Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Food Res Int ; 191: 114662, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059935

ABSTRACT

This work explored the impact of ultrasound (US) on the activity, stability, and macrostructural conformation of cyclodextrin glycosyltransferase (CGTase) and how these changes could maximize the production of ß-cyclodextrins (ß-CDs). The results showed that ultrasonic pretreatment (20 kHz and 38 W/L) at pH 6.0 promoted increased enzymatic activity. Specifically, after sonication at 25 °C/30 min, there was a maximum activity increase of 93 % and 68 % when biocatalysis was carried out at 25 and 55 °C, respectively. For activity measured at 80 °C, maximum increase (31 %) was observed after sonication at 25 °C/60 min. Comparatively, US pretreatment at low pH (pH = 4.0) resulted in a lower activity increase (max. 28 %). These activation levels were maintained after 24 h of storage at 8 °C, suggesting that changes on CGTase after ultrasonic pretreatment were not transitory. These pretreatments altered the conformational structure of CGTase, revealed by an up to 11 % increase in intrinsic fluorescence intensity, and resulted in macrostructural modifications, such as a decrease in particle size and polydispersion index (up to 85 % and 45.8 %, respectively). Therefore, the sonication of CGTase under specific conditions of pH, time, and temperature (especially at pH 6.0/ 30 min/ 25 °C) promotes macrostructural changes in CGTase that induce enzyme activation and, consequently, higher production of ß-CDs.


Subject(s)
Enzyme Stability , Glucosyltransferases , beta-Cyclodextrins , Glucosyltransferases/metabolism , beta-Cyclodextrins/chemistry , Hydrogen-Ion Concentration , Sonication , Temperature , Ultrasonics
2.
Antibiotics (Basel) ; 12(5)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37237724

ABSTRACT

Here we designed and synthesized analogs of two antimicrobial peptides, namely C10:0-A2, a lipopeptide, and TA4, a cationic α-helical amphipathic peptide, and used non-proteinogenic amino acids to improve their therapeutic properties. The physicochemical properties of these analogs were analyzed, including their retention time, hydrophobicity, and critical micelle concentration, as well as their antimicrobial activity against gram-positive and gram-negative bacteria and yeast. Our results showed that substitution with D- and N-methyl amino acids could be a useful strategy to modulate the therapeutic properties of antimicrobial peptides and lipopeptides, including enhancing stability against enzymatic degradation. The study provides insights into the design and optimization of antimicrobial peptides to achieve improved stability and therapeutic efficacy. TA4(dK), C10:0-A2(6-NMeLys), and C10:0-A2(9-NMeLys) were identified as the most promising molecules for further studies.

3.
Protein Expr Purif ; 190: 106009, 2022 02.
Article in English | MEDLINE | ID: mdl-34742914

ABSTRACT

The enzymatic conversion of lignocellulosic biomass to fermentable sugars is determined by the enzymatic activity of cellulases; consequently, improving enzymatic activity has attracted great interest in the scientific community. Cocktails of commercial cellulase often have low ß-glucosidase content, leading to the accumulation of cellobiose. This accumulation inhibits the activity of the cellulolytic complex and can be used to determine the enzymatic efficiency of commercial cellulase cocktails. Here, a novel codon optimized ß-glucosidase gene (B-glusy) from Trichoderma reesei QM6a was cloned and expressed in three strains of Escherichia coli (E. coli). The synthetic sequence containing an open reading frame (ORF) of 1491 bp was used to encode a polypeptide of 497 amino acid residues. The ß-glucosidase recombinant protein that was expressed (57 kDa of molecular weight) was purified by Ni agarose affinity chromatography and visualized by SDS-PAGE. The recombinant protein was better expressed in E. coli BL21 (DE3), and its enzymatic activity was higher at neutral pH and 30 °C (22.4 U/mg). Subsequently, the ß-glucosidase was immobilized using magnetite nano-support, after which it maintained >65% of its enzymatic activity from pH 6 to 10, and was more stable than the free enzyme above 40 °C. The maximum immobilization yield had enzyme activity of 97.2%. In conclusion, ß-glucosidase is efficiently expressed in the microbial strain E. coli BL21 (DE3) grown in a simplified culture medium.


