxa compared to the manure pack they originated from. Treatment with tylosin did not meaningfully impact bacterial communities among fecal, environmental, or particulate matter samples; however, minor differences in bacterial community structure were observed in feces from cattle treated with probiotics. Discussion: This study was the first to characterize and compare microbial communities within feces, manure pack, and airborne particulate matter from the same location and as a function of tylosin and probiotic treatment, and pen change. Although fecal and environmental samples are commonly used in research studies and other monitoring programs to infer public health risk of bacteria and antimicrobial resistance determinants from feedyard environments, our study suggests that these samples may not be appropriate to infer public health risk associated with airborne particulate matter.

9.
Microorganisms ; 11(12)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38138138

ABSTRACT

Dwindling water sources increase the need for efficient wastewater treatment. Solar-driven algal turf scrubber (ATS) system may remediate wastewater by supporting the development and growth of periphytic microbiomes that function and interact in a highly dynamic manner through symbiotic interactions. Using ITS and 16S rRNA gene amplicon sequencing, we profiled the microbial communities of four microbial biofilms from ATS systems operated with municipal wastewater (mWW), diluted cattle and pig manure (CattleM and PigM), and biogas plant effluent supernatant (BGE) in comparison to the initial inocula and the respective wastewater substrates. The wastewater-driven biofilms differed significantly in their biodiversity and structure, exhibiting an inocula-independent but substrate-dependent establishment of the microbial communities. The prokaryotic communities were comparable among themselves and with other microbiomes of aquatic environments and were dominated by metabolically flexible prokaryotes such as nitrifiers, polyphosphate-accumulating and algicide-producing microorganisms, and anoxygenic photoautotrophs. Striking differences occurred in eukaryotic communities: While the mWW biofilm was characterized by high biodiversity and many filamentous (benthic) microalgae, the agricultural wastewater-fed biofilms consisted of less diverse communities with few benthic taxa mainly inhabited by unicellular chlorophytes and saprophytes/parasites. This study advances our understanding of the microbiome structure and function within the ATS-based wastewater treatment process.

10.
Environ Microbiome ; 18(1): 66, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37533117

ABSTRACT

The Tri-Service Microbiome Consortium (TSMC) was founded to enhance collaboration, coordination, and communication of microbiome research among DoD organizations and to facilitate resource, material and information sharing amongst consortium members, which includes collaborators in academia and industry. The 6th Annual TSMC Symposium was a hybrid meeting held in Fairlee, Vermont on 27-28 September 2022 with presentations and discussions centered on microbiome-related topics within seven broad thematic areas: (1) Human Microbiomes: Stress Response; (2) Microbiome Analysis & Surveillance; (3) Human Microbiomes Enablers & Engineering; (4) Human Microbiomes: Countermeasures; (5) Human Microbiomes Discovery - Earth & Space; (6) Environmental Micro & Myco-biome; and (7) Environmental Microbiome Analysis & Engineering. Collectively, the symposium provided an update on the scope of current DoD microbiome research efforts, highlighted innovative research being done in academia and industry that can be leveraged by the DoD, and fostered collaborative opportunities. This report summarizes the activities and outcomes from the 6th annual TSMC symposium.

11.
J Indian Inst Sci ; : 1-17, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37362854

ABSTRACT

Microorganisms are ubiquitous in nature and form complex community networks to survive in various environments. This community structure depends on numerous factors like nutrient availability, abiotic factors like temperature and pH as well as microbial composition. Categorising accessible biomes according to their habitats would help in understanding the complexity of the environment-specific communities. Owing to the recent improvements in sequencing facilities, researchers have started to explore diverse microbiomes rapidly and attempts have been made to study microbial crosstalk. However, different metagenomics sampling, preprocessing, and annotation methods make it difficult to compare multiple studies and hinder the recycling of data. Huge datasets originating from these experiments demand systematic computational methods to extract biological information beyond microbial compositions. Further exploration of microbial co-occurring patterns across the biomes could help us in designing cross-biome experiments. In this review, we catalogue databases with system-specific microbiomes, discussing publicly available common databases as well as specialised databases for a range of microbiomes. If the new datasets generated in the future could maintain at least biome-specific annotation, then researchers could use those contemporary tools for relevant and bias-free analysis of complex metagenomics data.

