Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.943
Filter
1.
Biol Trace Elem Res ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958867

ABSTRACT

Cadmium(Cd) is a toxic heavy metal widely present in the environment, capable of accumulating in the liver and causing liver damage. In this study, the mechanism of cadmium-induced liver fibrosis in chickens was investigated from the perspective of hepatocyte epithelial-mesenchymal transition (EMT) based on the establishment of a model of chicken cadmium toxicity and a model of cadmium-stained cells in a chicken hepatocellular carcinoma cell line (LMH). The 7-day-old chickens were randomly divided into the regular group (C group) and cadmium poisoning group (Cd group), and the entire test cycle was 60 days. Three sampling time points of 20 days, 40 days, and 60 days were established. By testing the liver coefficient, histopathological and ultrastructural changes in chicken livers were observed. The enzyme activities of liver function and the expression changes of fibrosis markers (COL1A1, Fibronectin), epithelial-mesenchymal transition markers (E-cadherin, Vimentin, and α-SMA), and the critical factors of the TGF-ß/SMAD signaling pathway (TGF-ß1, SMAD 2, and SMAD 3) were detected in the liver expression changes. The results showed that at the same sampling time point, the chicken liver coefficient in group Cd was significantly higher than that in control group (P < 0.01); the activities of the liver function enzymes ALT and AST in chickens in the Cd group were significantly higher than those in the C group (P < 0.01); liver hepatocytes degenerated and necrotic, the number of erythrocytes in the blood vessels was increased, and inflammatory cells infiltrated in the sinusoidal gap; the perisinusoidal gap of the liver was enlarged, and there was an apparent aggregation of collagen fibers in the intervening period as seen by transmission electron microscopy. The results of Masson staining showed that the percentage of fiber area was significantly higher in the chickens' livers of the Cd group. The fiber area percentage was significantly higher. The results of real-time fluorescence quantitative PCR and Western Blot showed that the expression of E-cadherin in the livers of chickens in the Cd group was significantly lower than that in the C group (P < 0.01). The expression of α-SMA, Vimentin, COL1A1, Fibronectin, TGF-ß1, SMAD 2, and SMAD 3 was significantly higher than that in the C group (P < 0.01). The results of in vitro assays showed that in the LMH cell model established by adding trimethylamine N-oxide, an activator of the TGF-ß/SMAD signaling pathway, and oxidized picric acid, an inhibitor of the TGF-ß/SMAD signaling pathway, the expression of E-cadherin was significantly reduced in cadmium-stained LMH cells (P < 0.01). The expression of α-SMA, Vimentin, COL1A1, Fibronectin, TGF-ß, SMAD 2, and SMAD 3 was significantly elevated (P < 0.01). Cadmium and Trimethylamine N-oxide, an activator of the TGF-ß/SMAD signaling pathway, promoted the expression of these factors. In contrast, the inhibitor of the TGF-ß/SMAD signaling pathway, Oxymatrine, a TGF-ß/SMAD signaling pathway inhibitor, significantly slowed down these changes. These results suggest that cadmium induces hepatic epithelial-mesenchymal transition by activating the TGF-ß/SMAD signaling pathway in chicken hepatocytes, promoting hepatic fibrosis.

2.
Int J Mol Med ; 54(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38963019

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a prevalent and deadly malignancy of the digestive tract. Recent research has identified long non­coding RNAs (lncRNAs) as crucial regulators in the pathogenesis of ESCC. These lncRNAs, typically exceeding 200 nucleotides, modulate gene expression through various mechanisms, including the competing endogenous RNA (ceRNA) pathway and RNA­protein interactions. The current study reviews the multifaceted roles of lncRNAs in ESCC, highlighting their involvement in processes such as proliferation, migration, invasion, epithelial­mesenchymal transition, cell cycle progression, resistance to radiotherapy and chemotherapy, glycolysis, apoptosis, angiogenesis, autophagy, tumor growth, metastasis and the maintenance of cancer stem cells. Specific lncRNAs like HLA complex P5, LINC00963 and non­coding repressor of NFAT have been shown to enhance resistance to radio­ and chemotherapy by modulating pathways such as AKT signaling and microRNA interaction, which promote cell survival and proliferation under therapeutic stress. Furthermore, lncRNAs like family with sequence similarity 83, member A antisense RNA 1, zinc finger NFX1­type containing 1 antisense RNA 1 and taurine upregulated gene 1 are implicated in enhancing invasive and proliferative capabilities of ESCC cells through the ceRNA mechanism, while interactions with RNA­binding proteins further influence cancer cell behavior. The comprehensive analysis underscores the potential of lncRNAs as biomarkers for prognosis and therapeutic targets in ESCC, suggesting avenues for future research focused on elucidating the detailed molecular mechanisms and clinical applications of lncRNAs in ESCC management.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/therapy , Animals , Epithelial-Mesenchymal Transition/genetics , Cell Proliferation/genetics
3.
Article in English | MEDLINE | ID: mdl-38963118