Subject(s)
Enzymes, Immobilized , Escherichia coli , Fungal Proteins , Gene Expression , Hypocreales/genetics , Magnetite Nanoparticles/chemistry , beta-Glucosidase , Enzyme Stability , Enzymes, Immobilized/biosynthesis , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/genetics , Enzymes, Immobilized/isolation & purification , Escherichia coli/genetics , Escherichia coli/metabolism , Fungal Proteins/biosynthesis , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/isolation & purification , Hypocreales/enzymology , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , beta-Glucosidase/biosynthesis , beta-Glucosidase/chemistry , beta-Glucosidase/genetics , beta-Glucosidase/isolation & purification
4.
Article in English | MEDLINE | ID: mdl-30534149

ABSTRACT

BACKGROUND: L-amino acid oxidases isolated from snake venoms (SV-LAAOs) are enzymes that have great therapeutic potential and are currently being investigated as tools for developing new strategies to treat various diseases, including cancer and bacterial infections. The main objective of this study was to make a brief evaluation of the enzymatic stability of two Bothrops LAAOs, one isolated from Bothrops jararacussu (BjussuLAAO-II) and the other from Bothrops moojeni (BmooLAAO-I) venoms. METHODS AND RESULTS: The enzymatic activity and stability of both LAAOs were evaluated by microplate colorimetric assays, for which BjussuLAAO-II and BmooLAAO-I were incubated with different L-amino acid substrates, in the presence of different ions, and at different pH ranges and temperatures. BjussuLAAO-II and BmooLAAO-I demonstrated higher affinity for hydrophobic amino acids, such as Phe and Leu. The two enzymes showed high enzymatic activity in a wide temperature range, from 25 to 75 °C, and presented optimum pH around 7.0. Additionally, Zn2+, Al3+, Cu2+ and Ni2+ ions negatively modulated the enzymatic activity of both LAAOs. As to stability, BjussuLAAO-II and BmooLAAO-I showed high enzymatic activity for 42 days stored at 4 °C in neutral pH solution. Moreover, the glycan portions of both LAAOs were analyzed by capillary electrophoresis, which revealed that BjussuLAAO-II presented two main glycan portions with relative masses of 7.78 and 8.13 CGU, while BmooLAAO-I showed three portions of 7.58, 7.94 and 8.37 CGU. CONCLUSIONS: Our results showed that, when stored properly, BjussuLAAO-II and BmooLAAO-I present enzymatic stability over a long time period, which is very important to allow the use of these enzymes in pharmacological studies of great impact in the medical field.

5.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 24: 37, Jan. 24, 2018. tab, graf
Article in English | VETINDEX | ID: vti-19342

ABSTRACT

Background:L-amino acid oxidases isolated from snake venoms (SV-LAAOs) are enzymes that have great therapeutic potential and are currently being investigated as tools for developing new strategies to treat various diseases, including cancer and bacterial infections. The main objective of this study was to make a brief evaluation of the enzymatic stability of two Bothrops LAAOs, one isolated from Bothrops jararacussu (BjussuLAAO-II) and the other from Bothrops moojeni (BmooLAAO-I) venoms.Methods and results:The enzymatic activity and stability of both LAAOs were evaluated by microplate colorimetric assays, for which BjussuLAAO-II and BmooLAAO-I were incubated with different L-amino acid substrates, in the presence of different ions, and at different pH ranges and temperatures. BjussuLAAO-II and BmooLAAO-I demonstrated higher affinity for hydrophobic amino acids, such as Phe and Leu. The two enzymes showed high enzymatic activity in a wide temperature range, from 25 to 75 °C, and presented optimum pH around 7.0. Additionally, Zn2+, Al3+, Cu2+ and Ni2+ ions negatively modulated the enzymatic activity of both LAAOs. As to stability, BjussuLAAO-II and BmooLAAO-I showed high enzymatic activity for 42 days stored at 4°C in neutral pH solution. Moreover, the glycan portions of both LAAOs were analyzed by capillary electrophoresis, which revealed that BjussuLAAO-II presented two main glycan portions with relative masses of 7.78 and 8.13 CGU, while BmooLAAO-I showed three portions of 7.58, 7.94 and 8.37 CGU.Conclusions:Our results showed that, when stored properly, BjussuLAAO-II and BmooLAAO-I present enzymatic stability over a long time period, which is very important to allow the use of these enzymes in pharmacological studies of great impact in the medical field.(AU)