12.
Front Microbiol ; 14: 1089630, 2023.
Article in English | MEDLINE | ID: mdl-36960281

ABSTRACT

In terms of the number and diversity of living units, the prokaryotic empire is the most represented form of life on Earth, and yet it is still to a significant degree shrouded in darkness. This microbial "dark matter" hides a great deal of potential in terms of phylogenetically or metabolically diverse microorganisms, and thus it is important to acquire them in pure culture. However, do we know what microorganisms really need for their growth, and what the obstacles are to the cultivation of previously unidentified taxa? Here we review common and sometimes unexpected requirements of environmental microorganisms, especially soil-harbored bacteria, needed for their replication and cultivation. These requirements include resuscitation stimuli, physical and chemical factors aiding cultivation, growth factors, and co-cultivation in a laboratory and natural microbial neighborhood.

13.
mSystems ; 8(1): e0087522, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36695590

ABSTRACT

Indigenous Peoples have a rich and long-standing connection with the environments that they descend from-a connection that has informed a deep and multifaceted understanding of the relationship between human well-being and the environment. Through cultural narratives and practices, much of this knowledge has endured despite the ongoing effects that colonization has had on many Indigenous peoples across the world. These narratives and practices, based on observation, experimentation, and practical application over many generations, have the potential to make compelling contributions to our understanding of the environmental microbiome and its relationship to health. Furthermore, the inclusion of Indigenous perspectives regarding the microbiome opens pathways to those who rarely engage with the field and its learnings. Within the scientific community, Indigenous perspectives have not always been acknowledged as valid contributions and are often seen as myth or lacking rigor. Thus, this paper aims to explore an Indigenous perspective of the microbiome as an unseen influence on health and well-being by framing the importance of the natural environment, Indigenous knowledge and leadership, and future research directions that can contribute to this domain. Although the Indigenous perspective in this article reflects the experiences, worldviews, and knowledge of two New Zealand Maori authors, it is hoped that the concepts discussed can relate to Indigenous peoples, and non-Indigenous advocates, globally.


Subject(s)
Indigenous Peoples , Knowledge , Microbiota , Humans , Empirical Research , Qualitative Research , Colonialism
14.
Microorganisms ; 10(9)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36144316

ABSTRACT

The use of film media involves considerably less preparation, waste, and incubator space than conventional agar-media-based assays and has proven in past studies to provide counts of cultivable microbes similar to those of traditional agar media. Film media also have the advantage of allowing sample volumes similar to those used in pour plates and, therefore, are well-suited for cultivable microbial counts in extremely low-biomass environments such as clean rooms or space habitats, particularly where the subsequent isolation of colonies is necessary. As the preparation of film media plates relies on water cohesion/adhesion rather than manual spreading, they may have future applications in low- or microgravity settings. In this study, cultivable microbial count performance was compared between agar media and film media in three kinds of samples: food items, surfaces in built environments on Earth (homes), and on the environmental surfaces of the International Space Station (ISS). Easy Plates (Kikkoman Corporation) and Petrifilm (3M) were compared with traditional agar plating for food and home surfaces, while only Easy Plates were compared with agar for ISS samples. For both food items and built environments on Earth, both types of film media performed comparably to agar media for bacterial counts, with R2 values of 0.94-0.96. Fungal counts for built-environment samples had a lower correlation between film and agar counts, with R2 values of 0.72-0.73. Samples from the ISS, which ranged from below detection to 103 CFU per 100 cm2, had R2 values of 0.80 for bacterial counts and 0.73 for fungal counts, partially due to multiple samples recording below the detection limit for agar or too numerous to count, and the growth of fungal species on R2A medium. The species compositions of isolates picked from agar vs. film media plates were similar; however, further phylogenetic analysis is needed to confirm the differential microbial diversity composition. Overall, film media such as Easy Plates and Petrifilm are viable alternatives to agar plates for low-biomass built environments as well as for food samples, and the two brands tested in this study performed equally well.

