Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
J Histotechnol ; : 1-6, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39287221

ABSTRACT

There have been several methods established for immunohistochemical labeling of the PGP 9.5 antigen in human tissue for the assessment of epidermal nerve fiber density, none of which uses neutral-buffered formalin as the preferred fixative for paraffin-embedded tissue. The literature maintains that formalin-fixed paraffin embedded tissues are unable to be used for this purpose and that other fixatives must be used due to the cross-linkages caused by formalin fixation. This study was undertaken to develop a standardized method for the use of formalin-fixed paraffin embedded tissues for immunohistochemical labeling and assessment of epidermal nerve fiber density. Formalin-fixed paraffin embedded tissues from the punch biopsies of patients suspected to have small fiber neuropathy were prepared for immunohistochemical labeling using heat-induced epitope retrieval for one hour at 92°C. The tissues were then stained with a polyclonal rabbit anti-human PGP 9.5 primary antibody. The resulting stains were then evaluated by a licensed pathologist who counted the number of epidermal nerve fibers stained and recorded the epidermal length in millimeters. Human foreskin was used as the tissue control in these studies. Satisfactory immunohistochemical labeling of epidermal nerve fibers was achieved from formalin-fixed paraffin embedded tissues through the use of heat-induced epitope retrieval. The authors of this paper have concluded that formalin-fixed paraffin embedded tissues may be used to achieve satisfactory immunohistochemical labeling for the assessment of epidermal nerve fiber density.

2.
J Peripher Nerv Syst ; 29(3): 329-338, 2024 09.
Article in English | MEDLINE | ID: mdl-39164223

ABSTRACT

AIMS: To develop a standardised, automated protocol for detecting protein gene product 9.5 (PGP9.5) positive intra-epidermal nerve fibres (IENFs) in skin biopsies, transitioning from the established manual technique to an automated platform. This automated method, although currently intended for research applications, may improve the accessibility of this diagnostic test for small fibre neuropathy in clinical settings. METHODS: Skin biopsies (n = 274) from 100 participants (fibromyalgia syndrome n = 62; idiopathic small fibre neuropathy: n = 16; healthy volunteers: n = 22) were processed using an automated immunohistochemistry platform. IENF quantification was performed by blinded examiners, with reliability assessed via a two-way mixed-effects model to evaluate inter- and intra-observer variability. RESULTS: The automated staining system reproduced intra-epidermal nerve fibre density (IENFD) counts consistent with free-floating sections (mean ± standard deviation: free-floating: 5.6 ± 3.4 fibres/mm; automated: 5.9 ± 3.2 fibres/mm). A median difference of 0.3 with a lower bound 95% Confidence Interval (CI) at -0.00005 established non-inferiority against a margin of -0.4 (p = .08). Specifically, the inter-class correlation coefficient (class denotes consistency in measured observations) was 99% (95% CI: 0.9-1), indicating excellent agreement between free-floating and automated methods. The inter- and intra-class coefficient between examiners were both 99% (95% CI: 0.9-0.1) for IENFD, demonstrating high reliability using sections stained using the automated method. INTERPRETATION: Automated immunohistochemistry provides high-throughput reliable and reproducible intra-epidermal nerve fibre quantification. This method, although currently proof-of-concept, for research use only, may be more widely deployed in histopathology laboratories to increase the adoption of IENFD assessment for the diagnosis of peripheral neuropathies.


Subject(s)
Immunohistochemistry , Nerve Fibers , Proof of Concept Study , Skin , Small Fiber Neuropathy , Humans , Nerve Fibers/pathology , Female , Male , Adult , Middle Aged , Skin/innervation , Skin/pathology , Small Fiber Neuropathy/diagnosis , Small Fiber Neuropathy/pathology , Biopsy , Epidermis/innervation , Epidermis/pathology , Aged , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/analysis , Reproducibility of Results
3.
Muscle Nerve ; 70(4): 782-790, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39056231

ABSTRACT

INTRODUCTION/AIMS: Corneal confocal microscopy (CCM) detects small nerve fiber loss and correlates with skin biopsy findings in diabetic neuropathy. In chronic idiopathic axonal polyneuropathy (CIAP) this correlation is unknown. Therefore, we compared CCM and skin biopsy in patients with CIAP to healthy controls, patients with painful diabetic neuropathy (PDN) and diabetics without overt neuropathy (DM). METHODS: Participants with CIAP and suspected small fiber neuropathy (n = 15), PDN (n = 16), DM (n = 15), and healthy controls (n = 16) underwent skin biopsy and CCM testing. Inter-center intraclass correlation coefficients (ICC) were calculated for CCM parameters. RESULTS: Compared with healthy controls, patients with CIAP and PDN had significantly fewer nerve fibers in the skin (IENFD: 5.7 ± 2.3, 3.0 ± 1.8, 3.9 ± 1.5 fibers/mm, all p < .05). Corneal nerve parameters in CIAP (fiber density 23.8 ± 4.9 no./mm2, branch density 16.0 ± 8.8 no./mm2, fiber length 13.1 ± 2.6 mm/mm2) were not different from healthy controls (24.0 ± 6.8 no./mm2, 22.1 ± 9.7 no./mm2, 13.5 ± 3.5 mm/mm2, all p > .05). In patients with PDN, corneal nerve fiber density (17.8 ± 5.7 no./mm2) and fiber length (10.5 ± 2.7 mm/mm2) were reduced compared with healthy controls (p < .05). CCM results did not correlate with IENFD in CIAP patients. Inter-center ICC was 0.77 for fiber density and 0.87 for fiber length. DISCUSSION: In contrast to patients with PDN, corneal nerve parameters were not decreased in patients with CIAP and small nerve fiber damage. Therefore, CCM is not a good biomarker for small nerve fiber loss in CIAP patients.