Subject(s)
Animals , Bothrops , Viper Venoms/analysis , Viper Venoms/chemistry , L-Amino Acid Oxidase/analysis , L-Amino Acid Oxidase/therapeutic use , Enzyme Stability , Colorimetry
6.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;24: 37, 2018. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-984692

ABSTRACT

L-amino acid oxidases isolated from snake venoms (SV-LAAOs) are enzymes that have great therapeutic potential and are currently being investigated as tools for developing new strategies to treat various diseases, including cancer and bacterial infections. The main objective of this study was to make a brief evaluation of the enzymatic stability of two Bothrops LAAOs, one isolated from Bothrops jararacussu (BjussuLAAO-II) and the other from Bothrops moojeni (BmooLAAO-I) venoms. Methods and results: The enzymatic activity and stability of both LAAOs were evaluated by microplate colorimetric assays, for which BjussuLAAO-II and BmooLAAO-I were incubated with different L-amino acid substrates, in the presence of different ions, and at different pH ranges and temperatures. BjussuLAAO-II and BmooLAAO-I demonstrated higher affinity for hydrophobic amino acids, such as Phe and Leu. The two enzymes showed high enzymatic activity in a wide temperature range, from 25 to 75 °C, and presented optimum pH around 7.0. Additionally, Zn2+, Al3+, Cu2+ and Ni2+ ions negatively modulated the enzymatic activity of both LAAOs. As to stability, BjussuLAAO-II and BmooLAAO-I showed high enzymatic activity for 42 days stored at 4°C in neutral pH solution. Moreover, the glycan portions of both LAAOs were analyzed by capillary electrophoresis, which revealed that BjussuLAAO-II presented two main glycan portions with relative masses of 7.78 and 8.13 CGU, while BmooLAAO-I showed three portions of 7.58, 7.94 and 8.37 CGU. Conclusions: Our results showed that, when stored properly, BjussuLAAO-II and BmooLAAO-I present enzymatic stability over a long time period, which is very important to allow the use of these enzymes in pharmacological studies of great impact in the medical field.(AU)


Subject(s)
Animals , Oxidoreductases , Polysaccharides , Snake Venoms , Bacterial Infections , Bothrops , Amino Acids
7.
São Paulo; s.n; s.n; 2018. 91 p. graf, tab, ilus.
Thesis in Portuguese | LILACS | ID: biblio-998299

ABSTRACT

A doença de Chagas representa um problema de saúde pública em muitos países e regiões. O tratamento consiste em fármacos tóxicos, com eficácia discutível, principalmente, na fase crônica da doença. Assim, faz-se necessário o planejamento de novos quimioterápicos, mais seguros e eficazes. Os dendrímeros são novas arquiteturas moleculares formadas por um foco central e ramificações partindo desse foco. Apresentam diversas aplicações biológicas como, por exemplo, atuar como transportadores de fármacos. Face ao exposto, o objetivo deste trabalho foi o estudo de condições para ligar o ácido anacárdico (AA) em derivado dendrimérico com potencial ação na doença de Chagas, o qual tem como foco central o ácido succínico (AS) e ramificações compostas por arginina (Arg) e lisina (Lys). Sabe-se que a cruzaína, uma cisteíno-protease do T. cruzi, catalisa a hidrólise de ligação peptídica entre lisina e arginina. A síntese dos compostos em fase sólida forneceu os derivados brutos: (1) pró-fármaco AA-K-R-NH2 e (2) G.05 AA-K(AS)-R-NH2, que foram purificados e caracterizados por Cromatografia Líquida de Alta Eficiência e espectrometria de massas. Os compostos purificados AA-K-R-NH2 e AA-K(AS)-R-NH2 apresentaram rendimentos de 34% e 47%, com pureza de 88% e 98%, respectivamente. Os resultados dos experimentos enzimáticos utilizando o AA-K-R-NH2 não foram conclusivos. Acredita-se que a baixa solubilidade e/ou baixa concentração podem ter contribuído para tal. Já na estabilidade química em pH 7,4 (que simula pH sanguíneo), pH 1,2 (que simula pH estomacal) e pH 8,5 (que simula pH intestinal), observou-se que o AA-K(AS)-R-NH2 foi estável durante as 24 h de ensaio. Estes últimos resultados são interessantes, pois espera-se que o pró-fármaco dendrimérico alcance o T. cruzi estruturalmente integro, sofrendo hidrólise e liberação do composto ativo no interior do parasita


Chagas disease is a public health problem in many countries and regions. The treatment consists of toxic drugs, with debatable efficacy, mainly, in the chronic phase of the disease. Thus, it is necessary to plan new chemotherapeutics, safer and more effective than those drugs. Dendrimers are new molecular architectures composed by a central focus and branching from that focus. They present several biological applications, such as acting as drug carriers. Thereby, the goal of this work was the study of conditions to bind anacardic acid (AA) in a dendrimeric derivative with potential action in Chagas disease, which was composed by a central focus of succinic acid (AS) and branches of arginine (Arg) and lysine (Lys). Cruzain, a T. cruzi cysteine protease, is known to catalyze the peptide-binding hydrolysis between lysine and arginine. Synthesis of the solid phase compounds provided the crude derivatives: (1) prodrug AA-KR-NH2 and (2) G.05 AA-K(AS)-R-NH2, which were purified and characterized by High Performance Liquid Chromatography (HPLC) and mass spectrometry. The purified AA-K-R-NH2 and AA-K(AS)-R-NH2 compounds showed yields of 34% and 47%, with purity of 88% and 98% respectively. The results of the enzymatic experiments using AA-K-R-NH2 were not conclusive. It is believed that the low solubility and/or low concentration may have contributed for this. On the chemical stability at pH 7.4 (which simulates blood pH), pH 1.2 (which simulates stomach pH) and pH 8.5 (which simulates intestinal pH), it was observed that AA-K(AS)R-NH2 was stable for 24 hours. These latter results are interesting because the dendrimeric prodrug is expected to reach structurally integral T. cruzi, undergoing hydrolysis and release of the active compound within the parasite


Subject(s)
Chagas Disease/classification , Dendrimers/analysis , Enzyme Stability , Pharmaceutical Preparations/analysis , Anacardic Acids
8.
3 Biotech ; 7(6): 380, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29109925

ABSTRACT

Enzyme immobilization using hydrogels is a low-cost and effective system for the degradation of bulk pectin derived from orange industry residues. Polygalacturonases obtained from four different bacterial strains of Streptomyces genus were immobilized in alginate gel and assayed for pectin hydrolysis. The enzyme from Streptomyces halstedii ATCC 10897 proved to be superior and more stable within the alginate matrix. Furthermore, a new strategy to improve alginate bead stability using a mixture of calcium and strontium is reported; this technique allowed enhancing the mechanical properties by combining different amounts of these cations for ionotropic gelation. The developed biocatalyst showed maximum hydrolysis at 2 h, generating 1.54 mg/mL of reducing sugars and decreasing the viscosity of polygalacturonic acid by 98.9%. Reusability up to 29 successive reactions (58 h) demonstrated a very stable performance. The heterogeneous biocatalyst was used in the enzymatic saccharification of orange peel albedo (2.23 mg/mL) for adding value to this agro-waste by industrial exploitation.