ABSTRACT

BACKGROUND: Platinum-based compounds are commonly used as an initial treatment for colorectal cancer (CRC). However, the development of drug resistance in patients with CRC necessitates the administration of high drug concentrations during clinical treatment, thereby augmenting the toxicity of platinum-based compounds and increasing the mortality rate. STAG2 is a significantly associated drug-resistance gene in many cancers, but it has not been studied in colorectal cancer. Therefore, the present study aimed to investigate the role and drug sensitivity of the cisplatin-resistant gene STAG2. METHODS: The effects of STAG2 on drug resistance and survival rates of patients with CRC were examined using the Genomics of Drug Sensitivity in Cancer (GDSC) and Kaplan-Meier (KM) plotter databases. Subsequently, a sh-STAG2-HT-29 cell line was generated using a knockdown test of STAG2, and the half-maximal inhibitory concentration (IC50) of the two cell lines was determined using a cell viability test. We then used various techniques, including the Cell Counting Kit-8 (CCK-8), plate cloning, 5-ethynyl-2'-deoxyuridine (EdU) fluorescence staining, flow cytometry for cell cycle detection, the scar assay, the Transwell invasion assay, and Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) fluorescence staining for apoptosis detection, to investigate the functionality of the four subgroups of cancer cell lines. Additionally, Western blotting (WB) was used to identify the potential pathways associated with the observed functional alterations. Finally, the phenotype, tumor weight, mouse weight, tumor volume, and tumor tissue structure of the developed tumors were assessed using the subcutaneous tumor formation method. RESULTS: Database analysis indicated that STAG2 plays a role in facilitating drug resistance among individuals with CRC. Furthermore, mutations in this gene lead to increased sensitivity to cisplatin, and its overexpression was associated with an unfavorable prognosis. Following the successful development of STAG2 knockdown cells, differences in IC50 concentrations were observed between HT-29 and sh-STAG2-HT-29 cells. A treatment concentration of 10 µM cisplatin was selected, and the proliferation, migration, and invasion capabilities of cancer cells decreased after STAG2 knockdown. Additionally, the sensitivity of the cells to cisplatin therapy was increased, which was potentially mediated by the epithelial-mesenchymal transition (EMT) pathway. In mice, the tumorigenic potential of HT-29 cells was reduced by STAG2 knockdown, accompanied by a decrease in resistance to cisplatin therapy. CONCLUSION: STAG2 acts as a proto-oncogene in CRC, and its resistance to cisplatin therapy is more prominent. This study confirmed the role of STAG2 in CRC and provided a theoretical basis for the further development of STAG2 as an auxiliary criterion for determining dosage when patients are treated with platinum drugs.

4.
Article in English | MEDLINE | ID: mdl-38955980

ABSTRACT

PURPOSE: Invasive micropapillary carcinoma (IMPC) of the breast is known for its high metastatic potential, but the definition of pure and mixed IMPC remains unclear. This retrospective cohort study aims to investigate the prognostic significance of the micropapillary component ratio and the expression of critical molecules of epithelial-mesenchymal transition (EMT), including E-cadherin (E-cad), N-cadherin (N-cad), CD44s, and ß-catenin (ß-cat), in distinguishing between pure and mixed IMPCs. METHODS: We analyzed 100 cases of locally advanced IMPC between 2000 and 2018 and excluded patients who received neoadjuvant chemotherapy. Pure IMPC was defined as having a micropapillary component of over 90%. A comprehensive recording of prognostic parameters was conducted. The IMPC areas were analyzed using the immunohistochemical (IHC) staining method on the microarray set for pure and mixed IMPC patients. Pearson's chi-square, Fisher's exact tests, Kaplan-Meier analysis, and Cox proportional hazards analysis were employed. RESULTS: The comparative survival analysis of the entire group, based on overall survival (OS) and disease-free survival (DFS), revealed no significant difference between the pure and mixed groups (P = 0.480, HR = 1.474 [0.502-4.325] and P = 0.390, HR = 1.587 [0.550-4.640], respectively). However, in the pure IMPC group, certain factors were found to be associated with a higher risk of short survival. These factors included skin involvement (P = 0.050), pT3&4 category (P = 0.006), a ratio of intraductal component (> 5%) (P = 0.032), and high-level expression of N-cad (P = 0.020). Notably, none of the risk factors identified for short OS in pure IMPC cases were observed as significant risks in mixed cases and vice versa. Furthermore, N-cad was identified as a poor prognostic marker for OS in pure IMPCs (P = 0.002). CONCLUSION: The selection of a 90% ratio for classifying pure IMPCs revealed significant differences in certain molecular and prognostic parameters between pure and mixed groups. Notably, the involvement of N-cadherin in the epithelial-mesenchymal transition (EMT) process provided crucial insights for predicting OS and DFS while also distinguishing between the two groups. These findings strongly support the notion that the pure IMPC subgroup represents a distinct entity characterized by unique molecular characteristics and behavioral patterns.