Subject(s)
Cornea , Diabetic Neuropathies , Microscopy, Confocal , Nerve Fibers , Humans , Male , Female , Middle Aged , Cornea/innervation , Cornea/pathology , Nerve Fibers/pathology , Diabetic Neuropathies/pathology , Diabetic Neuropathies/diagnostic imaging , Aged , Adult , Skin/innervation , Skin/pathology , Polyneuropathies/pathology , Polyneuropathies/diagnostic imaging
4.
Acta Neuropathol ; 147(1): 60, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38526612

ABSTRACT

Preclinical studies indicate that diverse muscarinic receptor antagonists, acting via the M1 sub-type, promote neuritogenesis from sensory neurons in vitro and prevent and/or reverse both structural and functional indices of neuropathy in rodent models of diabetes. We sought to translate this as a potential therapeutic approach against structural and functional indices of diabetic neuropathy using oxybutynin, a muscarinic antagonist approved for clinical use against overactive bladder. Studies were performed using sensory neurons maintained in vitro, rodent models of type 1 or type 2 diabetes and human subjects with type 2 diabetes and confirmed neuropathy. Oxybutynin promoted significant neurite outgrowth in sensory neuron cultures derived from adult normal rats and STZ-diabetic mice, with maximal efficacy in the 1-100 nmol/l range. This was accompanied by a significantly enhanced mitochondrial energetic profile as reflected by increased basal and maximal respiration and spare respiratory capacity. Systemic (3-10 mg/kg/day s.c.) and topical (3% gel daily) oxybutynin reversed paw heat hypoalgesia in the STZ and db/db mouse models of diabetes and reversed paw tactile allodynia in STZ-diabetic rats. Loss of nerve profiles in the skin and cornea of db/db mice was also prevented by daily topical delivery of 3% oxybutynin for 8 weeks. A randomized, double-blind, placebo-controlled interventional trial was performed in subjects with type 2 diabetes and established peripheral neuropathy. Subjects received daily topical treatment with 3% oxybutynin gel or placebo for 6 months. The a priori designated primary endpoint, significant change in intra-epidermal nerve fibre density (IENFD) in skin biopsies taken before and after 20 weeks of treatments, was met by oxybutynin but not placebo. Secondary endpoints showing significant improvement with oxybutynin treatment included scores on clinical neuropathy, pain and quality of life scales. This proof-of-concept study indicates that muscarinic antagonists suitable for long-term use may offer a novel therapeutic opportunity for treatment of diabetic neuropathy. Trial registry number: NCT03050827.


Subject(s)
Diabetic Neuropathies , Muscarinic Antagonists , Animals , Humans , Mice , Rats , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/complications , Diabetic Neuropathies/pathology , Mandelic Acids , Muscarinic Antagonists/pharmacology , Muscarinic Antagonists/therapeutic use , Quality of Life , Receptors, Muscarinic , Diabetes Mellitus, Type 1
5.
J Neurosci Methods ; 405: 110081, 2024 05.
Article in English | MEDLINE | ID: mdl-38369028

ABSTRACT

BACKGROUND: Existing methods identify only ≈10 Aδ-fibers in human sensory nerves per recording. This study examines methods to increase the detection of Aδ-fibers. NEW METHOD: Two to 20 averages of 500 replicate responses to epidermal nerve stimulation are obtained. Pairs of different averages are constructed. Each pair is analyzed with algorithms applied to amplitude and frequency to detect replication of responses to stimulation as "simultaneous similarities in two averages" (SS2AVs) at ≥99.5th percentile of control. In a pair of averages the latencies of amplitude and frequency SS2AVs for the same response to stimulation may differ by ≤0.25 ms. Therefore, Aδ-fibers are identified by the 0.25 ms moving sum of SS2AV latencies of the pairs of averages. RESULTS: Increasing averages increases pairs of different averages and detection of Aδ-fibers: from 2 to 10 Aδ-fibers with two averages (one pair) to >50 Aδ-fibers with 12-20 averages (66-190 pairs). COMPARISON WITH EXISTING METHOD(S): Existing methods identify ≤10 Aδ-fibers in 10 averages/45 pairs with the medians of amplitude and frequency algorithms applied to all 45 pairs. This study identifies Aδ-fibers (i) by applying these algorithms at the 99.5th percentile of control, (ii) to each pair of averages and (iii) by the 0.25 ms sum of algorithm identified events (SS2AVs) in all pairs. These three changes significantly increase the detection of Aδ-fibers, e.g., in 10 averages/45pairs from 10 to 45. CONCLUSIONS: Three modifications of existing methods can increase the detection of Aδ-fibers to an amount suitable (>50 with ≥12 averages) for statistical comparison of different nerves.


Subject(s)
Nerve Fibers, Myelinated , Nerve Fibers, Unmyelinated , Humans , Nerve Fibers, Unmyelinated/physiology , Afferent Pathways
6.
Clin Exp Immunol ; 215(1): 65-78, 2024 01 09.
Article in English | MEDLINE | ID: mdl-37638717

ABSTRACT

Chronic inflammatory demyelinating polyneuropathy (CIDP), a common and treatable autoimmune neuropathy, is frequently misdiagnosed. The aim of this study is to evaluate the relationship between immunological markers and clinical outcome measures in a mixed cohort of patients with typical CIDP and CIDP variants at different disease stages. Twenty-three typical, 16 multifocal and five distal CIDP patients were included. Twenty-five sex and age-matched healthy controls and 12 patients with Charcot-Marie-Tooth type 1A (CMT1A) disease served as controls. Peripheral B-cell populations were analyzed by flow cytometry. IL6, IL10, TNFA mRNA and mir-21, mir-146a, and mir-155-5p expression levels were evaluated by real-time polymerase chain reaction in peripheral blood mononuclear cells (PBMC) and/or skin biopsy specimens. Results were then assessed for a possible association with clinical disability scores and intraepidermal nerve fiber densities (IENFD) in the distal leg. We detected a significant reduction in naive B cells (P ≤ 0.001), plasma cells (P ≤ 0.001) and regulatory B cells (P < 0.05), and an elevation in switched memory B cells (P ≤ 0.001) in CIDP compared to healthy controls. CMT1A and CIDP patients had comparable B-cell subset distribution. CIDP cases had significantly higher TNFA and IL10 gene expression levels in PBMC compared to healthy controls (P < 0.05 and P ≤ 0.01, respectively). IENFDs in the distal leg showed a moderate negative correlation with switched memory B-cell ratios (r = -0.51, P < 0.05) and a moderate positive correlation with plasma cell ratios (r = 0.46, P < 0.05). INCAT sum scores showed a moderate positive correlation with IL6 gene expression levels in PBMC (r = 0.54, P < 0.05). Altered B-cell homeostasis and IL10 and TNFA gene expression levels imply chronic antigen exposure and overactivity in the humoral immune system, and seem to be a common pathological pathway in both typical CIDP and CIDP variants.


Subject(s)
B-Lymphocyte Subsets , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating , Humans , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/genetics , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/diagnosis , Leukocytes, Mononuclear/metabolism , Cytokines/genetics , B-Lymphocyte Subsets/metabolism , Interleukin-10/genetics , Interleukin-6/genetics
7.
Neurosci Lett ; 812: 137406, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37480979

ABSTRACT

BACKGROUND: This study aimed to assess the effectiveness of swimming exercise in alleviating mechanical hypersensitivity and peripheral nerve degeneration associated with a pre-clinical model of painful diabetic neuropathy (PDN). METHODS: This study is a pre-clinical study conducted using the streptozocin (STZ)-induced PDN rat model. Rats were randomly allocated to three groups: a vehicle group of non-diabetic rats (Vehicle, n = 9), a group of rats with PDN (PDN, n = 8), and a group of rats with PDN that performed a swimming exercise program (PDN-SW, n = 10). The swimming exercise program included daily 30-minute swimming exercise, 5 days per week for 4 weeks. Von Frey testing was used to monitor hindpaw mechanical sensitivity over 4 weeks. Assessment of cutaneous peripheral nerve fiber integrity was performed after the 4-week study period via immunohistochemistry for protein gene product 9.5-positive (PGP9.5+) intra-epidermal nerve fiber density (IENFD) in hind-paw skin biopsies by a blinded investigator. RESULTS: The results showed that swimming exercise mitigated but did not fully reverse mechanical hypersensitivity in rats with PDN. Immunohistochemical testing revealed that the rats in the PDN-SW group retained higher PGP9.5+ IENFD compared to the PDN group but did not reach normal levels of the Vehicle group. CONCLUSIONS: The results of this study indicate that swimming exercise can mitigate mechanical hypersensitivity and degeneration of peripheral nerve fibers in rats with experimental PDN.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Neuropathies , Rats , Animals , Diabetic Neuropathies/therapy , Diabetic Neuropathies/metabolism , Diabetes Mellitus, Experimental/metabolism , Swimming , Nerve Fibers/metabolism , Peripheral Nerves/metabolism
8.
Stat Med ; 42(23): 4128-4146, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37485617

ABSTRACT

Diabetic neuropathy is a disorder characterized by impaired nerve function and reduction of the number of epidermal nerve fibers per epidermal surface. Additionally, as neuropathy related nerve fiber loss and regrowth progresses over time, the two-dimensional spatial arrangement of the nerves becomes more clustered. These observations suggest that with development of neuropathy, the spatial pattern of diminished skin innervation is defined by a thinning process which remains incompletely characterized. We regard samples obtained from healthy controls and subjects suffering from diabetic neuropathy as realisations of planar point processes consisting of nerve entry points and nerve endings, and propose point process models based on spatial thinning to describe the change as neuropathy advances. Initially, the hypothesis that the nerve removal occurs completely at random is tested using independent random thinning of healthy patterns. Then, a dependent parametric thinning model that favors the removal of isolated nerve trees is proposed. Approximate Bayesian computation is used to infer the distribution of the model parameters, and the goodness-of-fit of the models is evaluated using both non-spatial and spatial summary statistics. Our findings suggest that the nerve mortality process changes as neuropathy advances.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Humans , Bayes Theorem , Skin/innervation , Epidermis/innervation , Models, Statistical
9.
Medicina (Kaunas) ; 59(3)2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36984553

ABSTRACT

Background and Objective: Our previous study demonstrated that consistent treatment of oral cilostazol was effective in reducing levels of painful peripheral neuropathy in streptozotocin-induced type I diabetic rats. As diabetic neuropathy is characterized by hyperglycemia-induced nerve damage in the periphery, this study aims to examine the neuropathology as well as the effects of cilostazol treatments on the integrity of peripheral small nerve fibers in type I diabetic rats. Materials and Methods: A total of ninety adult male Sprague-Dawley rats were divided into the following groups: (1) naïve (control) group; (2) diabetic rats (DM) group for 8 weeks; DM rats receiving either (3) 10 mg/kg oral cilostazol (Cilo10), (4) 30 mg/kg oral cilostazol (Cilo30), or (5) 100 mg/kg oral cilostazol (Cilo100) for 6 weeks. Pain tolerance thresholds of hind paws toward thermal and mechanical stimuli were assessed. Expressions of PGP9.5, P2X3, CGRP, and TRPV-1 targeting afferent nerve fibers in hind paw skin and glial cells in the spinal dorsal horn were examined via immunohistochemistry and immunofluorescence. Results: Oral cilostazol ameliorated the symptoms of mechanical allodynia but not thermal analgesia in DM rats. Significant reductions in PGP9.5-, P2X3-, CGRP, and TRPV-1-labeled penetrating nerve fibers in the epidermal layer indicated denervation of sensory nerves in the hind paw epidermis of DM rats. Denervation significantly improved in groups that received Cilo30 and Cilo100 in a dose-dependent manner. Cilostazol administration also suppressed microglial hyperactivation and increased astrocyte expressions in spinal dorsal horns. Conclusions: Oral cilostazol ameliorated hyperglycemia-induced peripheral small nerve fiber damage in the periphery of diabetic rats and effectively mitigated diabetic neuropathic pain via a central sensitization mechanism. Our findings present cilostazol not only as an effective option for managing symptoms of neuropathy but also for deterring the development of diabetic neuropathy in the early phase of type I diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Diabetic Neuropathies , Hyperglycemia , Rats , Male , Animals , Cilostazol/therapeutic use , Cilostazol/pharmacology , Diabetic Neuropathies/drug therapy , Rats, Sprague-Dawley , Streptozocin/adverse effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/chemically induced , Calcitonin Gene-Related Peptide/adverse effects , Calcitonin Gene-Related Peptide/analysis , Sciatic Nerve/pathology , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Hyperalgesia/metabolism , Denervation
10.
FASEB J ; 37(4): e22892, 2023 04.
Article in English | MEDLINE | ID: mdl-36951647

ABSTRACT

Epidermal nerve fiber regeneration and sensory function are severely impaired in skin wounds of diabetic patients. To date, however, research on post-traumatic nerve regeneration and sensory reconstruction remains scarce, and effective clinical therapeutics are lacking. In the current study, localized treatment with RL-QN15, considered as a drug candidate for intervention in skin wounds in our previous research, accelerated the healing of full-thickness dorsal skin wounds in diabetic mice and footpad skin wounds in diabetic rats. Interestingly, nerve density and axonal plasticity in the skin wounds of diabetic rats and mice, as well as plantar sensitivity in diabetic rats, were markedly enhanced by RL-QN15 treatment. Furthermore, RL-QN15 promoted the proliferation, migration, and axonal length of neuron-like PC12 cells, which was likely associated with activation of the phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) signaling pathway. The therapeutic effects of RL-QN15 were partially reduced by blocking the PI3K/Akt signaling pathway with the inhibitor LY294002. Thus, RL-QN15 showed positive therapeutic effects on the distribution of epidermal nerve fibers and stimulated the recovery of sensory function after cutaneous injury. This study lays a solid foundation for the development of RL-QN15 peptide-based therapeutics against diabetic skin wounds.


Subject(s)
Diabetes Mellitus, Experimental , Proto-Oncogene Proteins c-akt , Rats , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases , Skin , Nerve Fibers/metabolism , Sensation , Peptides/pharmacology , Nerve Regeneration/physiology
11.
Exp Physiol ; 108(3): 438-447, 2023 03.
Article in English | MEDLINE | ID: mdl-36807948

ABSTRACT

NEW FINDINGS: What is the central question of this study? Is peripheral sensory function impaired in the chronic phase of non-freezing cold injury (NFCI)? What is the main finding and its importance? Warm and mechanical detection thresholds are elevated and intraepidermal nerve fibre density is reduced in individuals with NFCI in their feet when compared to matched controls. This indicates impaired sensory function in individuals with NFCI. Interindividual variation was observed in all groups, and therefore a diagnostic cut-off for NFCI has yet to be established. Longitudinal studies are required to follow NFCI progression from formation to resolution ABSTRACT: The aim of this study was to compare peripheral sensory neural function of individuals with non-freezing cold injury (NFCI) with matched controls (without NFCI) with either similar (COLD) or minimal previous cold exposure (CON). Thirteen individuals with chronic NFCI in their feet were matched with the control groups for sex, age, race, fitness, body mass index and foot volume. All undertook quantitative sensory testing (QST) on the foot. Intraepidermal nerve fibre density (IENFD) was assessed 10 cm above the lateral malleolus in nine NFCI and 12 COLD participants. Warm detection threshold was higher at the great toe in NFCI than COLD (NFCI 45.93 (4.71)°C vs. COLD 43.44 (2.72)°C, P = 0.046), but was non-significantly different from CON (CON 43.92 (5.01)°C, P = 0.295). Mechanical detection threshold on the dorsum of the foot was higher in NFCI (23.61 (33.59) mN) than in CON (3.83 (3.69) mN, P = 0.003), but was non-significantly different from COLD (10.49 (5.76) mN, P > 0.999). Remaining QST measures did not differ significantly between groups. IENFD was lower in NFCI than COLD (NFCI 8.47 (2.36) fibre/mm2 vs. COLD 11.93 (4.04) fibre/mm2 , P = 0.020). Elevated warm and mechanical detection thresholds may indicate hyposensitivity to sensory stimuli in the injured foot for individuals with NFCI and may be due to reduced innervation given the reduction in IENFD. Longitudinal studies are required to identify the progression of sensory neuropathy from the formation of injury to its resolution, with appropriate control groups employed.


Subject(s)
Cold Injury , Humans , Sensation , Foot , Cold Temperature
12.
Biomedicines ; 10(12)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36551946

ABSTRACT

The clinical pathology of Taxol-induced peripheral neuropathy (TIPN), characterized by loss of sensory sensitivity and pain, is mirrored in a preclinical pharmacological mice model in which Gabapentin, produced anti-thermal hyperalgesia and anti-allodynia effects. The study aimed to investigate the hypothesis that gabapentin may protect against Taxol-induced neuropathic pain in association with an effect on intra-epidermal nerve fibers density in the TIPN mice model. A TIPN study schedule was induced in mice by daily injection of Taxol during the first week of the experiment. Gabapentin therapy was performed during the 2nd and 3rd weeks. The neuropathic pain was evaluated during the whole experiment by the Von Frey, tail flick, and hot plate tests. Intra-epidermal nerve fibers (IENF) density in skin biopsies was measured at the end of the experiment by immunohistochemistry of ubiquitin carboxyl-terminal hydrolase PGP9.5 pan-neuronal and calcitonin gene-related (CGRP) peptides-I/II- peptidergic markers. Taxol-induced neuropathy was expressed by 80% and 73% reduction in the paw density of IENFs and CGPR, and gabapentin treatment corrected by 83% and 46% this reduction, respectively. Gabapentin-induced increase in the IENF and CGRP nerve fibers density, thus proposing these evaluations as an additional objective end-point tool in TIPN model studies using gabapentin as a reference compound.

13.
Muscle Nerve ; 66(6): 736-743, 2022 12.
Article in English | MEDLINE | ID: mdl-36151750

ABSTRACT

INTRODUCTION/AIMS: Epidermal nerve fiber involvement in chronic inflammatory demyelinating neuropathy (CIDP) has been reported in a limited number of patients. We quantified small-fiber involvement in a mixed cohort of patients with typical CIDP and CIDP variants to evaluate relationships with clinical outcome measures at different disease stages. METHODS: Intraepidermal nerve fiber densities (IENFDs) were evaluated by skin punch biopsies of 23 patients with CIDP and 13 healthy controls at the forearm, thigh, and distal leg. Skin sections were optimally interpreted in all three regions in 16 CIDP patients and 10 age- and sex-matched healthy controls. Statistical analysis was performed in these subjects. RESULTS: The IENFDs in forearm, thigh, and distal leg were similar among seven typical CIDP and nine CIDP variants. IENFDs in those regions were significantly reduced in CIDP compared with healthy controls, with a moderate negative correlation with scores on the International Neuropathy Cause and Treatment (INCAT) Upper Limb Functional Disability Scale. The reduction in IENFD compared with controls was more remarkable in the distal leg. In clinically unstable CIDP patients, the IENFDs of distal leg and forearm were significantly reduced compared with stable CIDP patients and controls. Stable CIDP patients had significantly reduced IENFDs in distal leg and forearm compared with controls. DISCUSSION: In this exploratory study, we confirm that small fibers are also affected in CIDP. Larger studies are needed to explore longitudinal changes of IENFD in CIDP and its relation to disease stage.


Subject(s)
Polyradiculoneuropathy, Chronic Inflammatory Demyelinating , Humans , Skin/innervation , Biopsy , Nerve Fibers/pathology
14.
J Clin Med ; 11(8)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35456342

ABSTRACT

There is a need to accurately identify patients with diabetes at higher risk of developing and progressing diabetic peripheral neuropathy (DPN). Fifty subjects with Type 1 Diabetes Mellitus (T1DM) and sixteen age matched healthy controls underwent detailed neuropathy assessments including symptoms, signs, quantitative sensory testing (QST), nerve conduction studies (NCS), intra epidermal nerve fiber density (IENFD) and corneal confocal microscopy (CCM) at baseline and after 2 years of follow-up. Overall, people with type 1 diabetes mellitus showed no significant change in HbA1c, blood pressure, lipids or neuropathic symptoms, signs, QST, neurophysiology, IENFD and CCM over 2 years. However, a sub-group (n = 11, 22%) referred to as progressors, demonstrated rapid corneal nerve fiber loss (RCNFL) with a reduction in corneal nerve fiber density (CNFD) (p = 0.0006), branch density (CNBD) (p = 0.0002), fiber length (CNFL) (p = 0.0002) and sural (p = 0.04) and peroneal (p = 0.05) nerve conduction velocities, which was not related to a change in HbA1c or cardiovascular risk factors. The majority of people with T1DM and good risk factor control do not show worsening of neuropathy over 2 years. However, CCM identifies a sub-group of people with T1DM who show a more rapid decline in corneal nerve fibers and nerve conduction velocity.

15.
Cells ; 11(7)2022 03 23.
Article in English | MEDLINE | ID: mdl-35406646

ABSTRACT

Peripheral nerve injuries lead to the loss of motor, sensory and autonomic functions in the territories supplied by the injured nerve. Currently, nerve injuries are managed by surgical repair procedures, and there are no effective drugs in the clinic for improving the capacity of axonal regeneration. Sigma-1 receptor (Sig-1R) is an endoplasmic reticulum chaperon protein involved in many functions, including neuroprotection and neuroplasticity. A few previous studies using Sig-1R ligands reported results that suggest this receptor as a putative target to enhance regeneration. The aim of this study was to evaluate the possible effects of Sig-1R ligands on axonal regeneration in a sciatic nerve section and repair model in mice. To this end, mice were treated either with the Sig-1R agonist PRE-084 or the antagonist BD1063, and a Sig-1R knock-out (KO) mice group was also studied. The electrophysiological and histological data showed that treatment with Sig-1R ligands, or the lack of this protein, did not markedly modify the process of axonal regeneration and target reinnervation after sciatic nerve injury. Nevertheless, the nociceptive tests provided results indicating a role of Sig-1R in sensory perception after nerve injury, and immunohistochemical labeling indicated a regulatory role in inflammatory cell infiltration in the injured nerve.


Subject(s)
Peripheral Nerve Injuries , Receptors, sigma , Animals , Ligands , Mice , Mice, Knockout , Nerve Regeneration , Peripheral Nerve Injuries/drug therapy , Receptors, sigma/agonists , Sigma-1 Receptor
16.
J Neurol ; 269(8): 4174-4184, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35258850

ABSTRACT

BACKGROUND AND PURPOSE: Oxaliplatin-induced neuropathy (OIN) implies axonal damage of both small and large sensory nerve fibers. We aimed at comparing the neurophysiological changes occurred after treatment and the capability to recovery based on histological marker of re-innervation GAP-43. METHODS: 48 patients with cancer were assessed before and after chemotherapy (at 3 months and 12 months if available). We recorded ulnar and sural sensory nerve action potentials (SNAP), determined quantitative sensory thresholds for warm and cold (WDT, CDT), pain thresholds and collected a distal biopsy of skin to assess the intra-epidermal nerve fiber density (IENFD) with PGP9.5 and GAP-43 markers (in a subgroup of 19 patients). RESULTS: Increased WDT and CDT as well as diminished IENFD at distal leg were already found in 30% of oncologic patients before treatment. After oxaliplatin, there was a significant increase in thermal thresholds in 52% of patients, and a decrease of SNAP amplitude in the sural nerve in 67% patients. IENFD was reduced in 47% and remained unchanged in 37% after oxiplatin. The density of GAP-43 + fibers and GAP-43/PGP 9.5 ratio was similar before and after treatment showing that cutaneous re-innervation is preserved despite no clinical recovery was observed after one year. CONCLUSION: Non-selective axonal loss affects sensory fibers in OIN. However, the presence of intra-epidermal regenerative sprouts detected by GAP-43 may reduce the impact of neurotoxicity in the small fibers with long-term sequelae mostly on myelinated nerve endings. Pre-oxaliplatin GAP-43 failed to identify patients with higher risk of damage or worse recovery after treatment.


Subject(s)
GAP-43 Protein , Peripheral Nervous System Diseases , GAP-43 Protein/metabolism , Humans , Neoplasms/drug therapy , Oxaliplatin/adverse effects , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/pathology , Prognosis , Skin/innervation , Skin/pathology
17.
Exp Neurol ; 352: 114053, 2022 06.
Article in English | MEDLINE | ID: mdl-35341747

ABSTRACT

Nine-banded armadillos develop peripheral neuropathy after experimental Mycobacterium leprae infection that recapitulates human disease. We used an intracutaneous excision axotomy model to assess the effect of infection duration by M. leprae on axonal sprouting and Schwan cell density. 34 armadillos (17 naïve and 17 M. leprae-infected) underwent 3 mm skin biopsies to create an intracutaneous excision axotomy followed by a concentric 4-mm overlapping biopsy 3 and 12-months post M. leprae inoculation. A traditional distal leg biopsy was obtained at 15mo for intraepidermal nerve fiber (IENF) density. Serial skin sections were immunostained against a axons (PGP9.5, GAP43), and Schwann cells (p75, s100) to visualize regenerating nerves. Regenerative axons and proliferation of Schwann cells was measured and the rate of growth at each time point was assessed. Increasing anti-PGL antibody titers and intraneural M. leprae confirmed infection. 15mo following infection, there was evidence of axon loss with reduced distal leg IENF versus naïve armadillos, p < 0.05. This was associated with an increase in Schwann cell density (11,062 ± 2905 vs. 7561 ± 2715 cells/mm3, p < 0.01). Following excisional biopsy epidermal reinnervation increased monotonically at 30, 60 and 90 days; the regeneration rate was highest at 30 days, and decreased at 60 and 90 days. The reinnervation rate was highest among animals infected for 3mo vs those infected for 12mo or naïve animals (mean ± SD, 27.8 ± 7.2 vs.16.2 ± 5.8vs. 15.3 ± 6.5 mm/mm3, p < 0.05). The infected armadillos displayed a sustained Schwann cell proliferation across axotomy time points and duration of infection (3mo:182 ± 26, 12mo: 256 ± 126, naive: 139 ± 49 cells/day, p < 0.05). M. leprae infection is associated with sustained Schwann cell proliferation and distal limb nerve fiber loss. Rates of epidermal reinnervation were highest 3mo after infection and normalized by 12 mo of infection. We postulate that excess Schwann cell proliferation is the main pathogenic process and is deleterious to sensory axons. There is a compensatory initial increase in regeneration rates that may be an attempt to compensate for the injury, but it is not sustained and eventually followed by axon loss. Aberrant Schwann cell proliferation may be a novel therapeutic target to interrupt the pathogenic cascade of M. leprae.


Subject(s)
Leprosy , Mycobacterium leprae , Animals , Armadillos/microbiology , Axotomy , Cell Proliferation , Leprosy/complications , Leprosy/microbiology , Leprosy/pathology , Schwann Cells/pathology
18.
Diagnostics (Basel) ; 11(3)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802768

ABSTRACT

Small fiber neuropathy (SFN) is a type of peripheral neuropathy that occurs from damage to the small A-delta and C nerve fibers that results in the clinical condition known as SFN. This pathology may be the result of metabolic, toxic, immune-mediated, and/or genetic factors. Small fiber symptoms can be variable and inconsistent and therefore require an objective biomarker confirmation. Small fiber dysfunction is not typically captured by diagnostic tests for large-fiber neuropathy (nerve conduction and electromyographic study). Therefore, skin biopsies stained with PGP 9.5 are the universally recommended objective test for SFN, with quantitative sensory tests, autonomic function testing, and corneal confocal imaging as secondary or adjunctive choices. Fibromyalgia (FM) is a heterogenous syndrome that has many symptoms that overlap with those found in SFN. A growing body of research has shown approximately 40-60% of patients carrying a diagnosis of FM have evidence of SFN on skin punch biopsy. There is currently no clearly defined phenotype in FM at this time to suggest whom may or may not have SFN, though research suggests it may correlate with severe cases. The skin punch biopsy provides an objective tool for use in quantifying small fiber pathology in FM. Skin punch biopsy may also be repeated for surveillance of the disease as well as measuring response to treatments. Evaluation of SFN in FM allows for better classification of FM and guidance for patient care as well as validation for their symptoms, leading to better use of resources and outcomes.

19.
Neuropathol Appl Neurobiol ; 47(5): 653-663, 2021 08.
Article in English | MEDLINE | ID: mdl-33421177

ABSTRACT

AIM: Progressive Supranuclear Palsy (PSP) is a progressive neurodegenerative tauopathy characterised by motor, behavioural and cognitive dysfunction. While in the last decade, sensory and autonomic disturbances as well as peripheral nerve involvement are well-recognised in Parkinson's Disease (PD), little is known in this regard for PSP. Herein, we aim to assess peripheral sensory and autonomic nerve involvement in PSP and to characterise possible differences in morpho-functional pattern compared to PD patients. METHODS: We studied 27 PSP and 33 PD patients without electrophysiological signs of neuropathy, and 33 healthy controls (HC). In addition to motor impairment, evaluated by means of UPDRS-III and the PSP rating scale, all patients underwent clinical, functional and morphological assessment of sensory-autonomic nerves through dedicated questionnaires, sympathetic skin response, dynamic sweat test and skin biopsies. The analysis of cutaneous sensory and autonomic innervation was performed using indirect immunofluorescence and confocal microscopy. RESULTS: PSP patients displayed a length-dependent loss of sensory and autonomic nerve fibres associated with functional impairment compared to HC and, overall, a more severe picture than in PD patients. The disease severity correlated with the loss of intraepidermal nerve fibre density in the leg of PSP patients (p < 0.05). CONCLUSION: We demonstrated a length-dependent small fibre pathology in PSP, more severe compared to PD, and paralleling disease severity. Our findings suggest the morphological and functional study of cutaneous nerves as possible biomarkers to monitor disease progression and response to new treatments.


Subject(s)
Autonomic Denervation , Autonomic Pathways/pathology , Cognitive Dysfunction/pathology , Supranuclear Palsy, Progressive/pathology , Aged , Autonomic Denervation/methods , Female , Humans , Male , Middle Aged , Parkinson Disease/pathology , Severity of Illness Index
20.
Brain ; 143(8): 2421-2436, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32830219

ABSTRACT

Vincristine, a widely used chemotherapeutic agent, produces painful peripheral neuropathy. The underlying mechanisms are not well understood. In this study, we investigated whether voltage-gated sodium channels are involved in the development of vincristine-induced neuropathy. We established a mouse model in which repeated systemic vincristine treatment results in the development of significant mechanical allodynia. Histological examinations did not reveal major structural changes at proximal sciatic nerve branches or distal toe nerve fascicles at the vincristine dose used in this study. Immunohistochemical studies and in vivo two-photon imaging confirmed that there is no significant change in density or morphology of intra-epidermal nerve terminals throughout the course of vincristine treatment. These observations suggest that nerve degeneration is not a prerequisite of vincristine-induced mechanical allodynia in this model. We also provided the first detailed characterization of tetrodotoxin-sensitive (TTX-S) and resistant (TTX-R) sodium currents in dorsal root ganglion neurons following vincristine treatment. Accompanying the behavioural hyperalgesia phenotype, voltage-clamp recordings of small and medium dorsal root ganglion neurons from vincristine-treated animals revealed a significant upregulation of TTX-S Na+ current in medium but not small neurons. The increase in TTX-S Na+ current density is likely mediated by Nav1.6, because in the absence of Nav1.6 channels, vincristine failed to alter TTX-S Na+ current density in medium dorsal root ganglion neurons and, importantly, mechanical allodynia was significantly attenuated in conditional Nav1.6 knockout mice. Our data show that TTX-S sodium channel Nav1.6 is involved in the functional changes of dorsal root ganglion neurons following vincristine treatment and it contributes to the maintenance of vincristine-induced mechanical allodynia.


Subject(s)
Antineoplastic Agents, Phytogenic/toxicity , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , NAV1.6 Voltage-Gated Sodium Channel/metabolism , Sensory Receptor Cells/metabolism , Vincristine/toxicity , Animals , Female , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Male , Mice , Mice, Inbred C57BL , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/metabolism , Sensory Receptor Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL