Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.130
Filter
1.
BMC Womens Health ; 24(1): 383, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961459

ABSTRACT

BACKGROUND: The role of bacterial contamination in the development and progression of endometriosis lesions is currently a hot topic for gynecologists. In this study, we decided to compare the endometrial cultures of women affected by endometriosis with those of non-endometriotic women, focusing on specific microbial pathogens. MATERIAL AND METHOD: In this cross-sectional case-control study, 30 women with endometriosis in stages 4 of the disease whose endometriosis was confirmed based on clinical, ultrasound, and histopathological findings, and 30 women without endometriosis who were candidates for surgery due to benign uterine diseases with regular menstrual cycle, underwent endometrial biopsy with Novak Kort in sterile conditions before starting their operation, and the results of their endometrial culture were analyzed and compared. RESULTS: Results of the study indicate that there were no significant differences in terms of age, BMI, smoking, education level, place of residency, use of the intrauterine device, or vaginal douche, and age of menarche between the case and control groups. The only demographic difference observed was in parity, where the control group had a significantly higher parity than the case group (P = 0.001). Out of the 60 cultures, only 15 samples were positive in the endometriosis group, and E. coli was the most prevalent species, with 10 (33.3%) samples testing positive for it. Klebsiella spp. and Enterobacteria spp. were also detected in 3 (10.0%) and 2 (6.7%) samples, respectively. The comparison between the two groups showed that only E. coli had a significant association with the presence of endometriosis (P = 0.001). There was no significant relationship between the location of endometriosis in the pelvic cavity and culture results. It was observed that parity among the E. coli negative group was significantly higher compared to the E. coli positive group (P < 0.001). CONCLUSION: Based on The high occurrence of E. coli in women with endometriosis, along with its potential involvement in the progression and/or recurrence of this condition, the researchers propose that treating women with endometriosis and recurrent IVF failure, as well as those with endometriosis recurrence after surgical treatment, with suitable antibiotics and repeated culture until the culture becomes negative, could be beneficial.


Subject(s)
Endometriosis , Escherichia coli Infections , Escherichia coli , Humans , Female , Endometriosis/microbiology , Endometriosis/complications , Case-Control Studies , Iran/epidemiology , Adult , Escherichia coli/isolation & purification , Cross-Sectional Studies , Escherichia coli Infections/epidemiology , Escherichia coli Infections/complications , Escherichia coli Infections/microbiology , Endometrium/microbiology , Endometrium/pathology , Klebsiella/isolation & purification
2.
Front Microbiol ; 15: 1400434, 2024.
Article in English | MEDLINE | ID: mdl-38966389

ABSTRACT

Escherichia coli produces extracellular vesicles called outer membrane vesicles. In this study, we investigated the mechanism underlying the hypervesiculation of deletion mutant ΔrodZ of E. coli. RodZ forms supramolecular complexes with actin protein MreB and peptidoglycan (PG) synthase, and plays an important role in determining the cell shape. Because mreB is an essential gene, an expression-repressed strain (mreB R3) was constructed using CRISPRi, in which the expression of mreB decreased to 20% of that in the wild-type (WT) strain. In shaken-flask culture, the ΔrodZ strain produced >50 times more vesicles than the WT strain. The mreB-repressed strain mreB R3 showed eightfold higher vesicle production than the WT. ΔrodZ and mreB R3 cells were observed using quick-freeze replica electron microscopy. As reported in previous studies, ΔrodZ cells were spherical (WT cells are rod-shaped). Some ΔrodZ cells (around 7% in total) had aberrant surface structures, such as budding vesicles and dented surfaces, or curved patterns on the surface. Holes in the PG layer and an increased cell volume were observed for ΔrodZ and mreB R3 cells compared with the WT. In conditions of osmotic support using sucrose, the OD660 value of the ΔrodZ strain increased significantly, and vesicle production decreased drastically, compared with those in the absence of sucrose. This study first clarified that vesicle production by the E. coli ΔrodZ strain is promoted by surface budding and a burst of cells that became osmotically sensitive because of their incomplete PG structure.

3.
Cureus ; 16(6): e61833, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38975460

ABSTRACT

Gas gangrene is a lethal necrotic infection resulting in gas production within tissue. It is typically associated with trauma and is especially lethal during pregnancy, resulting in severe maternal infection and fetal death. We report the case of a 31-year-old G3P2 female who presented to the emergency department with abdominal bloating, vaginal cramping, and brown vaginal discharge. Physical examination showed that the patient was hypertensive, tachycardic, and tachypneic, and laboratory examination showed a downtrending beta-human chorionic gonadotropin and leukocytosis, with elevated inflammatory markers. Ultrasound showed copious gas located within the lower abdomen and the fetus was not visualized. Computed tomography (CT) of the abdomen and pelvis showed a gravid uterus with a single fetus and extensive air locules in the fetus, amniotic cavity, and placenta. The findings were consistent with gas gangrene of a mature fetus in the third trimester. Fetal gas gangrene is a potentially lethal condition during pregnancy, and early diagnosis is imperative in management. CT was utilized in this case to outline the increased gas production within the amniotic cavity and fetal organs and proved crucial in determining the next steps of management.

4.
Autoimmunity ; 57(1): 2370536, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38976509

ABSTRACT

Lupus, a systemic autoimmune disease shaped by gene-environment interplay, often progresses to endstage renal failure. While subchronic systemic exposure to bacterial lipopolysaccharide (LPS) triggers autoimmunity and glomerulonephritis in lupus-prone mice, it is unknown if inhaling LPS, which is common in certain occupations, can similarly trigger lupus. Here we determined how subchronic intranasal (IN) LPS instillation influences autoimmunity and glomerulonephritis development in lupusprone NZBWF1 female mice. Briefly, mice were IN-instilled with vehicle or E. coli LPS (0.8 µg/g) twice weekly for 5 wk, followed by necropsy. For systemic comparison, additional cohorts of mice were injected with LPS intraperitoneally (IP) using identical doses/timing. Lungs were assessed for inflammatory and autoimmune responses and then related to systemic autoimmunity and glomerulonephritis. IN/LPS exposure induced in the lung: i) leukocyte infiltration, ii)mRNA signatures for cytokines, chemokines, IFN-regulated, and cell death-related genes, iii) ectopic lymphoid tissue formation, and iv)diverse IgM and IgG autoantibodies (AAbs). Pulmonary effects coincided with enlarged spleens, elevated plasma IgG AAbs, and inflamed IgG-containing kidney glomeruli. In contrast, IP/LPS treatment induced systemic autoimmunity and glomerulonephritis without pulmonary manifestations. Taken together, these preclinical findings suggest the lung could serve as a critical nexus for triggering autoimmunity by respirable LPS in genetically predisposed individuals.


Subject(s)
Administration, Intranasal , Autoantibodies , Autoimmunity , Disease Models, Animal , Glomerulonephritis , Lipopolysaccharides , Lung , Animals , Lipopolysaccharides/immunology , Mice , Autoimmunity/drug effects , Glomerulonephritis/immunology , Glomerulonephritis/chemically induced , Glomerulonephritis/etiology , Glomerulonephritis/pathology , Female , Lung/immunology , Lung/pathology , Lung/drug effects , Lung/metabolism , Autoantibodies/immunology , Autoantibodies/blood , Immunoglobulin G/immunology , Immunoglobulin G/blood , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/chemically induced , Lupus Erythematosus, Systemic/etiology , Cytokines/metabolism
5.
mBio ; : e0140824, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980007

ABSTRACT

Plasmid-borne Type II restriction-modification (RM) systems mediate post-segregational killing (PSK). PSK is thought to be caused by the dilution of restriction and modification enzymes during cell division, resulting in accumulation of unmethylated DNA recognition sites and their cleavage by restriction endonucleases. PSK is the likely reason for stabilization of plasmids carrying RM systems in the absence of selection for plasmid maintenance. In this study, we developed a CRISPR interference-based method to eliminate RM-carrying plasmids and study PSK-related phenomena with minimal perturbation to the Escherichia coli host. Plasmids carrying the EcoRV, Eco29kI, and EcoRI RM systems were highly stable, and their loss resulted in SOS response and PSK. In contrast, plasmids carrying the Esp1396I system were poorly stabilized; their loss led to a temporary cessation of growth, followed by full recovery. We demonstrate that this unusual behavior is due to a limited lifetime of the Esp1396I restriction endonuclease activity, which, upon Esp1396I plasmid loss, disappears approximately after two cycles of cell division, i.e., before unmethylated sites appear in significant numbers. Our results indicate that whenever PSK induced by a loss of RM systems, and, possibly, other toxin-antitoxin systems, is considered, the lifetimes of individual system components and the growth rate of host cells shall be taken in account. Mathematical modeling shows, that unlike the situation with classical toxin-antitoxin systems, RM system-mediated PSK is possible when the lifetimes of restriction endonuclease and methyltransferase activities are similar, as long as the toxic restriction endonuclease activity persists for more than two chromosome replication cycles.IMPORTANCEIt is widely accepted that many Type II restriction-modification (RM) systems mediate post-segregational killing (PSK) if plasmids that encode them are lost. In this study, we harnessed an inducible CRISPR-Cas system to remove RM plasmids from Escherichia coli cells to study PSK while minimally perturbing cell physiology. We demonstrate that PSK depends on restriction endonuclease activity lifetime and is not observed when it is less than two replication cycles. We present a mathematical model that explains experimental data and shows that unlike the case of toxin-antitoxin-mediated PSK, the loss of an RM system induced PSK even when the RM enzymes have identical lifetimes.

6.
Microbiol Spectr ; : e0085624, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980016

ABSTRACT

Escherichia coli is excreted in high numbers from the intestinal tract of humans, other mammals, and birds. Traditionally, it had been thought that E. coli could grow only within human or animal hosts and would perish in the environment. Therefore, the presence of E. coli in water has become universally accepted as a key water quality indicator of fecal pollution. However, recent research challenges the assumption that the presence of E. coli in water is always an indicator of fecal contamination, with some types of E. coli having evolved to survive and grow in aquatic environments. These strains can form blooms in water storages, resulting in high E. coli counts even without fecal contamination. Although these bloom-forming strains lack virulence genes and pose little threat to public health, their presence in treated water triggers the same response as fecal-derived E. coli. Yet, little is known about the effectiveness of treatment processes in removing or inactivating them. This study evaluated the effectiveness of current treatment processes to remove bloom-forming strains, in comparison to fecal-derived strains, with conventional coagulation-flocculation-sedimentation and filtration investigated. Second, the effectiveness of current disinfection processes-chlorination, chloramination, and ultraviolet (UV) light to disinfect bloom-forming strains in comparison to fecal-derived strains-was assessed. These experiments showed that the responses of bloom isolates were not significantly different from those of fecal E. coli strains. Therefore, commonly used water treatment and disinfection processes are effective to remove bloom-forming E. coli strains from water.IMPORTANCEThe presence of Escherichia coli in water has long been used globally as a key indicator of fecal pollution and for quantifying water safety. Traditionally, it was believed that E. coli could only thrive within hosts and would perish outside, making its presence in water indicative of fecal contamination. However, recent research has unveiled strains of E. coli capable of surviving and proliferating in aquatic environments, forming blooms even in the absence of fecal contamination. While these bloom-forming strains lack the genes to be pathogenic, their detection in source or drinking water triggers the same response as fecal-derived E. coli. Yet, little is known about the efficacy of treatment processes in removing them. This study evaluated the effectiveness of conventional treatment and disinfection processes in removing bloom-forming strains compared to fecal-derived strains. Results indicate that these commonly used processes are equally effective against both types of E. coli, reassuring that bloom-forming E. coli strains can be eliminated from water.

7.
Vet Microbiol ; 296: 110171, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38981202

ABSTRACT

Intestinal pathogenic Escherichia coli (InPEC) is one of the most common causes of bacterial diarrhea in farm animals, including profuse neonatal diarrhea and post weaning diarrhea (PWD) in piglets. In this study, we investigated the prevalence of InPEC and associated primary virulence factors among 543 non-duplicate E. coli isolates from diarrheal pigs from 15 swine farms in southern China. Six major virulence genes associated with InPEC were identified among 69 (12.71 %) E. coli isolates and included est (6.62 %), K88 (4.79 %), elt (3.68 %), eae (1.47 %), stx2 (0.92 %) and F18 (0.55 %). Three pathotypes of InPEC were identified including ETEC (8.10 %), EPEC (1.29 %) and STEC/ETEC (0.92 %). In particular, K88 was only found in ETEC from breeding farms, whereas F18 was only present in STEC/ETEC hybrid from finishing farms. Whole genome sequence analysis of 37 E. coli isolates revealed that InPEC strains frequently co-carried multiple antibiotic resistance gene (ARG). est, elt and F18 were also found to co-locate with ARGs on a single IncFIB/IncFII plasmid. InPEC isolates from different pathotypes also possessed different profiles of virulence genes and antimicrobial resistance genes. Population structure analysis demonstrated that InPEC isolates from different pathotypes were highly heterogeneous whereas those of the same pathotype were extremely similar. Plasmid analysis revealed that K88 and/or est/elt were found on pGX18-2-like/pGX203-2-like and pGX203-1-like IncFII plasmids, while F18 and elt/est, as well as diverse ARGs were found to co-locate on IncFII/IncFIB plasmids with a non-typical backbone. Moreover, these key virulence genes were flanked by or adjacent to IS elements. Our findings indicated that both clonal expansion and horizontal spread of epidemic IncFII plasmids contributed to the prevalence of InPEC and the specific virulence genes (F4, F18, elt and est) in the tested swine farms.

8.
Prep Biochem Biotechnol ; : 1-9, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984870

ABSTRACT

L-proline is widely used in the fields of food, medicine and agriculture, and is also an important raw material for the synthesis of trans-4-hydroxy-L-proline. In this study, enhancing the production of L-proline by metabolic engineering was investigated. Three genes, proB, proA and proC, were introduced into Escherichia coli BL21 by molecular biology technology to increase the metabolic flow of L-proline from glucose. The genes putP and proP related to the proline transfer were knocked out by CRISPR/Cas9 gene editing technology to weaken the feedback inhibition of proB to increase the production of L-proline. The fermentation curves of the engineered strain at different glucose concentrations were determined, and a glucose concentration of 10 g/L was chosen to expand the batch culture to 1 L shake flask. Ultimately, through these efforts, the titer of L-proline reached 832.19 mg/L in intermittent glucose addition fermentation in a 1 L shake flask.

9.
Sci Rep ; 14(1): 15494, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969720

ABSTRACT

Anal swabs of 1-month-old Holstein calves with diarrhea were collected from an intensive cattle farm, and a highly pathogenic Escherichia coli strain was obtained by isolation and purification. To study the virulence and resistance genes of pathogenic E. coli that cause diarrhea in calves, a strain of E. coli E12 isolated from calf diarrhea samples was used as experimental material in this experiment, and the virulence of the E12 strain were identified by the mouse infection test, and the whole genome map of the E12 strain were obtained by whole-genome sequencing and analyzed for genome characterization. The results showed that the lethality of strain E12 was 100%, the total length of E12-encoded genes was 4,294,530 bp, Cluster of Orthologous Groups of proteins (COG) annotated to 4,194 functional genes, and the virulence genes of sequenced strain E12 were compared with the virulence genes of sequenced strain E12 from the Virulence Factors of Pathogenic Bacteria (VFDB), which contained a total of 366 virulence genes in sequenced strain E12. The analysis of virulence genes of E12 revealed a total of 52 virulence genes in the iron transferrin system, 56 virulence genes in the secretory system, 41 virulence genes in bacterial toxins, and a total of 217 virulence genes in the Adhesin and Invasins group. The antibiotic resistance genes of sequenced strain E12 were identified through the Antibiotic Resistance Genes Database (ARDB) and Comprehensive Antibiotic Research Database, and it was found that its chromosome and plasmid included a total of 127 antibiotic resistance genes in four classes, and that E12 carried 71 genes related to the antibiotic efflux pumps, 36 genes related to antibiotic inactivation, and 14 antibiotic target alteration and reduced penetration into antibiotics, and 6 antibiotic resistance genes, and the resistance phenotypes were consistent with the genotypes. The pathogenic E. coli that causes diarrhea in calves on this ranch contains a large number of virulence and resistance genes. The results provide a theoretical basis for the prevention and treatment of diarrhea and other diseases caused by E. coli disease.


Subject(s)
Diarrhea , Escherichia coli Infections , Escherichia coli , Genome, Bacterial , Virulence Factors , Whole Genome Sequencing , Animals , Cattle , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Virulence Factors/genetics , Mice , Diarrhea/microbiology , Diarrhea/veterinary , Virulence/genetics , Cattle Diseases/microbiology , China , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology
10.
Microb Cell Fact ; 23(1): 193, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970026

ABSTRACT

BACKGROUND: Due to the complexity of the metabolic pathway network of active ingredients, precise targeted synthesis of any active ingredient on a synthetic network is a huge challenge. Based on a complete analysis of the active ingredient pathway in a species, this goal can be achieved by elucidating the functional differences of each enzyme in the pathway and achieving this goal through different combinations. Lignans are a class of phytoestrogens that are present abundantly in plants and play a role in various physiological activities of plants due to their structural diversity. In addition, lignans offer various medicinal benefits to humans. Despite their value, the low concentration of lignans in plants limits their extraction and utilization. Recently, synthetic biology approaches have been explored for lignan production, but achieving the synthesis of most lignans, especially the more valuable lignan glycosides, across the entire synthetic network remains incomplete. RESULTS: By evaluating various gene construction methods and sequences, we determined that the pCDF-Duet-Prx02-PsVAO gene construction was the most effective for the production of (+)-pinoresinol, yielding up to 698.9 mg/L after shake-flask fermentation. Based on the stable production of (+)-pinoresinol, we synthesized downstream metabolites in vivo. By comparing different fermentation methods, including "one-cell, one-pot" and "multicellular one-pot", we determined that the "multicellular one-pot" method was more effective for producing (+)-lariciresinol, (-)-secoisolariciresinol, (-)-matairesinol, and their glycoside products. The "multicellular one-pot" fermentation yielded 434.08 mg/L of (+)-lariciresinol, 96.81 mg/L of (-)-secoisolariciresinol, and 45.14 mg/L of (-)-matairesinol. Subsequently, ultilizing the strict substrate recognition pecificities of UDP-glycosyltransferase (UGT) incorporating the native uridine diphosphate glucose (UDPG) Module for in vivo synthesis of glycoside products resulted in the following yields: (+)-pinoresinol glucoside: 1.71 mg/L, (+)-lariciresinol-4-O-D-glucopyranoside: 1.3 mg/L, (+)-lariciresinol-4'-O-D-glucopyranoside: 836 µg/L, (-)-secoisolariciresinol monoglucoside: 103.77 µg/L, (-)-matairesinol-4-O-D-glucopyranoside: 86.79 µg/L, and (-)-matairesinol-4'-O-D-glucopyranoside: 74.5 µg/L. CONCLUSIONS: By using various construction and fermentation methods, we successfully synthesized 10 products of the lignan pathway in Isatis indigotica Fort in Escherichia coli, with eugenol as substrate. Additionally, we obtained a diverse range of lignan products by combining different modules, setting a foundation for future high-yield lignan production.


Subject(s)
Biosynthetic Pathways , Escherichia coli , Glycosides , Lignans , Lignans/biosynthesis , Lignans/metabolism , Glycosides/biosynthesis , Glycosides/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Metabolic Engineering/methods , Fermentation , Synthetic Biology/methods , Furans/metabolism
11.
Front Bioeng Biotechnol ; 12: 1360740, 2024.
Article in English | MEDLINE | ID: mdl-38978715

ABSTRACT

Developing efficient bioprocesses requires selecting the best biosynthetic pathways, which can be challenging and time-consuming due to the vast amount of data available in databases and literature. The extension of the shikimate pathway for the biosynthesis of commercially attractive molecules often involves promiscuous enzymes or lacks well-established routes. To address these challenges, we developed a computational workflow integrating enumeration/retrosynthesis algorithms, a toolbox for pathway analysis, enzyme selection tools, and a gene discovery pipeline, supported by manual curation and literature review. Our focus has been on implementing biosynthetic pathways for tyrosine-derived compounds, specifically L-3,4-dihydroxyphenylalanine (L-DOPA) and dopamine, with significant applications in health and nutrition. We selected one pathway to produce L-DOPA and two different pathways for dopamine-one already described in the literature and a novel pathway. Our goal was either to identify the most suitable gene candidates for expression in Escherichia coli for the known pathways or to discover innovative pathways. Although not all implemented pathways resulted in the accumulation of target compounds, in our shake-flask experiments we achieved a maximum L-DOPA titer of 0.71 g/L and dopamine titers of 0.29 and 0.21 g/L for known and novel pathways, respectively. In the case of L-DOPA, we utilized, for the first time, a mutant version of tyrosinase from Ralstonia solanacearum. Production of dopamine via the known biosynthesis route was accomplished by coupling the L-DOPA pathway with the expression of DOPA decarboxylase from Pseudomonas putida, resulting in a unique biosynthetic pathway never reported in literature before. In the context of the novel pathway, dopamine was produced using tyramine as the intermediate compound. To achieve this, tyrosine was initially converted into tyramine by expressing TDC from Levilactobacillus brevis, which, in turn, was converted into dopamine through the action of the enzyme encoded by ppoMP from Mucuna pruriens. This marks the first time that an alternative biosynthetic pathway for dopamine has been validated in microbes. These findings underscore the effectiveness of our computational workflow in facilitating pathway enumeration and selection, offering the potential to uncover novel biosynthetic routes, thus paving the way for other target compounds of biotechnological interest.

12.
Article in English | MEDLINE | ID: mdl-38952158

ABSTRACT

BACKGROUND: Antimicrobial resistance exhibited by bacteria against the major-ity of antibiotics has resulted in research on alternative methods of treatment. Aloe vera has a strong tradition as a medical plant with a wide range of therapeutic uses. OBJECTIVE: The objective of this study is to determine the antibacterial activity of gel and crude ethanol leaf extract of Aloe vera against Staphylococcus aureus and Enterobacter-ales isolated from wound infections. METHODS: It is a cross-sectional study conducted over a period of 7 months. Antibacterial effect of the ethanol leaf extract and gel was determined by the punch well method. Min-imum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the ethanol leaf extract were determined by macro broth dilution technique. RESULTS: Aloe vera ethanol leaf extract induced a mean zone size of 13.0 ± 6.0 mm and 16.7 ± 8.4 mm, respectively, for S. aureus and Enterobacterales by Punch Well method (p≤0.002). Whereas Aloe vera gel failed to induce any zone of inhibition for all the isolates p<0.001. Mean MIC of Aloe vera leaf extract against 74 S. aureus was 94 ± 41.23 mg/ml and against 73 Enterobacterales, it was 45.6 ± 20 mg/ml p < 0.001. Mean MBC of Aloe vera leaf extract against 74 S.aureus isolates was 188 ± 82.46 mg/ml and against 73 En-terobacterales was 91.18±40 mg/ml p < 0.001. CONCLUSION: Aloe vera ethanol leaf extract showed a good antibacterial effect against the different strains of bacteria causing wound infection. The present article shows the possi-bility of future use of natural products for the treatment of wound infections.

13.
BMC Microbiol ; 24(1): 248, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971718

ABSTRACT

BACKGROUND: The usage of fluoroquinolones in Norwegian livestock production is very low, including in broiler production. Historically, quinolone-resistant Escherichia coli (QREC) isolated from Norwegian production animals rarely occur. However, with the introduction of a selective screening method for QREC in the Norwegian monitoring programme for antimicrobial resistance in the veterinary sector in 2014; 89.5% of broiler caecal samples and 70.7% of broiler meat samples were positive. This triggered the concern if there could be possible links between broiler and human reservoirs of QREC. We are addressing this by characterizing genomes of QREC from humans (healthy carriers and patients) and broiler isolates (meat and caecum). RESULTS: The most frequent mechanism for quinolone resistance in both broiler and human E. coli isolates were mutations in the chromosomally located gyrA and parC genes, although plasmid mediated quinolone resistance (PMQR) was also identified. There was some relatedness of the isolates within human and broiler groups, but little between these two groups. Further, some overlap was seen for isolates with the same sequence type isolated from broiler and humans, but overall, the SNP distance was high. CONCLUSION: Based on data from this study, QREC from broiler makes a limited contribution to the incidence of QREC in humans in Norway.


Subject(s)
Anti-Bacterial Agents , Chickens , Drug Resistance, Bacterial , Escherichia coli Infections , Escherichia coli , Quinolones , Animals , Chickens/microbiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Humans , Norway , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Drug Resistance, Bacterial/genetics , Quinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Genomics , Plasmids/genetics , Poultry Diseases/microbiology , Microbial Sensitivity Tests , Genome, Bacterial/genetics , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Meat/microbiology , Mutation , Escherichia coli Proteins/genetics , Cecum/microbiology
14.
Cureus ; 16(6): e61538, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38957246

ABSTRACT

Background The escalating global rise in multidrug-resistant gram-negative bacteria presents an increasingly substantial threat to patient safety. Over the past decade, carbapenem-resistant Enterobacterales (CRE) have emerged as one of the most critical pathogens in hospital-acquired infections, notably within intensive care units. Colistin has become one of the last-resort antimicrobial agents utilized to combat infections caused by CRE. However, the use of colistin has been accompanied by a notable increase in the prevalence of colistin-resistant bacteria. This study aimed to investigate plasmid-mediated colistin resistance genes ranging from mcr-1 to mcr-8 among members of the Enterobacterales order. Materials and methods This prospective study was conducted in the microbiology laboratory of Afyonkarahisar Health Sciences University Health Research and Practice Center between May 1, 2021 and July 31, 2022. A total of 2,646 Enterobacterales isolates were obtained from all culture-positive clinical samples sent from various clinics. Of these, 79 isolates exhibiting resistance to carbapenem antibiotics were included in the study. Among the 79 isolates, the presence of mcr-1 to mcr-8 genes was investigated in 27 isolates that were shown to be resistant to colistin. The identification of bacteria at the species level and antibiotic susceptibility tests were conducted using the VITEK 2 automated system (bioMérieux, USA). Colistin resistance among Enterobacterales strains exhibiting carbapenem resistance was evaluated using the broth microdilution technique (ComASP™ Colistin, Liofilchem, Italy), in accordance with the manufacturer's instructions. Results In our in vitro investigations, the minimum inhibitory concentration (MIC) values for meropenem were determined to be >8 µg/ml, whereas for colistin, the MIC50 value was >16 µg/ml and the MIC90 value was 8 µg/ml. A total of 27 colistin-resistant strains were identified among the 79 carbapenem-resistant Enterobacterales strains analyzed. The most prevalent agent among colistin-resistant strains was Klebsiella pneumoniae (K. pneumoniae), representing 66.7% of the isolates. This was followed by Proteus mirabilis (P. mirabilis) with 29.6% and Escherichia coli (E. coli) with 3.7%. The colistin resistance rate among carbapenem-resistant strains was found to be 34.2%, with colistin MIC values in strains tested by the broth microdilution method ranging from 4 to >16 µg/ml concentrations. In polymerase chain reaction (PCR) studies, the mcr-1 gene region was successfully detected by real-time PCR in the positive control isolate. Nevertheless, none of the gene regions from mcr-1 to mcr-8 were identified in our study investigating the presence of plasmid-mediated genes using a multiplex PCR kit. Conclusion Although our study demonstrated the presence of increased colistin resistance rates in carbapenem-resistant Enterobacterales isolates, it resulted in the failure to detect genes from mcr-1 to mcr-8 by the multiplex PCR method. Therefore, it is concluded that the colistin resistance observed in Enterobacteriaceae isolates in our region is not due to the mcr genes screened, but to different resistance development mechanisms.

15.
Heliyon ; 10(12): e32555, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38952373

ABSTRACT

Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disease caused by mutations in the gene encoding the lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS), resulting in the accumulation of keratan sulfate (KS) and chondroitin-6-sulfate (C6S). Previously, it was reported the production of an active human recombinant GALNS (rGALNS) in E. coli BL21(DE3). However, this recombinant enzyme was not taken up by HEK293 cells or MPS IVA skin fibroblasts. Here, we leveraged a glyco-engineered E. coli strain to produce a recombinant human GALNS bearing the eukaryotic trimannosyl core N-glycan, Man3GlcNAc2 (rGALNSoptGly). The N-glycosylated GALNS was produced at 100 mL and 1.65 L scales, purified and characterized with respect to pH stability, enzyme kinetic parameters, cell uptake, and KS clearance. The results showed that the addition of trimannosyl core N-glycans enhanced both protein stability and substrate affinity. rGALNSoptGly was capture through a mannose receptor-mediated process. This enzyme was delivered to the lysosome, where it reduced KS storage in human MPS IVA fibroblasts. This study demonstrates the potential of a glyco-engineered E. coli for producing a fully functional GALNS enzyme. It may offer an economic approach for the biosynthesis of a therapeutic glycoprotein that could prove useful for MPS IVA treatment. This strategy could be extended to other lysosomal enzymes that rely on the presence of mannose N-glycans for cell uptake.

16.
Pak J Med Sci ; 40(6): 1190-1195, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952530

ABSTRACT

Objective: This study was aimed to investigate the multidrug resistance patterns in clinical isolates of Escherichia coli and their correlation with integrons and phylogenetic groupings. Methods: A total of 37 clinical E. coli isolates were evaluated for drug resistance patterns by disk diffusion method. Phylogenetic groupings and the presence of integrons among E. coli were determined by multiplex PCR assays. Results: Multidrug resistance was identified in 84% of the clinical isolates of E. coli with higher resistance found against cephalosporins (94.6%) and fluoroquinolones (83.8%), while lower resistance was observed against polymyxins (24.3%) and carbapenems (29.7%). Metallo-ß-lactamases were found in all carbapenem resistant isolates. The phylogenetic group B2 was the most dominant (40.5%), followed by groups A (35.1%), D (13.5%) and B1 (10.8%). Integrons were detected in 25 (67.6%) isolates and intI1, intI2, and intI3 genes were found in 62.2%, 18.9% and 10.8% of isolates respectively. Conclusion: Our results show that phylogenetic classification of E. coli is not relevant with antimicrobial resistance. However, there was strong association between the integron classes and resistance against ß-lactam and fluoroquinolones antimicrobials. Additionally, this study highlighted that the presence of integrons plays a crucial role in the development of multidrug resistance in clinical isolates of E. coli. Most significantly, this is the first report of detection of three classes of integron among clinical isolates of E. coli in Pakistan.

17.
Protein Pept Lett ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38963110

ABSTRACT

INTRODUCTION: Insulin-like growth factor-1 (IGF-1) is a single-chain polypeptide with various physiological functions. Escherichia coli is one of the most desirable hosts for recombinant protein production, especially for human proteins whose post-translation modifications are not essential for their bioactivity, such as hIGF-1. OBJECTIVES: In this study, bacterial thioredoxin (Trx) was studied as a fused and non-fused protein to convert the insoluble form of recombinant human IGF-1 (rhIGF-1) to its soluble form in E. coli. METHODS: The rhIGF-1 was expressed in the E. coli Origami strain in the form of fused-Trx. It was co-expressed with Trx and then purified and quantified. In the next step, the biological activity of rhIGF-1 was evaluated by alkaline phosphatase (ALP) activity assay in human adipose-derived stem cells (hASCs) regarding the differentiation enhancement effect of IGF-1 through the osteogenic process. RESULTS: Results showed that Trx in both the fused and non-fused forms had a positive effect on the production of the soluble form of rhIGF-1. A significant increase in ALP activity in hASCs after rhIGF-1 treatment was observed, confirming protein bioactivity. CONCLUSION: It was strongly suggested that the overproduction of Trx could increase the solubility of co-expressed recombinant proteins by changing the redox state in E. coli cells.

18.
Microb Cell Fact ; 23(1): 190, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956607

ABSTRACT

BACKGROUND: Carbonic anhydrase (CA) enzymes facilitate the reversible hydration of CO2 to bicarbonate ions and protons. Identifying efficient and robust CAs and expressing them in model host cells, such as Escherichia coli, enables more efficient engineering of these enzymes for industrial CO2 capture. However, expression of CAs in E. coli is challenging due to the possible formation of insoluble protein aggregates, or inclusion bodies. This makes the production of soluble and active CA protein a prerequisite for downstream applications. RESULTS: In this study, we streamlined the process of CA expression by selecting seven top CA candidates and used two bioinformatic tools to predict their solubility for expression in E. coli. The prediction results place these enzymes in two categories: low and high solubility. Our expression of high solubility score CAs (namely CA5-SspCA, CA6-SazCAtrunc, CA7-PabCA and CA8-PhoCA) led to significantly higher protein yields (5 to 75 mg purified protein per liter) in flask cultures, indicating a strong correlation between the solubility prediction score and protein expression yields. Furthermore, phylogenetic tree analysis demonstrated CA class-specific clustering patterns for protein solubility and production yields. Unexpectedly, we also found that the unique N-terminal, 11-amino acid segment found after the signal sequence (not present in its homologs), was essential for CA6-SazCA activity. CONCLUSIONS: Overall, this work demonstrated that protein solubility prediction, phylogenetic tree analysis, and experimental validation are potent tools for identifying top CA candidates and then producing soluble, active forms of these enzymes in E. coli. The comprehensive approaches we report here should be extendable to the expression of other heterogeneous proteins in E. coli.


Subject(s)
Carbonic Anhydrases , Computational Biology , Escherichia coli , Solubility , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/enzymology , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/genetics , Computational Biology/methods , Phylogeny , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Carbon Dioxide/metabolism
19.
Front Microbiol ; 15: 1407039, 2024.
Article in English | MEDLINE | ID: mdl-38989022

ABSTRACT

The coevolution of bacteria and bacteriophages has created a great diversity of mechanisms by which bacteria fight phage infection, and an equivalent diversity of mechanisms by which phages subvert bacterial immunity. Effective and continuous evolution by phages is necessary to deal with coevolving bacteria. In this study, to better understand the connection between phage genes and host range, we examine the isolation and genomic characterization of two bacteriophages, JNUWH1 and JNUWD, capable of infecting Escherichia coli. Sourced from factory fermentation pollutants, these phages were classified within the Siphoviridae family through TEM and comparative genomic analysis. Notably, the phages exhibited a viral burst size of 500 and 1,000 PFU/cell, with latent periods of 15 and 20 min, respectively. They displayed stability over a pH range of 5 to 10, with optimal activity at 37°C. The complete genomes of JNUWH1 and JNUWD were 44,785 bp and 43,818 bp, respectively. Phylogenetic analysis revealed their close genetic relationship to each other. Antibacterial assays demonstrated the phages' ability to inhibit E. coli growth for up to 24 h. Finally, through laboratory-driven adaptive evolution, we successfully identified strains for both JNUWH1 and JNUWD with mutations in receptors specifically targeting lipopolysaccharides (LPS) and the lptD gene. Overall, these phages hold promise as additives in fermentation products to counter E. coli, offering potential solutions in the context of evolving bacterial resistance.

20.
J Hazard Mater ; 476: 135149, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38991648

ABSTRACT

Ag nanocomposites (NAs) have been found to induce irreversible harm to pathogenic bacteria, however, NAs tend to aggregate easily when used alone. These nanocomposites also show increased toxicity and their underlying antibacterial mechanism is still unknown. In short, practical applications of NA materials face the following obstacles: elucidating the mechanism of antibacterial action, reducing cytotoxicity to body cells, and enhancing antibacterial activity. This study synthesized a core-shell structured ZnFe2O4 @Cu-ZIF-8 @Ag (FUA) nanocomposite with high antibacterial activity and low cytotoxicity. The nanocomposites achieved a 99.99 % antibacterial rate against Escherichia coli (E. coli) and tetracycline-resistant E. coli (T - E. coli), in under 20 min at 100 µg/mL. The nanocomposites were able to inactivate E. coli due to the gradual release of Cu2+, Zn2+, and Ag+ ions, which synergistically form •OH from FUA in an aerobic environment. The presence of •OH has significant effects on the antibacterial activity. The released metal ions combine with •OH to cause damage to the bacterial cell wall, resulting in the leakage of electrolytes and ions. Moreover, in comparison to NA, the toxicity of FUA is considerably reduced. This study is expected to inspire the development of other silver-based nanocomposite materials for the inactivation of drug-resistant bacteria.

SELECTION OF CITATIONS
SEARCH DETAIL
...