15.
Microbiol Spectr ; 10(4): e0101822, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35852346

ABSTRACT

We evaluated the ability of two strains of lactic acid bacteria (LAB) to inhibit L. monocytogenes using spot inoculation and environmental microbiome attached-biomass assays. LAB strains (PS01155 and PS01156) were tested for antilisterial activity toward 22 phylogenetically distinct L. monocytogenes strains isolated from three fruit packing environments (F1, F2, and F3). LAB strains were tested by spot inoculation onto L. monocytogenes lawns (108 and 107 CFU/mL) and incubated at 15, 20, 25, or 30°C for 3 days. The same LAB strains were also cocultured at 15°C for 3, 5, and 15 days in polypropylene conical tubes with L. monocytogenes and environmental microbiome suspensions collected from F1, F2, and F3. In the spot inoculation assay, PS01156 was significantly more inhibitory toward less concentrated L. monocytogenes lawns than more concentrated lawns at all the tested temperatures, while PS01155 was significantly more inhibitory toward less concentrated lawns only at 15 and 25°C. Furthermore, inhibition of L. monocytogenes by PS01156 was significantly greater at 15°C than higher temperatures, whereas the temperature did not have an effect on the inhibitory activity of PS01155. In the assay using attached environmental microbiome biomass, L. monocytogenes concentration was significantly reduced by PS01156, but not PS01155, when cocultured with microbiomes from F1 and F3 and incubated for 3 days at 15°C. Attached biomass microbiota composition was significantly affected by incubation time but not by LAB strain. This study demonstrates that LAB strains that may exhibit inhibitory properties toward L. monocytogenes in a spot inoculation assay may not maintain antilisterial activity within a complex microbiome. IMPORTANCE Listeria monocytogenes has previously been associated with outbreaks of foodborne illness linked to consumption of fresh produce. In addition to conventional cleaning and sanitizing, lactic acid bacteria (LAB) have been studied for biocontrol of L. monocytogenes in food processing environments that are challenging to clean and sanitize. We evaluated whether two specific LAB strains, PS01155 and PS01156, can inhibit the growth of L. monocytogenes strains in a spot inoculation and in an attached-biomass assay, in which they were cocultured with environmental microbiomes collected from tree fruit packing facilities. LAB strains PS01155 and PS01156 inhibited L. monocytogenes in a spot inoculation assay, but the antilisterial activity was lower or not detected when they were grown with environmental microbiota. These results highlight the importance of conducting biocontrol challenge tests in the context of the complex environmental microbiomes present in food processing facilities to assess their potential for application in the food industry.


Subject(s)
Lactobacillales , Listeria monocytogenes , Microbiota , Colony Count, Microbial , Food Handling , Food Microbiology , Temperature
16.
Front Microbiol ; 13: 931065, 2022.
Article in English | MEDLINE | ID: mdl-35770164

ABSTRACT

The oral cavity is an important window for microbial communication between the environment and the human body. The oral microbiome plays an important role in human health. However, compared to the gut microbiome, the oral microbiome has been poorly explored. Here, we analyzed 404 datasets from human oral saliva samples published by the Earth Microbiome Project (EMP) and compared them with 815 samples from the human gut, nose/pharynx, and skin. The diversity of the human saliva microbiome varied significantly among individuals, and the community compositions were complex and diverse. The saliva microbiome showed the lowest species diversity among the four environment types. Human oral habitats shared a small core bacterial community containing only 14 operational taxonomic units (OTUs) under 5 phyla, which occupied over 75% of the sequence abundance. For the four habitats, the core taxa of the saliva microbiome had the greatest impact on saliva habitats than other habitats and were mostly unique. In addition, the saliva microbiome showed significant differences in the populations of different regions, which may be determined by the living environment and lifestyle/dietary habits. Finally, the correlation analysis showed high similarity between the saliva microbiome and the microbiomes of Aerosol (non-saline) and Surface (non-saline), i.e., two environment types closely related to human, suggesting that contact and shared environment being the driving factors of microbial transmission. Together, these findings expand our understanding of human oral diversity and biogeography.