5.
Article in English | MEDLINE | ID: mdl-38961814

ABSTRACT

Acquired resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs) represents a primary cause of treatment failure in non-small cell lung cancer (NSCLC) patients. Chemokine (C-C motif) ligand 2 (CCL2) is recently found to play a pivotal role in determining anti-cancer treatment response. However, the role and mechanism of CCL2 in the development of EGFR-TKIs resistance have not been fully elucidated. In the present study, we focus on the function of CCL2 in the development of acquired resistance to EGFR-TKIs in NSCLC cells. Our results show that CCL2 is aberrantly upregulated in EGFR-TKIs-resistant NSCLC cells and that CCL2 overexpression significantly diminishes sensitivity to EGFR-TKIs. Conversely, CCL2 suppression by CCL2 synthesis inhibitor, bindarit, or CCL2 knockdown can reverse this resistance. CCL2 upregulation can also lead to enhanced migration and increased expressions of epithelial-mesenchymal transition (EMT) markers in EGFR-TKI-resistant NSCLC cells, which could also be rescued by CCL2 knockdown or inhibition. Furthermore, our findings suggest that CCL2-dependent EGFR-TKIs resistance involves the AKT-EMT signaling pathway; inhibition of this pathway effectively attenuates CCL2-induced cell migration and EMT marker expression. In summary, CCL2 promotes the development of acquired EGFR-TKIs resistance and EMT while activating AKT signaling in NSCLC. These insights suggest a promising avenue for the development of CCL2-targeted therapies that prevent EGFR-TKIs resistance in NSCLC.

6.
Int Immunopharmacol ; 138: 112585, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38950456

ABSTRACT

The mechanism of early tumor recurrence after incomplete microwave ablation (iMWA) is poorly understood. The anti-programmed cell death protein 1 (anti-PD-1) monotherapy is reported to be ineffective to prevent the progression of residual tumor resulted from iMWA. Transforming growth factor-ß (TGFß) signaling pathway plays an important role in tumorigenesis and development. We assume blocking transforming growth factor-ß receptor (TGFßR) after incomplete iMWA may synergistically enhance the effect of anti-PD-1 antibody to prevent the progression of residual tumor. We construct an iMWA model with mice harboring Hepa1-6 derived xenograft. The Tgfb1 expression and phosphorylated-Smad3 protein expression is upregulated in the residual tumor after iMWA. With the application of TGFßR inhibitor SB431542, the cell proliferation potential, the tumor growth, the mRNA expression of epithelial mesenchymal transition (EMT) markers including Cdh2, and Vim, and cancer stem cell marker Epcam, and the infiltrating Treg cells are reduced in the residual tumor tissue. In addition, iMWA combined with TGFßR blocker and anti-PD-1 antibody further decreases the cell proliferation, tumor growth, expression of EMT markers and cancer stem cell marker, and the infiltrating Treg cells in the residual tumor tissue. Blocking TGFßR may alleviate the pro-tumoral effect of tumor microenvironment thereby significantly prevents the progression of residual tumor tissue. Our study indicates that blocking TGFßR may be a novel therapeutic strategy to enhance the effect of anti-PD-1 antibody to prevent residual hepatocellular carcinoma (HCC) progression after iMWA.

8.
Biochem Pharmacol ; 226: 116408, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969297

ABSTRACT

Metastatic recurrence is still a major challenge in breast cancer treatment. Patients with triple negative breast cancer (TNBC) develop early recurrence and relapse more frequently. Due to the lack of specific therapeutic targets, new targeted therapies for TNBC are urgently needed. Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway is one of the active pathways involved in chemoresistance and survival of TNBC, being considered as a potential target for TNBC treatment. Our present study identified ticagrelor, an anti-platelet drug, as a pan-PI3K inhibitor with potent inhibitory activity against four isoforms of class I PI3K. At doses normally used in clinic, ticagrelor showed weak cytotoxicity against a panel of breast cancer cells, but significantly inhibited the migration, invasion and the actin cytoskeleton organization of human TNBC MDA-MB-231 and SUM-159PT cells. Mechanistically, ticagrelor effectively inhibited PI3K downstream mTOR complex 1 (mTORC1) and mTORC2 signaling by targeting PI3K and decreased the protein expression of epithelial-mesenchymal transition (EMT) markers. In vivo, ticagrelor significantly suppressed tumor cells lung metastasis in 4T1 tumor bearing BALB/c mice model and experimental lung metastasis model which was established by tail vein injection of GFP-labeled MDA-MB-231 cells. The above data demonstrated that ticagrelor can inhibit the migration and invasion of TNBC both in vitro and in vivo by targeting PI3K, suggesting that ticagrelor, a pan-PI3K inhibitor, might represent a promising therapeutic agent for the treatment of metastatic TNBC.