9.
J Biomater Sci Polym Ed ; 26(16): 1126-38, 2015.
Article in English | MEDLINE | ID: mdl-26313518

ABSTRACT

The sol-gel process has been very useful for preparing active and stable biocatalysts, with the possibility of being reused. Especially those based on silica are well known. However, the study of the enzyme behavior during this process is not well understood until now and more, if the surfactant is involved in the synthesis mixture. This work is devoted to the encapsulation of ß-galactosidase from Bacillus circulans in silica by sol-gel process, assisted by non-ionic Triton X-100 surfactant. The correlation between enzyme activity results for the ß-galactosidase in three different environments (soluble in buffered aqueous reference solution, in the silica sol, and entrapment on the silica matrix) explains the enzyme behavior under stress conditions offered by the silica sol composition and gelation conditions. A stable ß-galactosidase/silica biocatalyst is obtained using sodium silicate, which is a cheap source of silica, in the presence of non-ionic Triton X-100, which avoids the enzyme deactivation, even at 40 °C. The obtained biocatalyst is used in the whey hydrolysis for obtaining high value products from this waste. The preservation of the enzyme stability, which is one of the most important challenges on the enzyme immobilization through the silica sol-gel, is achieved in this study.


Subject(s)
Bacterial Proteins/metabolism , Enzymes, Immobilized/metabolism , Glucose/metabolism , Nutritive Sweeteners/metabolism , Silica Gel/chemistry , Whey/metabolism , beta-Galactosidase/metabolism , Bacillus/enzymology , Bacterial Proteins/chemistry , Enzyme Stability , Enzymes, Immobilized/chemistry , Food-Processing Industry/economics , Glucose/economics , Glucose/isolation & purification , Hydrolysis , Industrial Waste/analysis , Industrial Waste/economics , Kinetics , Lactose/metabolism , Nutritive Sweeteners/economics , Nutritive Sweeteners/isolation & purification , Octoxynol/chemistry , Phase Transition , South America , Surface-Active Agents/chemistry , Transition Temperature , Whey/economics , beta-Galactosidase/chemistry
10.
Rev. cuba. invest. bioméd ; 31(2)abr.-jun. 2012. graf
Article in Spanish | CUMED | ID: cum-56993

ABSTRACT

Una de las vías fundamentales para garantizar la calidad de los ensayos realizados en los laboratorios clínicos es mediante el uso de materiales de referencia. Una problemática a la que nos enfrentamos es la escasez de estos productos en el mercado nacional dado su alto costo. Objetivo: evaluar la estabilidad de un suero bovino adulto enriquecido con las enzimas alanina aminotransferasa (ALAT/TGP), aspartato aminotransferasa (ASAT/TGP), fosfatasa alcalina (FA) y amilasa. Métodos: se evaluó la estabilidad a tiempo real de la matriz enriquecida con las diferentes enzimas durante 12 meses a 2 temperaturas (refrigeración y congelación). Se evaluó el efecto del glicerol sobre la actividad enzimática de los extractos, así como el efecto de los preservantes propilenglicol y etilenglicol en la estabilidad de las enzimas. Resultados: los extractos enzimáticos obtenidos comenzaron a perder la actividad biológica a partir de los 15 días, independientemente de la temperatura de almacenamiento y de la presencia o no de glicerol. Los resultados del ensayo a tiempo real realizados a la matriz enriquecida, mostraron que la estabilidad varió con el tiempo y con el tipo de enzima, independientemente del preservante ensayado, disminuyendo por debajo de los límites aceptables de actividad enzimática luego de 3 meses de almacenamiento del producto a 4 ºC. Conclusiones: se logró un material de referencia multienzimático estable por un período de 3 meses(AU)


A fundamental method to assure the quality of clinical laboratory tests is the use of reference materials. A problem we are faced with is the scarcity of these products in the domestic market, due their high cost. Objective: Evaluate the stability of an adult bovine serum enriched with the enzymes alanine aminotransferase (ALT, GPT), aspartate aminotransferase (AST, GPT), alkaline phosphatase (AP) and amylase. Methods: This enzyme-enriched matrix underwent real-time stability assessment during 12 months at two temperatures (refrigerated and frozen). An evaluation was made of the effect of glycerol on the enzymatic activity of extracts, as well as the effect of the preservatives propylene glycol and ethylene glycol on enzymatic stability. Results: The enzyme extracts obtained began to lose their biological activity at 15 days, irrespective of the storage temperature and the presence or absence of glycerol. The real time assessment of the enriched matrix showed that stability varied with time and enzyme type, irrespective of the preservative tested, and fell below acceptable limits of enzymatic activity after three months of storage at 4 ºC. Conclusions: A multienzyme reference material was obtained which was stable for a period of 3 months(AU)


Subject(s)
Animals , Rabbits , Multienzyme Complexes/chemical synthesis , Enzyme Stability , Laboratory Chemicals , Reference Standards
11.
Rev. cuba. invest. bioméd ; 31(2): 0-0, abr.-jun. 2012.
Article in Spanish | LILACS | ID: lil-648605

ABSTRACT

Una de las vías fundamentales para garantizar la calidad de los ensayos realizados en los laboratorios clínicos es mediante el uso de materiales de referencia. Una problemática a la que nos enfrentamos es la escasez de estos productos en el mercado nacional dado su alto costo. Objetivo: evaluar la estabilidad de un suero bovino adulto enriquecido con las enzimas alanina aminotransferasa (ALAT/TGP), aspartato aminotransferasa (ASAT/TGP), fosfatasa alcalina (FA) y amilasa. Métodos: se evaluó la estabilidad a tiempo real de la matriz enriquecida con las diferentes enzimas durante 12 meses a 2 temperaturas (refrigeración y congelación). Se evaluó el efecto del glicerol sobre la actividad enzimática de los extractos, así como el efecto de los preservantes propilenglicol y etilenglicol en la estabilidad de las enzimas. Resultados: los extractos enzimáticos obtenidos comenzaron a perder la actividad biológica a partir de los 15 días, independientemente de la temperatura de almacenamiento y de la presencia o no de glicerol. Los resultados del ensayo a tiempo real realizados a la matriz enriquecida, mostraron que la estabilidad varió con el tiempo y con el tipo de enzima, independientemente del preservante ensayado, disminuyendo por debajo de los límites aceptables de actividad enzimática luego de 3 meses de almacenamiento del producto a 4 ºC. Conclusiones: se logró un material de referencia multienzimático estable por un período de 3 meses


A fundamental method to assure the quality of clinical laboratory tests is the use of reference materials. A problem we are faced with is the scarcity of these products in the domestic market, due their high cost. Objective: Evaluate the stability of an adult bovine serum enriched with the enzymes alanine aminotransferase (ALT, GPT), aspartate aminotransferase (AST, GPT), alkaline phosphatase (AP) and amylase. Methods: This enzyme-enriched matrix underwent real-time stability assessment during 12 months at two temperatures (refrigerated and frozen). An evaluation was made of the effect of glycerol on the enzymatic activity of extracts, as well as the effect of the preservatives propylene glycol and ethylene glycol on enzymatic stability. Results: The enzyme extracts obtained began to lose their biological activity at 15 days, irrespective of the storage temperature and the presence or absence of glycerol. The real time assessment of the enriched matrix showed that stability varied with time and enzyme type, irrespective of the preservative tested, and fell below acceptable limits of enzymatic activity after three months of storage at 4 ºC. Conclusions: A multienzyme reference material was obtained which was stable for a period of 3 months


Subject(s)
Animals , Rabbits , Multienzyme Complexes/chemical synthesis , Enzyme Stability , Laboratory Chemicals , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL