Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
Comput Biol Med ; 170: 108052, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38308868

ABSTRACT

The imbalance of epigenetic regulatory mechanisms such as DNA methylation, which can promote aberrant gene expression profiles without affecting the DNA sequence, may cause the deregulation of signaling, regulatory, and metabolic processes, contributing to a cancerous phenotype. Since some metabolites are substrates and cofactors of epigenetic regulators, their availability can be affected by characteristic cancer cell metabolic shifts, feeding cancer onset and progression through epigenetic deregulation. Hence, there is a need to study the influence of cancer metabolic reprogramming in DNA methylation to design new effective treatments. In this study, a generic Genome-Scale Metabolic Model (GSMM) of a human cell, integrating DNA methylation or demethylation reactions, was obtained and used for the reconstruction of Genome-Scale Metabolic Models enhanced with Enzymatic Constraints using Kinetic and Omics data (GECKOs) of 31 cancer cell lines. Furthermore, cell-line-specific DNA methylation levels were included in the models, as coefficients of a DNA composition pseudo-reaction, to depict the influence of metabolism over global DNA methylation in each of the cancer cell lines. Flux simulations demonstrated the ability of these models to provide simulated fluxes of exchange reactions similar to the equivalent experimentally measured uptake/secretion rates and to make good functional predictions. In addition, simulations found metabolic pathways, reactions and enzymes directly or inversely associated with the gene promoter methylation. Two potential candidates for targeted cancer epigenetic therapy were identified.


Subject(s)
DNA Methylation , Neoplasms , Humans , DNA Methylation/genetics , Epigenesis, Genetic , Cell Line , Neoplasms/genetics , Genome
2.
BMC Bioinformatics ; 24(1): 438, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37990145

ABSTRACT

BACKGROUND: Use of alternative non-Saccharomyces yeasts in wine and beer brewing has gained more attention the recent years. This is both due to the desire to obtain a wider variety of flavours in the product and to reduce the final alcohol content. Given the metabolic differences between the yeast species, we wanted to account for some of the differences by using in silico models. RESULTS: We created and studied genome-scale metabolic models of five different non-Saccharomyces species using an automated processes. These were: Metschnikowia pulcherrima, Lachancea thermotolerans, Hanseniaspora osmophila, Torulaspora delbrueckii and Kluyveromyces lactis. Using the models, we predicted that M. pulcherrima, when compared to the other species, conducts more respiration and thus produces less fermentation products, a finding which agrees with experimental data. Complex I of the electron transport chain was to be present in M. pulcherrima, but absent in the others. The predicted importance of Complex I was diminished when we incorporated constraints on the amount of enzymatic protein, as this shifts the metabolism towards fermentation. CONCLUSIONS: Our results suggest that Complex I in the electron transport chain is a key differentiator between Metschnikowia pulcherrima and the other yeasts considered. Yet, more annotations and experimental data have the potential to improve model quality in order to increase fidelity and confidence in these results. Further experiments should be conducted to confirm the in vivo effect of Complex I in M. pulcherrima and its respiratory metabolism.


Subject(s)
Metschnikowia , Torulaspora , Wine , Yeasts/genetics , Yeasts/metabolism , Metschnikowia/genetics , Metschnikowia/metabolism , Torulaspora/metabolism , Wine/analysis , Fermentation
3.
Biotechnol Bioeng ; 120(6): 1623-1639, 2023 06.
Article in English | MEDLINE | ID: mdl-36788025

ABSTRACT

Genome-scale metabolic models (GEMs) have been widely used to guide the computational design of microbial cell factories, and to date, seven GEMs have been reported for Bacillus subtilis, a model gram-positive microorganism widely used in bioproduction of functional nutraceuticals and food ingredients. However, none of them are widely used because they often lead to erroneous predictions due to their low predictive power and lack of information on regulatory mechanisms. In this work, we constructed a new version of GEM for B. subtilis (iBsu1209), which contains 1209 genes, 1595 metabolites, and 1948 reactions. We applied machine learning to fill gaps, which formed a relatively complete metabolic network able to predict with high accuracy (89.3%) the growth of 1209 mutants under 12 different culture conditions. In addition, we developed a visualization and code-free software, Model Tool, for multiconstraints model reconstruction and analysis. We used this software to construct etiBsu1209, a multiscale model that integrates enzymatic constraints, thermodynamic constraints, and transcriptional regulatory networks. Furthermore, we used etiBsu1209 to guide a metabolic engineering strategy (knocking out fabI and yfkN genes) for the overproduction of nutraceutical menaquinone-7, and the titer increased to 153.94 mg/L, 2.2-times that of the parental strain. To the best of our knowledge, etiBsu1209 is the first comprehensive multiscale model for B. subtilis and can serve as a solid basis for rational computational design of B. subtilis cell factories for bioproduction.


Subject(s)
Bacillus subtilis , Metabolic Engineering , Bacillus subtilis/metabolism
4.
Sheng Wu Gong Cheng Xue Bao ; 38(2): 531-545, 2022 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-35234380

ABSTRACT

Constraint-based genome-scale metabolic network models (genome-scale metabolic models, GEMs) have been widely used to predict metabolic phenotypes. In addition to stoichiometric constraints, other constraints such as enzyme availability and thermodynamic feasibility may also limit the cellular phenotype solution space. Recently, extended GEM models considering either enzymatic or thermodynamic constraints have been developed to improve model prediction accuracy. This review summarizes the recent progresses on metabolic models with multiple constraints (MCGEMs). We presented the construction methods and various applications of MCGEMs including the simulation of gene knockout, prediction of biologically feasible pathways and identification of bottleneck steps. By integrating multiple constraints in a consistent modeling framework, MCGEMs can predict the metabolic bottlenecks and key controlling and modification targets for pathway optimization more precisely, and thus may provide more reliable design results to guide metabolic engineering of industrially important microorganisms.


Subject(s)
Metabolic Engineering , Models, Biological , Genome , Metabolic Networks and Pathways/genetics , Thermodynamics
5.
Chinese Journal of Biotechnology ; (12): 531-545, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-927726

ABSTRACT

Constraint-based genome-scale metabolic network models (genome-scale metabolic models, GEMs) have been widely used to predict metabolic phenotypes. In addition to stoichiometric constraints, other constraints such as enzyme availability and thermodynamic feasibility may also limit the cellular phenotype solution space. Recently, extended GEM models considering either enzymatic or thermodynamic constraints have been developed to improve model prediction accuracy. This review summarizes the recent progresses on metabolic models with multiple constraints (MCGEMs). We presented the construction methods and various applications of MCGEMs including the simulation of gene knockout, prediction of biologically feasible pathways and identification of bottleneck steps. By integrating multiple constraints in a consistent modeling framework, MCGEMs can predict the metabolic bottlenecks and key controlling and modification targets for pathway optimization more precisely, and thus may provide more reliable design results to guide metabolic engineering of industrially important microorganisms.


Subject(s)
Genome , Metabolic Engineering , Metabolic Networks and Pathways/genetics , Models, Biological , Thermodynamics
6.
Metab Eng ; 67: 133-144, 2021 09.
Article in English | MEDLINE | ID: mdl-34174426

ABSTRACT

Stoichiometric genome-scale metabolic network models (GEMs) have been widely used to predict metabolic phenotypes. In addition to stoichiometric ratios, other constraints such as enzyme availability and thermodynamic feasibility can also limit the phenotype solution space. Extended GEM models considering either enzymatic or thermodynamic constraints have been shown to improve prediction accuracy. In this paper, we propose a novel method that integrates both enzymatic and thermodynamic constraints in a single Pyomo modeling framework (ETGEMs). We applied this method to construct the EcoETM (E. coli metabolic model with enzymatic and thermodynamic constraints). Using this model, we calculated the optimal pathways for cellular growth and the production of 22 metabolites. When comparing the results with those of iML1515 and models with one of the two constraints, we observed that many thermodynamically unfavorable and/or high enzyme cost pathways were excluded from EcoETM. For example, the synthesis pathway of carbamoyl-phosphate (Cbp) from iML1515 is both thermodynamically unfavorable and enzymatically costly. After introducing the new constraints, the production pathways and yields of several Cbp-derived products (e.g. L-arginine, orotate) calculated using EcoETM were more realistic. The results of this study demonstrate the great application potential of metabolic models with multiple constraints for pathway analysis and phenotype prediction.


Subject(s)
Escherichia coli , Models, Biological , Escherichia coli/genetics , Genome, Bacterial/genetics , Metabolic Networks and Pathways/genetics , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...