9.
Toxicol Lett ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971455

ABSTRACT

Fine particulate matter (PM2.5) is a risk factor for pulmonary diseases and lung cancer, and inhaled PM2.5 is mainly deposited in the bronchial epithelium. In this study, we investigated the effect of long-term exposure to low-dose PM2.5 on BEAS-2B cells derived from the normal bronchial epithelium. BEAS-2B cells chronically exposed to a concentration of 5µg/ml PM2.5 for 30 passages displayed the phenotype promoting epithelial-mesenchymal transition (EMT) and cell invasion. Cellular internalization of exosomes (designated PM2.5 Exo) extracted from BEAS-2B cells chronically exposed to low-dose PM2.5 promoted cell invasion in vitro and metastatic potential in vivo. Hence, to identify the key players driving phenotypic alterations, we analyzed microRNA (miRNA) expression profiles in PM2.5 Exo. Five miRNAs with altered expression were selected: miRNA-196b-5p, miR-135a-2-5p, miR-3117-3p, miR-218-5p, and miR-497-5p. miR-196b-5p was the most upregulated in both BEAS-2B cells and isolated exosomes after PM2.5 exposure. In a functional validation study, genetically modified exosomes overexpressing a miR-196b-5p mimic induced an enhanced invasive phenotype in BEAS-2B cells. Conversely, miR-196b-5p inhibition diminished the PM2.5-enhanced EMT and cell invasion. These findings indicate that exosomal miR-196b-5p may be a candidate biomarker for predicting the malignant behavior of the bronchial epithelium and a therapeutic target for inhibiting PM2.5-triggered pathogenesis.

11.
Discov Oncol ; 15(1): 264, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965120

ABSTRACT

OBJECTIVE: To investigate the effects of Lathyrol on the expression of androgen receptor (AR) and sphingosine kinase 2 (SPHK2) in renal cell carcinoma (RCC) mice and to further explore the mechanism by which Lathyrol inhibits the invasion and incidence of epithelial-mesenchymal transition (EMT). METHODS: An RCC xenograft mouse model was constructed, and the mice were randomly divided into a model group, an experiment group and a negative control group. The experiment group was intragastrically gavaged with Lathyrol solution (20 mg/kg), the model group was intragastrically gavaged with 0.9% NaCl (same volume as that used in the experiment group), and the negative control group was injected intraperitoneally with 2 mg/kg cisplatin aqueous solution. Changes in the body weight and tumor volume of the mice were recorded. Western blot (WB) was used to assess the protein expression levels of AR, p-AR, CYP17A1, PARP1, E-cadherin, N-cadherin, vimentin, α-SMA, ß-catenin, and ZO-1. Protein expression levels of SPHK2, metal matrix protease 2 (MMP2), MMP9 and urokinase-type plasminogen activator (uPA) in tumor tissues were assessed by immunohistochemistry (IHC). AR expression in tumor tissues was assessed after immunofluorescence (IF) staining. RESULTS: After 14 days of drug administration, compared with that in the model group, the tumor volumes in the negative control and experiment groups were lower; the difference in tumor volume among the model, control and experiment groups was statistically significant (P < 0.05). The differences in body weight among the three groups were not statistically significant (P > 0.05). In the model group, the protein expression levels of AR, p-AR, CYP17A1, SPHK2, and PARP1 were relatively increased, the protein expression levels of E-cadherin and ZO-1 were relatively reduced (P < 0.05), and the protein expression levels of N-cadherin, ß-catenin, vimentin, and α-SMA were relatively increased (P < 0.05). In the negative control and experiment groups, the protein expression levels of AR, p-AR, CYP17A1, SPHK2, and PARP1 were relatively decreased (P < 0.05), the protein expression levels of E-cadherin and ZO-1 were relatively increased (P < 0.05), and the protein expression levels of N-cadherin, ß-catenin, vimentin and α-SMA were relatively decreased (P < 0.05). CONCLUSION: Lathyrol and cisplatin inhibit the proliferation of RCC xenografts, reduce the protein expression levels of AR, CYP17A1, SPHK2, PARP1, E-cadherin, and ZO-1 in tumor tissues (P < 0.05), and promote the protein expression levels of N-cadherin, ß-catenin, vimentin and α-SMA (P < 0.05). Therefore, Lathyrol reduces RCC invasion and EMT by affecting the expression of AR and SPHK2 in RCC mice.

12.
Can J Dent Hyg ; 58(2): 111-119, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974823

ABSTRACT

Objective: Detecting oral lesions at high risk of becoming cancer may enable early interventions to prevent oral cancer. The diagnosis of dysplasia in an oral lesion is used to predict this risk but is subject to interobserver and intraobserver variability. Studying biomarkers or molecular markers that reflect underlying molecular alterations can serve as an additional and objective method of risk assessment. E-cadherin and beta-catenin, molecular markers of epithelial-mesenchymal transition (EMT), potentially contribute to early malignant progression in oral tissue. This narrative review provides an overview of EMT, its relation to oral cancer, and the interaction among E-cadherin, beta-catenin, and the Wnt pathway in malignant progression of oral tissue. Methods: Full-text literature on EMT, E-cadherin, beta-catenin, oral epithelial dysplasia, and oral cancer was retrieved from PubMed and Google Scholar. Results: Sixty original research articles, reviews, and consensus statements were selected for review. Discussion: EMT, a biological mechanism characterized by epithelial and mesenchymal changes, can contribute to cancer development. Molecular markers of EMT including TWIST, vimentin, and N-cadherin may serve as prognostic markers of oral cancer. Dependent on Wnt pathway activity and the loss of membranous E-cadherin, E-cadherin and beta-catenin can play various roles along the spectrum of malignant progression, including tumour inhibition, early tumour progression, and late-stage tumour progression. Cross-sectional immunohistochemical research has found changes in expression patterns of E-cadherin and beta-catenin from normal oral tissue, oral epithelial dysplasia, to oral squamous cell carcinoma. Conclusion: Future research should explore the longitudinal role of EMT markers in predicting malignant progression in oral tissue.


Objectif: La détection de lésions buccales présentant un risque élevé d'évoluer en cancer peut permettre des interventions précoces pour prévenir le cancer de la bouche. Le diagnostic de dysplasie dans le cas de lésions buccales sert à prédire ce risque, mais il est soumis à une variabilité d'un observateur à l'autre et avec le même observateur. L'étude de marqueurs biologiques ou de marqueurs moléculaires correspondant à des altérations moléculaires sous-jacentes peut constituer une méthode objective supplémentaire d'évaluation des risques. L'E-cadhérine et la bêta-caténine, des marqueurs moléculaires de la transition épithélio-mésenchymateuse (TEM), pourraient contribuer aux premières étapes de l'évolution maligne du tissu buccal. Cette revue narrative donne un aperçu de la TEM, de ses liens avec le cancer de la bouche et de l'interaction entre l'E-cadhérine, la bêta-caténine et la voie de signalisation Wnt dans l'évolution maligne du tissu buccal. Méthodes: On a obtenu le texte intégral d'études portant sur la TEM, l'E-cadhérine, la bêta-caténine, la dysplasie épithéliale buccale et le cancer de la bouche sur PubMed et Google Scholar. Résultats: Soixante articles sur des études originales, des revues et des déclarations de consensus ont été sélectionnés aux fins d'examen. Discussion: La TEM, un mécanisme biologique caractérisé par des changements épithéliaux et mésenchymateux, peut contribuer à l'apparition d'un cancer. Les marqueurs moléculaires de la TEM, notamment TWIST, la vimentine et la N-cadhérine, peuvent servir de marqueurs pronostiques du cancer de la bouche. En fonction de l'activité de la voie de signalisation Wnt et de la perte de l'E-cadhérine membraneuse, l'E-cadhérine et la bêta-caténine peuvent jouer divers rôles dans le spectre de l'évolution maligne, notamment l'inhibition tumorale, la progression tumorale précoce et l'évolution tumorale avancée. Des études transversales d'immunohistochimie ont révélé des changements dans les modèles d'expression de l'E-cadhérine et de la bêta-caténine avec le passage du tissu buccal normal, de la dysplasie épithéliale buccale au carcinome squameux de la bouche. Conclusion: À l'avenir, des études devraient explorer le rôle longitudinal des marqueurs de la TEM dans la prévision de l'évolution maligne dans les tissus buccaux.


Subject(s)
Biomarkers, Tumor , Cadherins , Cell Transformation, Neoplastic , Epithelial-Mesenchymal Transition , Mouth Neoplasms , beta Catenin , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/diagnosis , Cadherins/metabolism , Cadherins/genetics , beta Catenin/metabolism , beta Catenin/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Wnt Signaling Pathway
13.
Front Med (Lausanne) ; 11: 1368977, 2024.
Article in English | MEDLINE | ID: mdl-38947241

ABSTRACT

Intestinal fibrosis is a common complication of chronic intestinal diseases with the characteristics of fibroblast proliferation and extracellular matrix deposition after chronic inflammation, leading to lumen narrowing, structural and functional damage to the intestines, and life inconvenience for the patients. However, anti-inflammatory drugs are currently generally not effective in overcoming intestinal fibrosis making surgery the main treatment method. The development of intestinal fibrosis is a slow process and its onset may be the result of the combined action of inflammatory cells, local cytokines, and intestinal stromal cells. The aim of this study is to elucidate the pathogenesis [e.g., extracellular matrix (ECM), cytokines and chemokines, epithelial-mesenchymal transition (EMT), differentiation of fibroblast to myofibroblast and intestinal microbiota] underlying the development of intestinal fibrosis and to explore therapeutic advances (such as regulating ECM, cytokines, chemokines, EMT, differentiation of fibroblast to myofibroblast and targeting TGF-ß) based on the pathogenesis in order to gain new insights into the prevention and treatment of intestinal fibrosis.

14.
World J Stem Cells ; 16(6): 670-689, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38948098

ABSTRACT

BACKGROUND: Pulmonary fibrosis (PF) is a chronic interstitial lung disease characterized by fibroblast proliferation and extracellular matrix formation, causing structural damage and lung failure. Stem cell therapy and mesenchymal stem cells-extracellular vesicles (MSC-EVs) offer new hope for PF treatment. AIM: To investigate the therapeutic potential of MSC-EVs in alleviating fibrosis, oxidative stress, and immune inflammation in A549 cells and bleomycin (BLM)-induced mouse model. METHODS: The effect of MSC-EVs on A549 cells was assessed by fibrosis markers [collagen I and α-smooth muscle actin (α-SMA), oxidative stress regulators [nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), and inflammatory regulators [nuclear factor-kappaB (NF-κB) p65, interleukin (IL)-1ß, and IL-2]. Similarly, they were assessed in the lungs of mice where PF was induced by BLM after MSC-EV transfection. MSC-EVs ion PF mice were detected by pathological staining and western blot. Single-cell RNA sequencing was performed to investigate the effects of the MSC-EVs on gene expression profiles of macrophages after modeling in mice. RESULTS: Transforming growth factor (TGF)-ß1 enhanced fibrosis in A549 cells, significantly increasing collagen I and α-SMA levels. Notably, treatment with MSC-EVs demonstrated a remarkable alleviation of these effects. Similarly, the expression of oxidative stress regulators, such as Nrf2 and HO-1, along with inflammatory regulators, including NF-κB p65 and IL-1ß, were mitigated by MSC-EV treatment. Furthermore, in a parallel manner, MSC-EVs exhibited a downregulatory impact on collagen deposition, oxidative stress injuries, and inflammatory-related cytokines in the lungs of mice with PF. Additionally, the mRNA sequencing results suggested that BLM may induce PF in mice by upregulating pulmonary collagen fiber deposition and triggering an immune inflammatory response. The findings collectively highlight the potential therapeutic efficacy of MSC-EVs in ameliorating fibrotic processes, oxidative stress, and inflammatory responses associated with PF. CONCLUSION: MSC-EVs could ameliorate fibrosis in vitro and in vivo by downregulating collagen deposition, oxidative stress, and immune-inflammatory responses.

15.
Int Immunopharmacol ; 138: 112563, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943976

ABSTRACT

Silicosis is a progressive disease characterized by interstitial fibrosis resulting from inhalation of silica particles, and currently lacks specific treatment. Hydrogen (H2) has demonstrated antioxidative, anti-inflammatory, and anti-fibrotic properties, yet its efficacy in treating silicosis remains unexplored. In this study, rats exposed to silica were administered interventions of H2 combined with tetrandrine, and euthanized at 14, 28, and 56 days post-intervention. Lung tissues and serum samples were collected for analysis. Histological examination, MDA assay, enzyme-linked immunosorbent assay, hydroxyproline assay, and Western blotting were employed to assess the impact of H2 combined with tetrandrine on pulmonary fibrosis. The results revealed that this combination significantly alleviated inflammation in silicosis-afflicted rats, effectively suppressed levels of MDA, TNF-α, and IL-1ß expression, and inhibited epithelial-mesenchymal transition (EMT), thereby ameliorating pulmonary fibrosis. Notably, protein expression level of E-cadherin was increased,however protein expression levels of vimentin and α-SMA were reduced, and TGF-ß were reduced, alongside a significant decrease in hydroxyproline content. Furthermore, H2 combined with tetrandrine downregulated protein expression of NF-κB p65, NF-κB p-p65, Caspase-1, ASC, and NLRP3. These findings substantiate the hypothesis that H2 combined with tetrandrine mitigates inflammation associated with silicosis and suppresses the EMT process to ameliorate fibrosis via the NF-κB/NLRP3 signaling pathway. However, the pressure of airway opening was not assessed in this study and dynamic readings of lung physiological function were not obtained, which is a major limitation of this study.

16.
Gene ; 927: 148729, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936784

ABSTRACT

OBJECTIVES: Periodontitis is associated with Fusobacterium nucleatum (F.n) infection. Although the colonization of renal tissue by F.n is well documented, its specific role in kidney disease has yet to be determined. This study aimed to investigate the potential association between F.n-induced periodontitis and renal interstitial fibrosis. METHODS: The rat gingival sulcus was injected with F.n suspension, while the control group (NC) was injected with PBS. The levels of total protein (TP), albumin (ALB), creatinine, and urea nitrogen (BUN) in rat serum and/or urine were quantified using the appropriate kits. Renal interstitial fibrosis and epithelial-mesenchymal transition (EMT) were evaluated in rats using Masson staining, Periodic Schiff-Methenamine (PASM) staining, and immunohistochemical staining. The levels of fibrosis- and EMT-related proteins and the TGF-ß/SMAD2/3 and ß-catenin signaling pathways were determined using Western blot analysis. F.n in the kidney tissues was quantitatively determined using bacterial 16S rRNA technology. RESULTS: Serum levels of TP, ALB, creatinine, and BUN were not significantly decreased in F.n-infected rats with periodontitis. The levels of creatinine and ALB in the urine were not statistically different between two groups. Masson and PASM staining showed that F.n-induced periodontitis could promote renal interstitial fibrosis in rats. The levels of collagen I, fibronectin (FN), vimentin, and α-SMA were upregulated in the kidney tissues of rats with F.n-induced periodontitis and in F.n-treated HK-2 cells. However, E-cadherin levels were reduced. F.n promoted renal interstitial and HK-2 cell fibrosis in rats by modulating the TGF-ß/SMAD2/3 and ß-catenin signaling pathways. F.n colonization increased renal interstitial fibrosis in rats. CONCLUSION: F.n-induced periodontitis promoted EMT by activating the TGF-ß/SMAD2/3 and ß-catenin signaling pathways, thus promoting renal interstitial fibrosis in rats.

17.
Arch Oral Biol ; 165: 106017, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852529

ABSTRACT

OBJECTIVE: To evaluate and compare the expression of E-cadherin, Snail1 and Twist1 in pleomorphic adenomas (PAs), adenoid cystic carcinomas (AdCCa) and carcinoma ex-pleomorphic adenomas (CaexPA) of salivary glands, as well as investigate possible associations with clinicopathological parameters. STUDY DESIGN: E-cadherin, Snail1 and Twist1 antibody immunostaining were analyzed semiquantitatively in 20 PAs, 20 AdCCas and 10 CaexPAs. Cases were classified as low and high expression for analysis of the association with clinicopathological parameters. RESULTS: Compared to PAs, AdCCas and CaexPAs exhibited higher nuclear expression of Snail1 (p = 0.021 and p = 0.028, respectively) and Twist1 (p = 0.009 and p = 0.001). Membranous and cytoplasmic expression of E-cadherin were positively correlated in PAs, AdCCas and CaexPAs (r = 0.645, p = 0.002; r = 0.824, p < 0.001; r = 0.677, p = 0.031). In PAs, positive correlation was found between nuclear expression of Snail1 and membrane expression of E-cadherin (r = 0.634; p = 0.003), as well as between nuclear expression of Snail1 and Twist1 (r = 0.580; p = 0.007). Negative correlations were detected between membrane expression of E-cadherin and cytoplasmic expression of Snail1 in AdCCas (r = - 0.489; p = 0.029). CONCLUSIONS: E-cadherin, Twist1, and Snail1 may participate in modulating events related to cell differentiation and adhesion in PAs and to biological behavior in AdCCas and CaexPAs, which indicates the involvement of EMT in these processes. Furthermore, the expression of these proteins in these carcinomas may reflect the plasticity feature of EMT.


Subject(s)
Adenoma, Pleomorphic , Cadherins , Carcinoma, Adenoid Cystic , Epithelial-Mesenchymal Transition , Nuclear Proteins , Salivary Gland Neoplasms , Snail Family Transcription Factors , Twist-Related Protein 1 , Humans , Salivary Gland Neoplasms/pathology , Salivary Gland Neoplasms/metabolism , Snail Family Transcription Factors/metabolism , Cadherins/metabolism , Female , Male , Twist-Related Protein 1/metabolism , Middle Aged , Carcinoma, Adenoid Cystic/pathology , Carcinoma, Adenoid Cystic/metabolism , Nuclear Proteins/metabolism , Adult , Adenoma, Pleomorphic/metabolism , Adenoma, Pleomorphic/pathology , Aged , Twist Transcription Factors/metabolism , Immunohistochemistry , Transcription Factors/metabolism , Biomarkers, Tumor/metabolism
18.
Bioorg Med Chem ; 109: 117792, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38897139

ABSTRACT

Cancer has been a leading cause of death over the last few decades in western countries as well as in Taiwan. However, traditional therapies are limited by the adverse effects of chemotherapy and radiotherapy, and tumor recurrence may occur. Therefore, it is critical to develop novel therapeutic drugs. In the field of HDAC inhibitor development, apart from the hydroxamic acid moiety, 2-aminobenzamide also functions as a zinc-binding domain, which is shown in well-known HDAC inhibitors such as Entinostat and Chidamide. With recent successful experiences in synthesizing 1-(phenylsulfonyl)indole-based compounds, in this study, we further combined two features of the above chemical compounds and generated indolyl benzamides. Compounds were screened in different cancer cell lines, and enzyme activity was examined to demonstrate their potential for anti-HDAC activity. Various biological functional assays evidenced that two of these compounds could suppress cancer growth and migration capacity, through regulating epithelial-mesenchymal transition (EMT), cell cycle, and apoptosis mechanisms. Data from 3D cancer cells and the in vivo zebrafish model suggested the potential of these compounds in cancer therapy in the future.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Cycle , Cell Proliferation , Drug Screening Assays, Antitumor , Epithelial-Mesenchymal Transition , Histone Deacetylase Inhibitors , Zebrafish , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/chemical synthesis , Humans , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Epithelial-Mesenchymal Transition/drug effects , Animals , Cell Cycle/drug effects , Structure-Activity Relationship , Cell Proliferation/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Cell Line, Tumor , Histone Deacetylases/metabolism
19.
Vet Sci ; 11(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38921985

ABSTRACT

Canine mammary tumors (CMTs) are the most common type of tumor in female dogs. In this study, we obtained a metastatic key protein, Fascin-1, by comparing the proteomics data of in situ tumor and metastatic cell lines from the same individual. However, the role of Fascin-1 in the CMT cell line is still unclear. Firstly, proteomics was used to analyze the differential expression of Fascin-1 between the CMT cell lines CHMm and CHMp. Then, the overexpression (CHMm-OE and CHMp-OE) and knockdown (CHMm-KD and CHMp-KD) cell lines were established by lentivirus transduction. Finally, the differentially expressed proteins (DEPs) in CHMm and CHMm-OE cells were identified through proteomics. The results showed that the CHMm cells isolated from CMT abdominal metastases exhibited minimal expression of Fascin-1. The migration, adhesion, and invasion ability of CHMm-OE and CHMp-OE cells increased, while the migration, adhesion, and invasion ability of CHMm-KD and CHMp-KD cells decreased. The overexpression of Fascin-1 can upregulate the Tetraspanin 4 (TSPAN4) protein in CHMm cells and increase the number of migrations. In conclusion, re-expressed Fascin-1 could promote cell EMT and increase lamellipodia formation, resulting in the enhancement of CHMm cell migration, adhesion, and invasion in vitro. This may be beneficial to improve female dogs' prognosis of CMT.

20.
Biomedicines ; 12(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38927483

ABSTRACT

The changes in endometrial cells, both in the eutopic endometrium of patients with and without endometriosis and in lesions at ectopic sites, are frequently described and often compared to tumorigenesis. In tumorigenesis, the concept of "seed and soil" is well established. The seed refers to tumor cells with metastatic potential, and the soil is any organ or tissue that provides a suitable environment for the seed to grow. In this systematic review (PRISMA-S), we specifically compared the development of endometriosis with the "seed and soil" hypothesis. To determine changes in the endometrial seed, we re-analyzed the mRNA expression data of the eutopic and ectopic endometrium, paying special attention to the epithelial-mesenchymal transition (EMT). We found that the similarity between eutopic endometrium without and with endometriosis is extremely high (~99.1%). In contrast, the eutopic endometrium of patients with endometriosis has a similarity of only 95.3% with the ectopic endometrium. An analysis of EMT-associated genes revealed only minor differences in the mRNA expression levels of claudin family members without the loss of other cell-cell junctions that are critical for the epithelial phenotype. The array data suggest that the changes in the eutopic endometrium (=seed) are quite subtle at the beginning of the disease and that most of the differences occur after implantation into ectopic locations (=soil).

SELECTION OF CITATIONS
SEARCH DETAIL
...