Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 370
Filter
1.
Mar Environ Res ; 199: 106630, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38964247

ABSTRACT

Harmful algal blooms (HABs) of Alexandrium pacificum have affected the Marlborough Sounds in New Zealand since 2010, posing a threat to green-lipped mussel (GLM, Perna canaliculus) farming. Previous studies have shown A. pacificum has negative effects GLM embryos and larvae. To further investigate these toxic mechanisms, in vitro bioassays were conducted on GLM spermatozoa, hemocytes, and the diatom, Chaetoceros muelleri. The three cell types were exposed to several treatments of A. pacificum for 2 h and responses were measured using flow cytometry and pulse amplitude-modulated fluorometry. Significant spermatozoa mortality was recorded in treatments containing A. pacificum cells or fragments, while hemocyte and C. muelleri mortality was recorded in cell-free treatments of A. pacificum which contained paralytic shellfish toxins (PSTs). Variation in sensitivity between cell types as well as the sublethal effects observed, emphasise the diverse toxic mechanisms of A. pacificum on co-occurring species in the environment.


Subject(s)
Diatoms , Dinoflagellida , Hemocytes , Spermatozoa , Animals , Dinoflagellida/physiology , Diatoms/physiology , Diatoms/drug effects , Hemocytes/drug effects , Male , Spermatozoa/drug effects , Spermatozoa/physiology , Perna/physiology , Perna/drug effects , Harmful Algal Bloom , New Zealand , Marine Toxins/toxicity
2.
Sci Rep ; 14(1): 15221, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956104

ABSTRACT

Municipal wastewater treatment systems use the chemical oxygen demand test (COD) to identify organic contaminants in industrial effluents that impede treatment due to their high concentration. This study reduced the COD levels in tannery wastewater using a multistage treatment process that included Fenton oxidation, chemical coagulation, and nanotechnology based on a synthetic soluble COD standard solution. At an acidic pH of 5, Fenton oxidation reduces the COD concentration by approximately 79%. It achieves this by combining 10 mL/L of H2O2 and 0.1 g/L of FeCl2. Furthermore, the author selected the FeCl3 coagulant for the coagulation process based on the best results of comparisons between different coagulants. At pH 8.5, the coagulation dose of 0.15 g/L achieved the maximum COD removal efficiency of approximately 56.7%. Finally, nano bimetallic Fe/Cu was used to complete the degradation and adsorption of the remaining organic pollutants. The XRD, SEM, and EDX analyses proved the formation of Fe/Cu nanoparticles. A dose of 0.09 g/L Fe/Cu NPs, 30 min of contact time, and a stirring rate of 200 rpm achieve a maximum removal efficiency of about 93% of COD at pH 7.5. The kinetics studies were analyzed using pseudo-first-order P.F.O., pseudo-second-order P.S.O., and intraparticle diffusion models. The P.S.O. showed the best fit among the kinetic models, with an R2 of 0.998. Finally, the authors recommended that technique for highly contaminated industrial effluents treatment for agriculture or industrial purposes.

3.
Environ Toxicol Chem ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967272

ABSTRACT

Data from prior research indicate the prepupal stage of the monarch butterfly life cycle is more sensitive to clothianidin exposure than the larval stage. A set of experiments was conducted to determine if the dietary clothianidin exposures that cause prepupal mortality are environmentally relevant. Monarch larvae were raised from egg to pupae on clothianidin-contaminated swamp milkweed plants (Asclepias incarnata). Larval growth as well as larval and prepupal survival were monitored throughout the experiments, in which the exposures ranged from 1.4 to 2793.1 ng/g leaf. Exposures of 5.4 to 46.9 ng/g leaf resulted primarily in prepupal mortality, whereas higher exposures of 1042.4 to 2793.1 ng/g leaf resulted exclusively in larval mortality, indicating the prepupal stage is more sensitive to clothianidin exposure than the larval stage. A median lethal concentration and a 10% lethal concentration of 37 and 6 ng/g leaf, respectively, were estimated for prepupal mortality. Both effect concentrations are within the range of clothianidin concentrations reported in leaves collected from wild milkweed plants, indicating prepupal mortality is an environmentally relevant effect. Environ Toxicol Chem 2024;00:1-6. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

4.
Ecotoxicol Environ Saf ; 282: 116718, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39024957

ABSTRACT

Copper is one of the predominant water pollutants. Excessive exposure to copper can cause harm to animal health, affecting the central nervous system and causing blood abnormalities. Cuproptosis is a novel form of cell death that differs from previous programmed cell death methods. However, the impact of copper on the intestines remains unclear. Therefore, we investigated the effects of different concentrations of copper exposure on the intestinal proteome of Takifugu rubripes (T. rubripes). Relevant biomarkers were used to detect cuproptosis. We revealed the crosstalk relationship between cuproptosis and self-rescue at different concentrations, and discussed the feasibility of using potential cuproptosis indicators as anti-infection factors. We observed intestinal damage in the three copper exposure groups, especially in T. rubripes treated with 100 and 500 µg/L copper, with shedding and breakage of intestinal villus and fuzzy and loose structure of intestinal mucosa. The presence of copper stress not only causes cuproptosis but also oxidative damage caused by reactive oxygen species (ROS). The results of quantitative proteomics by TMT showed that compared to the 50 and 100 µg/L copper exposure groups, the expression of glutaminase, pyruvate kinase, and skin mucus lectin in the 500 µg/L group was significantly increased. The positive mediators COX5A and CTNNB1, as well as the negative mediators CD4 and FDXR, were found to be differentially expressed. Using the protein expression trends of cuproptosis indicator factors FDX1 and DLAT to indicate the concentration of copper ions in the environment. In addition, we found a new effect of promoting ferroptosis: providing additional copper ions can activate the phenomenon of ferroptosis. Our results expand our understanding of the potential health risks of copper in T. rubripes. At the same time, it is of great significance for the process of copper poisoning and the development of new environmental toxicology detection reagents.

5.
Environ Toxicol Chem ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860654

ABSTRACT

Ecotoxicological impacts of chemicals released into the environment are characterized by combining fate, exposure, and effects. For characterizing effects, species sensitivity distributions (SSDs) estimate toxic pressures of chemicals as the potentially affected fraction of species. Life cycle assessment (LCA) uses SSDs to identify products with lowest ecotoxicological impacts. To reflect ambient concentrations, the Global Life Cycle Impact Assessment Method (GLAM) ecotoxicity task force recently recommended deriving SSDs for LCA based on chronic EC10s (10% effect concentration, for a life-history trait) and using the 20th percentile of an EC10-based SSD as a working point. However, because we lacked measured effect concentrations, impacts of only few chemicals were assessed, underlining data limitations for decision support. The aims of this paper were therefore to derive and validate freshwater SSDs by combining measured effect concentrations with in silico methods. Freshwater effect factors (EFs) and uncertainty estimates for use in GLAM-consistent life cycle impact assessment were then derived by combining three elements: (1) using intraspecies extrapolating effect data to estimate EC10s, (2) using interspecies quantitative structure-activity relationships, or (3) assuming a constant slope of 0.7 to derive SSDs. Species sensitivity distributions, associated EFs, and EF confidence intervals for 9862 chemicals, including data-poor ones, were estimated based on these elements. Intraspecies extrapolations and the fixed slope approach were most often applied. The resulting EFs were consistent with EFs derived from SSD-EC50 models, implying a similar chemical ecotoxicity rank order and method robustness. Our approach is an important step toward considering the potential ecotoxic impacts of chemicals currently neglected in assessment frameworks due to limited test data. Environ Toxicol Chem 2024;00:1-14. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

6.
Toxicol Mech Methods ; : 1-12, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38725267

ABSTRACT

A vast variety of chemical compounds have been fabricated and commercialized, they not only result in industrial exposure during manufacturing and usage, but also have environmental impacts throughout their whole life cycle. Consequently, attempts to assess the risk of chemicals in terms of toxicology have never ceased. In-silico toxicology, also known as predictive toxicology, has advanced significantly over the last decade as a result of the drawbacks of experimental investigations. In this study, ProTox-III was applied to predict the toxicity of the ligands used for metal-organic framework (MOF) design and synthesis. Initially, 35 ligands, that have been frequently utilized for MOF synthesis and fabrication, were selected. Subsequently, canonical simplified molecular-input line-entry system (SMILES) of ligands were extracted from the PUBCHEM database and inserted into the ProTox-III online server. Ultimately, webserver outputs including LD50 and the probability of toxicological endpoints (cytotoxicity, carcinogenicity, mutagenicity, immunotoxicity, and ecotoxicity) were obtained and organized. According to retrieved LD50 data, the safest ligand was 5-hydroxyisophthalic. In contrast, the most hazardous ligand was 5-chlorobenzimidazole, with an LD50 of 8 mg/kg. Among evaluated endpoints, ecotoxicity was the most active and was detected in several imidazolate ligands. This data can open new horizons in design and development of green MOFs.

7.
Environ Toxicol Chem ; 43(7): 1592-1603, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38808394

ABSTRACT

Pharmaceuticals and drugs of abuse are organic micropollutants of emerging concern in both surface and groundwater worldwide. These compounds are considered to be pseudo-persistent because of their continuous release into water systems. The presence of these compounds in the environment at any concentration poses a potential risk to nontarget organisms. The main sources of these contaminants are wastewater treatment plants (WWTPs) and combined sewer overflows (CSOs). The primary goal of our study was to identify and quantify a panel of 28 commonly prescribed pharmaceuticals (mood-altering drugs, cardiovascular drugs, antacids, antibiotics) and high-prevalence drugs of abuse (cocaine, amphetamines, opioids, cannabis) in river water samples collected from 19 locations in the Hudson and East rivers in New York City. The second goal was to investigate the possible source (WWTP or CSOs) of these micropollutants. Samples were collected weekly from May to August 2021 (n = 224) and May to August 2022 (n = 232), and placed at -20 °C until analysis by liquid chromatography-tandem mass spectrometry. The most frequently detected analytes in 2021 were metoprolol (n = 206, 92%), benzoylecgonine (n = 151, 67%), atenolol (n = 142, 63%), and methamphetamine (n = 118, 53%), and in 2022 the most frequently detected were methamphetamine (n = 194, 84%), atenolol (n = 177, 76%), metoprolol (n = 177, 76%), and 2-ethylene-1,5-dimethyl-3,3-diphenylpyrrolidine (n = 159, 69%). Measured concentrations ranged from the limit of detection (0.50-5.00 ng/L) to 103 ng/L. More drugs and higher concentrations were detected in water contaminated by Enterococci (>60 most probably number) and after rainfall, indicating the influence of CSOs. The presence of drugs in samples with little to no Enterococci and after dry weather events indicates that WWTPs contribute to the presence of these substances in the river, probably due to a low removal rate. Environ Toxicol Chem 2024;43:1592-1603. © 2024 SETAC.


Subject(s)
Environmental Monitoring , Illicit Drugs , Sewage , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Illicit Drugs/analysis , Pharmaceutical Preparations/analysis , Sewage/analysis , Rivers/chemistry , New Jersey , Wastewater/chemistry , New York
8.
Sci Total Environ ; 928: 172374, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38615760

ABSTRACT

The Reloncaví estuary in southern Chile is famous for its aquaculture. However, recurring harmful algal blooms have adversely affected mussel production. Therefore, regular monitoring of algal toxins is urgently needed to better understand the contamination status of the estuary. In this study, we quantified 15 types of lipophilic shellfish toxins in Metri Bay in the Reloncaví estuary on a biweekly basis for 4 years. We identified algal species using microscopy and metabarcoding analysis. We also measured water temperature, salinity, chlorophyll-a, and dissolved oxygen to determine the potential relationships of these parameters with algal toxin production. Our results revealed the presence of a trace amount of pectenotoxin and the causal phytoplankton Dinophysis, as well as yessotoxin and the causal phytoplankton Protoceratium. Statistical analysis indicated that fluctuations in water temperature affected the detection of these toxins. Additionally, metabarcoding analysis detected the highly toxic phytoplankton Alexandrium spp. in some samples. Although our results suggest that the level of lipophilic shellfish toxins in Metri Bay during the study period was insignificantly low using our current LC-MS method, the confirmed presence of highly toxic algae in Metri Bay raises concerns, given that favorable environmental conditions could cause blooms.


Subject(s)
Environmental Monitoring , Estuaries , Harmful Algal Bloom , Marine Toxins , Phytoplankton , Chile , Marine Toxins/analysis , Animals , Dinoflagellida
9.
Molecules ; 29(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38474641

ABSTRACT

The catalytic properties of cytochrome c (Cc) have captured great interest in respect to mitochondrial physiology and apoptosis, and hold potential for novel enzymatic bioremediation systems. Nevertheless, its contribution to the metabolism of environmental toxicants remains unstudied. Human exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with impactful diseases, and animal models have unveiled concerning signs of PAHs' toxicity to mitochondria. In this work, a series of eight PAHs with ionization potentials between 7.2 and 8.1 eV were used to challenge the catalytic ability of Cc and to evaluate the effect of vesicles containing cardiolipin mimicking mitochondrial membranes activating the peroxidase activity of Cc. With moderate levels of H2O2 and at pH 7.0, Cc catalyzed the oxidation of toxic PAHs, such as benzo[a]pyrene, anthracene, and benzo[a]anthracene, and the cardiolipin-containing membranes clearly increased the PAH conversions. Our results also demonstrate for the first time that Cc and Cc-cardiolipin complexes efficiently transformed the PAH metabolites 2-hydroxynaphthalene and 1-hydroxypyrene. In comparison to horseradish peroxidase, Cc was shown to reach more potent oxidizing states and react with PAHs with ionization potentials up to 7.70 eV, including pyrene and acenaphthene. Spectral assays indicated that anthracene binds to Cc, and docking simulations proposed possible binding sites positioning anthracene for oxidation. The results give support to the participation of Cc in the metabolism of PAHs, especially in mitochondria, and encourage further investigation of the molecular interaction between PAHs and Cc.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Animals , Humans , Polycyclic Aromatic Hydrocarbons/chemistry , Cytochromes c , Cardiolipins , Hydrogen Peroxide , Anthracenes
10.
Animals (Basel) ; 14(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38539924

ABSTRACT

This study aimed to investigate the exposure of wild boars and swine from semi-extensive farms in the same area to essential and non-essential elements, measuring their concentration in liver and muscle. Furthermore, the study explored the influence of factors such as sex, age, and the sampling location on wild boars. Higher liver element concentrations were observed in both wild boars and swine. Geographical comparisons revealed minor differences. Young wild boars showed significantly higher Cu, Se, Cd, and Cr levels, while older subjects exhibited elevated Mn levels, reflecting age-related element absorption variations. No significant sex-based variations were noted. Comparing wild boars to swine, wild boars had more non-essential elements due to their foraging behavior and a larger home range. Conversely, swine exhibited a greater prevalence of essential elements, potentially resulting from dietary supplementation.

11.
Environ Int ; 185: 108543, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38452464

ABSTRACT

Exposure to environmentally hazardous substances is recognized as a significant risk factor for neurological associated disorders. Among these substances, polystyrene microplastics (PS-MPs), widely utilized in various consumer products, have been reported to exhibit neurotoxicity. However, the potential association of PS-MPs with abnormal anxiety behaviors, along with the underlying molecular mechanisms and key proteins involved, remains insufficiently explored. Here, we delineated the potential mechanisms of PS-MPs-induced anxiety through proteomics and molecular investigations. We characterized the PS-MPs, observed their accumulation in the brain, leading to anxiety-like behavior in mice, which is correlated with microglia activation and pro-inflammatory response. Consistent with these findings, our studies on BV2 microglia cells showed that PS-MPs activated NF-κB-mediated inflammation resulting in the upregulation of pro-inflammatory cytokines such as TNFα and IL-1ß. Of particular significance, HRAS was identified as a key factor in the PS-MPs induced pro-inflammatory response through whole proteomics analysis, and knockdown of H-ras effectively inhibited PS-MPs induced PERK-NF-κB activation and associated pro-inflammatory response in microglia cells. Collectively, our findings highlight that PS-MPs induce anxiety of mice via the activation of the HRAS-derived PERK-NF-κB pathway in microlglia. Our results contribute valuable insights into the molecular mechanisms of PS-MPs-induced anxiety, and may offer implications for addressing neurotoxicity and prevention the adverse effects of environmentally hazardous substances, including microplastics.


Subject(s)
NF-kappa B , Neurotoxicity Syndromes , Animals , Mice , Anxiety/chemically induced , Hazardous Substances , Microplastics/toxicity , Plastics , Polystyrenes/toxicity
12.
J Comp Pathol ; 210: 38-46, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38552539

ABSTRACT

The aim of this study was to describe the gross and histopathological features of a neurological syndrome in endangered Western Australian Carnaby's black cockatoos (Zanda laitirostris) that was first observed in 2012. The syndrome, named hindlimb paralysis syndrome in Carnaby's cockatoos (CHiPS), is characterized by annual outbreaks of hindlimb paralysis with occasional loss of deep pain and cloacal tone, typically occurring between January and March. Previous limited investigations suggested a possible toxic aetiology. Full gross necropsy and histopathology examinations were performed on 17 CHiPS cases and on 11 control birds for reference. Histopathological examination was carried out on all major organs including brain, spinal cord, brachial plexus, sciatic nerve and wing and hindlimb muscles. Gross and histopathological examinations did not elucidate a definitive cause of the clinical signs seen in CHiPS cases. There were no substantial gross or histopathological changes within the brain, spinal cord, sciatic nerve or brachial plexus that could explain the hindlimb paralysis. The most noteworthy changes were seen in the hindlimb and wing muscles, with a monophasic to polyphasic myopathy present in the hindlimb muscles of 15 of the 17 CHiPS cases and in the wing muscles in 11 of those cases. The cause and significance of the myopathy is unclear and requires further investigation. Based on the above findings, the most likely differential diagnoses include neurotoxicoses (eg, organophosphate, organochlorine and carbamate) and, less likely, myotoxicosis (eg, ionophore toxicosis), nutritional myopathy (eg, vitamin E/selenium deficiency) or botulism.


Subject(s)
Cockatoos , Muscular Diseases , Animals , Australia , Paralysis/veterinary , Paralysis/etiology , Hindlimb , Muscular Diseases/veterinary
13.
Environ Pollut ; 347: 123685, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38460591

ABSTRACT

Boscalid (2-Chloro-N-(4'-chlorobiphenyl-2-yl) nicotinamide), a pyridine carboxamide fungicide, is an inhibitor of the complex II of the respiration chain in fungal mitochondria. As boscalid is only moderately toxic for aquatic organisms (LC50 > 1-10 mg/L), current environmental levels of this compound in aquatic ecosystems, in the range of ng/L-µg/L, are considered safe for aquatic organisms. In this study, we have exposed zebrafish (Danio rerio), Japanese medaka (Oryzias latipes) and Daphnia magna to a range of concentrations of boscalid (1-1000 µg/L) for 24 h, and the effects on heart rate (HR), basal locomotor activity (BLA), visual motor response (VMR), startle response (SR), and habituation (HB) to a series of vibrational or light stimuli have been evaluated. Moreover, changes in the profile of the main neurotransmitters have been determined. Boscalid altered HR in a concentration-dependent manner, leading to a positive or negative chronotropic effect in fish and D. magna, respectively. While boscalid decreased BLA and increased VMR in Daphnia, these behaviors were not altered in fish. For SR and HB, the response was more species- and concentration-specific, with Daphnia exhibiting the highest sensitivity. At the neurotransmission level, boscalid exposure decreased the levels of L-aspartic acid in fish larvae and increased the levels of dopaminergic metabolites in D. magna. Our study demonstrates that exposure to environmental levels of boscalid alters cardiac activity, impairs ecologically relevant behaviors, and leads to changes in different neurotransmitter systems in phylogenetically distinct vertebrate and invertebrate models. Thus, the results presented emphasize the need to review the current regulation of this fungicide.


Subject(s)
Biphenyl Compounds , Fungicides, Industrial , Niacinamide/analogs & derivatives , Water Pollutants, Chemical , Animals , Fungicides, Industrial/metabolism , Ecosystem , Aquatic Organisms , Zebrafish/metabolism , Daphnia , Niacinamide/toxicity , Water Pollutants, Chemical/metabolism
14.
J Toxicol Environ Health A ; 87(8): 342-356, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38310537

ABSTRACT

The assessment of amphibian responses as bioindicators of exposure to chemical pollutants is an important tool for conservation of native species. This study aimed to investigate the effects of chronic aluminum (Al) and zinc (Zn) exposure on survival, body size, morphology (malformations), and immune system (leukocyte profile) in P. cuvieri tadpoles. Ecotoxicological analyses were performed utilizing chronic toxicity tests in which 210 tadpoles at the 25th Gosner developmental stage were exposed to Al and Zn. Individuals of P. cuvieri were maintained in glass containers containing various concentrations of aluminum sulfate (0.1, 0.2, or 0.3 mg/L) and zinc sulfate (0.18, 0.27 or 0.35 mg/L), and tests were performed in triplicate. After 14 days, amphibians were weighed, measured and survival rate, malformations in the oral and intestine apparatus, leukocyte profile, and ratio between neutrophils and lymphocytes determined. The differing concentrations of Al and Zn did not produce lethality in P. cuvieri where 95% of the animals survived 326 hr following metal exposure. Individuals exposed to Zn achieved greater body growth and weight gain compared to controls. Aluminum increased weight gain compared controls. These metals also produced malformations of the oral and intestine apparatus and enhanced occurrence of hemorrhages, especially at the highest doses. Lymphocytes were the predominant cells among leukocytes, with lymphopenia and neutrophilia observed following Al and Zn treatment, as evidenced by elevated neutrophil/lymphocyte ratio, an important indicator of stress in animals. Data suggest that further studies need to be carried out, even with metal concentrations higher than those prescribed by CONAMA, to ensure the conservation of this species.


Subject(s)
Water Pollutants, Chemical , Zinc , Humans , Animals , Zinc/pharmacology , Zinc/toxicity , Aluminum/pharmacology , Larva , Anura/physiology , Metals , Immune System/chemistry , Body Size , Weight Gain , Water Pollutants, Chemical/toxicity
15.
iScience ; 27(1): 108699, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38299026

ABSTRACT

N,N-diethyl-meta-toluamide (DEET) is a commonly used synthetic insect repellent. Although the neurological effects of DEET have been widely investigated, its effects on the germline are less understood. Here, we show that exposure of the nematode Caenorhabditis elegans, which is highly predictive of mammalian reprotoxicity, resulting in internal DEET levels within the range detected in human biological samples, causes activation of p53/CEP-1-dependent germ cell apoptosis, altered meiotic recombination, chromosome abnormalities, and missegregation. RNA-sequencing analysis links DEET-induced alterations in the expression of genes related to redox processes and chromatin structure to reduced mitochondrial function, impaired DNA double-strand break repair progression, and defects during early embryogenesis. We propose that Caenorhabditis elegans exposure to DEET interferes with gene expression, leading to increased oxidative stress and altered chromatin structure, resulting in germline effects that pose a risk to reproductive health.

16.
Toxicol Sci ; 199(2): 246-260, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38310335

ABSTRACT

Particulate matter (PM) containing environmentally persistent free radicals (EPFR) is formed by the incomplete combustion of organic wastes, resulting in the chemisorption of pollutants to the surface of PM containing redox-active transition metals. In prior studies in mice, EPFR inhalation impaired endothelium-dependent vasodilation. These findings were associated with aryl hydrocarbon receptor (AhR) activation in the alveolar type-II (AT-II) cells that form the air-blood interface in the lung. We thus hypothesized that AhR activation in AT-II cells promotes the systemic release of mediators that promote endothelium dysfunction peripheral to the lung. To test our hypothesis, we knocked down AhR in AT-II cells of male and female mice and exposed them to 280 µg/m3 EPFR lo (2.7e + 16 radicals/g) or EPFR (5.5e + 17 radicals/g) compared with filtered air for 4 h/day for 1 day or 5 days. AT-II-AhR activation-induced EPFR-mediated endothelial dysfunction, reducing endothelium-dependent vasorelaxation by 59%, and eNOS expression by 50%. It also increased endothelin-1 mRNA levels in the lungs and peptide levels in the plasma in a paracrine fashion, along with soluble vascular cell adhesion molecule-1 and iNOS mRNA expression, possibly via NF-kB activation. Finally, AhR-dependent increases in antioxidant response signaling, coupled to increased levels of 3-nitrotyrosine in the lungs of EPFR-exposed littermate control but not AT-II AhR KO mice suggested that ATII-specific AhR activation promotes oxidative and nitrative stress. Thus, AhR activation at the air-blood interface mediates endothelial dysfunction observed peripheral to the lung, potentially via release of systemic mediators.


Subject(s)
Mice, Inbred C57BL , Particulate Matter , Receptors, Aryl Hydrocarbon , Animals , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Male , Particulate Matter/toxicity , Female , Free Radicals/metabolism , Air Pollutants/toxicity , Mice , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Oxidative Stress/drug effects , Inhalation Exposure , Lung/drug effects , Lung/metabolism , Lung/blood supply , Endothelin-1/metabolism , Vasodilation/drug effects , Nitric Oxide Synthase Type III/metabolism , Basic Helix-Loop-Helix Transcription Factors
17.
Water Environ Res ; 96(1): e10978, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38204384

ABSTRACT

Trace metal contamination is a widespread issue due to its many natural and anthropogenic sources and known carcinogenic, teratogenic, and reproductive effects. As previous invertebrate trace metal research has primarily focused on model species (Daphnia magna, Chironomidae, etc.), our understanding of effects on non-model invertebrate species remains relatively poor. As such, this study assessed the exposure effects of cadmium, arsenic, and lead on viability, locomotor behavior, and embryonic development of the Seminole ramshorn snail (Planorbella duryi). Exposure treatments of CdCl2 , Na2 HAsO4 • 7H2 O, or Pb (NO3 )2 were prepared at concentrations of 0, 0.01, 0.1, 1, and 10 mg/L and confirmed using inductively coupled plasma optical emission spectroscopy (ICP-OES). Individual adult P. duryi were exposed for 7 days with viability assessed every 24 h, and locomotor behavior was accessed on Days 1 and 7 using ToxTrac v2.97 automated behavior software. Individual embryos from newly laid (<6 h old) embryonic clutches were exposed for 10 days, during which embryonic development stage was documented every 24 h. Based on our results, an additional follow-up study for cadmium was conducted using a lower range of 0-0.1 mg/L to allow for the observation of sublethal endpoints. Adult lead and cadmium exposure resulted in significant mortality in the highest treatments (1 and 10 mg/L), dose-dependent behavioral effects, and delayed embryonic development. Arsenic exposures resulted in little to no impacts for all assessed endpoints. Our results provide new insight into the sublethal impacts of these contaminants and highlight potential for behavior and embryonic development as useful tools for risk assessment. PRACTITIONER POINTS: The exposure effects of lead, cadmium, and arsenic on the viability, embryonic development, and locomotor behavior of a common freshwater snail species was investigated using environmentally relevant concentrations. The severity of impact differed for each trace metal, with cadmium being the most toxic and arsenic the least toxic at concentrations ranging from 0 to 10 mg/L. Embryonic development appeared to be the most sensitive endpoint of those tested in this study, suggesting that exposure may have prolonged effects that extend to population and community levels. The Seminole ramshorn snail serves as a sensitive alternative model species that can be used to assess the impacts of contaminants on freshwater invertebrates in future studies.


Subject(s)
Arsenic , Female , Animals , Arsenic/toxicity , Cadmium , Follow-Up Studies , Daphnia magna , Embryonic Development
18.
Sci Total Environ ; 916: 170173, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38266732

ABSTRACT

Pesticides are recognized as common environmental contaminants. The potential pesticide hazard to non-target organisms, including various mammal species, is a global concern. The global problem requires a comprehensive risk assessment. To assess the toxic effects of pesticides at the early stage, a toxicological risk analysis is conducted to determine pesticide hazard levels. World Health Organization (WHO) has established five pesticide hazard classes based on lethal dose (LD50) values to perform these assessments. In this paper, we have developed one-vs-all quantitative structure-activity relationship (OvA-QSAR) models using five machine-learning techniques with the selected optimum molecular descriptors. Descriptor selection was conducted based on correlation to evaluate the relevance and significance of individual features in our dataset. Our OvA-QSAR model was built using a dataset obtained from the WHO, covering a wide range of chemical pesticides. These models can predict the hazard category for a pesticide within the five available categories. Notably, our experiments demonstrate the outstanding performance and robustness of the Random Forest (RF) model in addressing the challenge of multi-class classification with the selected descriptors.


Subject(s)
Pesticides , Quantitative Structure-Activity Relationship , Animals , Pesticides/toxicity , Pesticides/analysis , Lethal Dose 50 , Risk Assessment , Machine Learning , Mammals
19.
Environ Sci Technol ; 58(5): 2166-2184, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38275135

ABSTRACT

Environmental pollutants have been recognized for their ability to induce various adverse outcomes in both the environment and human health, including inflammation, apoptosis, necrosis, pyroptosis, and autophagy. Understanding these biological mechanisms has played a crucial role in risk assessment and management efforts. However, the recent identification of ferroptosis as a form of programmed cell death has emerged as a critical mechanism underlying pollutant-induced toxicity. Numerous studies have demonstrated that fine particulates, heavy metals, and organic substances can trigger ferroptosis, which is closely intertwined with lipid, iron, and amino acid metabolism. Given the growing evidence linking ferroptosis to severe diseases such as heart failure, chronic obstructive pulmonary disease, liver injury, Parkinson's disease, Alzheimer's disease, and cancer, it is imperative to investigate the role of pollutant-induced ferroptosis. In this review, we comprehensively analyze various pollutant-induced ferroptosis pathways and intricate signaling molecules and elucidate their integration into the driving and braking axes. Furthermore, we discuss the potential hazards associated with pollutant-induced ferroptosis in various organs and four representative animal models. Finally, we provide an outlook on future research directions and strategies aimed at preventing pollutant-induced ferroptosis. By enhancing our understanding of this novel form of cell death and developing effective preventive measures, we can mitigate the adverse effects of environmental pollutants and safeguard human and environmental health.


Subject(s)
Environmental Pollutants , Ferroptosis , Animals , Humans , Ecotoxicology , Apoptosis , Cell Death , Environmental Pollutants/toxicity
20.
Environ Sci Pollut Res Int ; 31(2): 2279-2296, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38057677

ABSTRACT

The Tunuyán and Mendoza River Basins (Province of Mendoza, Argentina) have been selected as a representative semiarid region to test the applicability of an integrated water quality evaluation. To detect spatio-temporal variations of anthropic contamination, physicochemical and bacteriological parameters, as well as three ecotoxicological assays, were assessed in reference sites for 3 years. Bioassays based on the nematode Caenorhabditis elegans, the vascular plant Lactuca sativa, and the algae Pseudokirchneriella subcapitata were performed and toxicological categories were established. Our results showed that water quality, as well as water toxicity, deteriorates as both river systems run through urban areas. Interestingly, monitoring sites with good physicochemical and bacteriological qualities but with toxicity were identified, illustrating that traditional water quality studies do not predict potential toxic effects on living organisms. In addition, a multivariate statistical analysis was performed to detect clusters of monitoring sites according to the water quality status. In the context of climate change, this study provides information to support that integrated water monitoring is an essential tool to ensure sustainable water management and to guarantee economic growth, human health, food security, and environmental protection.


Subject(s)
Chlorophyceae , Water Pollutants, Chemical , Humans , Water Quality , Rivers/chemistry , Environmental Monitoring/methods , Argentina , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...