17.
Food Res Int ; 156: 111126, 2022 06.
Article in English | MEDLINE | ID: mdl-35651005

ABSTRACT

The strong-flavor Baijiu (SFB) brewing workshop is a complex ecosystem with diverse microbiomes. As a potential source of microbiomes in fermentation, microbiota in the environmental microecology may affect the quality and flavor of SFB. Here, we report the collection of environmental microecological samples from three SFB workshops with different usage times (named 70a, 30a, and new, respectively). We used 16S rRNA and internal transcribed spacer (ITS) gene amplicon full-length sequencing to explore the microbial community structure in SFB. The SourceTracker tool was used to investigate links among fermentation samples, raw materials, and the environment and decipher the construction process in the workshop indoor environment. Lactobacillus acetotolerans was the most important bacterial genus in Zaopei after fermentation, whereas other types of samples exhibited different prokaryotic community structures. The composition of the fungal community was similar, with Saccharomycopsis fibuligera, Debaryomyces hansenii, Lichtheimia ramosa, Lichtheimia corymbifera, and Pichia kudriavzevii being the most abundant, and were detected in most samples. Further comparison of the microbiota in the workshop environment showed that the diversity of the microbiota in the indoor environment decreased, showing different clustering patterns under the influence of location. With increasing usage time, the contribution of deterministic processes to the assembly of the prokaryotic community increases, and the community structure tends to stabilize, exhibiting its own characteristics. SFB-fermenting resident functional fungi were the major components of the fungal community, and SourceTracker analysis also highlighted the contributions of Zaopei, Daqu, and tool surfaces as fungal sources. This study is the first to comprehensively monitor the microbial profile of the SFB production environment. This research can be extended to involve more complex spontaneous fermentation environment microbiota and has important implications for the control of spontaneous fermentation.


Subject(s)
Microbiota , Bacteria/genetics , China , Fermentation , RNA, Ribosomal, 16S/genetics
18.
Front Microbiol ; 13: 824950, 2022.
Article in English | MEDLINE | ID: mdl-35602067

ABSTRACT

Despite decades of research on lobster species' biology, ecology, and microbiology, there are still unresolved questions about the microbial communities which associate in or on lobsters under healthy or diseased states, microbial acquisition, as well as microbial transmission between lobsters and between lobsters and their environment. There is an untapped opportunity for metagenomics, metatranscriptomics, and metabolomics to be added to the existing wealth of knowledge to more precisely track disease transmission, etiology, and host-microbe dynamics. Moreover, we need to gain this knowledge of wild lobster microbiomes before climate change alters environmental and host-microbial communities more than it likely already has, throwing a socioeconomically critical industry into disarray. As with so many animal species, the effects of climate change often manifest as changes in movement, and in this perspective piece, we consider the movement of the American lobster (Homarus americanus), Atlantic Ocean currents, and the microorganisms associated with either.

19.
Life (Basel) ; 12(3)2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35330207

ABSTRACT

Microorganisms are an essential part of life on the earth and can exist in association with virtually any living thing. The environmental microbiome is much more diverse than the human microbiome. It is reported that most microbes existing in the environment are difficult to culture in the laboratory. Whereas both pathogenic and beneficial microbes may be prevailing in the environment, the human body can have three categories of microbes- beneficial, pathogenic, and opportunistic pathogenic. With at least 10-fold more cells than human cells, microbes as normal flora are critical for human survival. The microbes present in the human body play a crucial role in maintaining human health, and the environmental microbiome influences the human microbiome makeup. The interaction between the environmental and human microbiome highly influences human health, however it is poorly understood. In addition, as an established infection is associated with health-seeking behavior, a large number of studies have focused on the transmission and dynamics of infectious microorganisms than the noninfectious or beneficial ones. This review will summarize how the interaction between the environmental and human microbiome affects human health and identify approaches that might be beneficial for humans to improve health by being exposed to the natural environment.

20.
Yakugaku Zasshi ; 142(1): 33-37, 2022.
Article in Japanese | MEDLINE | ID: mdl-34980749

ABSTRACT

Strict microbial control is required in manufacturing facilities to ensure the quality of pharmaceuticals and foods. Environmental microbial monitoring plays a fundamental role in reducing the risk of microbial contamination. Appropriate microbial control requires an understanding of abundance and community structures of microbes in the target environment. However, most of these microbes are not culturable using conventional methods. In this study, we determined the number of microbial particles and assessed the environmental microbiome in a pharmaceutical manufacturing facility, using high-throughput sequencing of rRNA gene fragments. Our results provide fundamental data for the evaluation and control of microbes in the pharmaceutical and food industries.


Subject(s)
Drug Contamination/prevention & control , Drug Industry , Environmental Monitoring/methods , Manufacturing and Industrial Facilities , Microbiota , High-Throughput Nucleotide Sequencing , Humans , Microbiota/genetics , Risk
SELECTION OF CITATIONS
SEARCH DETAIL