Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 296
Filter
1.
Angew Chem Int Ed Engl ; : e202409784, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225426

ABSTRACT

Subnanometer metal clusters show advantages over conventional metal nanoparticles in numerous catalytic reactions owing to their high percentage of exposed surface sites, abundance of under-coordinated metal sites and unique electronic structures. However, the applications of subnanometer metal clusters in high-temperature catalytic reactions (>600 °C) are still hindered, because of their low stability under harsh reaction conditions. In this work, we have developed a zeolite-confined bimetallic PtIn catalyst with exceptionally high stability against sintering. A combination of experimental and theoretical studies shows that the isolated framework In(III) species serve as the anchoring sites for Pt species, precluding the migration and sintering of Pt species in the oxidative atmosphere at ≥650 °C. The catalyst comprising subnanometer PtIn clusters exhibits long-term stability of >1000 h during a cyclic reaction-regeneration test for ethane dehydrogenation reaction.

2.
Adv Mater ; : e2408044, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39194395

ABSTRACT

Protonic ceramic electrochemical cells (PCECs) have received considerable attention as they can directly generate electricity and/or produce chemicals. Development of the electrodes with the trifunctionalities of oxygen reduction/evolution and nonoxidative ethane dehydrogenation is yet challenging. Here these findings are reported in the design of trifunctional electrodes for PCECs with a detailed composition of Mn0.9Cs0.1Co2O4-δ (MCCO) and Co3O4 (CO) (MCCO-CO, 8:2 mass ratio). At 600 °C, the MCCO-CO electrode exhibits a low area-specific resistance of 0.382 Ω cm2 and reasonable stability for ≈105 h with no obvious degradation. The single cell with the MCCO-CO electrode shows an encouraging peak power density of 1.73 W cm-2 in the fuel cell (FC) mode and a current density of -3.93 A cm-2 at 1.3 V in the electrolysis cell (EC) mode at 700 °C. Moreover, the MCCO-CO cell displays promising operational stability in FC mode (223 h), EC mode (209 h), and reversible cycling stability (52 cycles, 208 h) at 650 °C. The MCCO-CO single cell shows an encouraging ethane conversion to ethylene (with a conversion of 40.3% and selectivity of 94%) and excellent H2 production rates of 4.65 mL min-1 cm-2 at 1.5 V and 700 °C, respectively, with reasonable Faradaic efficiencies.

3.
Sci Total Environ ; 950: 175337, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39117194

ABSTRACT

Because of its ubiquitous occurrence in the environment, decabromodiphenyl ethane (DBDPE), a novel brominated flame retardant, has been widely concerned. However, its transgenerational thyroid disrupting potential and intricate mechanism are barely explored. Therefore, zebrafish embryos were exposed to environmentally relevant concentrations of DBDPE (0, 0.1, 1 and 10 nM) until sexual maturity. The results indicated that life-time exposure to DBDPE caused anxiety-like behavior in unexposed offspring. Furthermore, the changing of thyroid hormones as well as transcriptional and DNA methylation level in the promoter region of related genes were evaluated. The thyroid disruptions observed in F1 larvae were primarily attributed to excessive transfer of thyroid hormone from F0 adults to F1 eggs. Conversely, the disruptions in F2 larvae were likely due to inherited epigenetic changes, specifically hypomethylation of crh and hypermethylation of ugt1ab, passed down from the F1 generation. Additionally, our results revealed sex-specific responses of the hypothalamic-pituitary-thyroid (HPT) axis in adult zebrafish. Furthermore, thyroid disruptions observed in unexposed offspring were more likely inherited from their mothers. The current results prompted our in-depth understanding of the multi- and transgenerational toxicity by DBDPE, and also highlighted the need to consider their adverse effects on persistent and inheritable epigenetic changes in future research on emerging pollutants.


Subject(s)
Bromobenzenes , Epigenesis, Genetic , Flame Retardants , Thyroid Gland , Zebrafish , Animals , Thyroid Gland/drug effects , Flame Retardants/toxicity , Bromobenzenes/toxicity , Endocrine Disruptors/toxicity , DNA Methylation/drug effects , Water Pollutants, Chemical/toxicity , Thyroid Hormones/metabolism , Endocrine System/drug effects , Female , Male
4.
Membranes (Basel) ; 14(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39195417

ABSTRACT

The separation ability of bis(triethoxysilyl)ethane (BTESE) membranes for hydrogen (H2) purification from hydrogen (H2)/toluene (TOL) gas mixtures after a methylcyclohexane (MCH) dehydrogenation process was investigated via one-stage and two-stage membrane processes. This study revealed that BTESE membranes of varied pore sizes (0.4, 0.5, and 0.7 nm) in a one-stage configuration can manage to achieve a H2 purity ~99.9%. However, the TOL concentrations fell within a wide range, ranging from 280 to 5441 ppm. A primary goal of this research was to lower the TOL concentration in the permeate stream below 200 ppm. Hence, by applying the two-stage membrane, it was demonstrated that the TOL concentration in the permeate stream could be lowered below 200 ppm.

5.
Environ Sci Technol ; 58(35): 15539-15550, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39169712

ABSTRACT

Oil and natural gas (O&G) production and processing activities have changed markedly across the U.S. over the past several years. However, the impacts of these changes on air pollution and greenhouse gas emissions are not clear. In this study, we examine U.S. ethane (C2H6) emissions, which are primarily from O&G activities, during years 2015-2020. We use C2H6 observations made by the NOAA Global Monitoring Laboratory and partner organizations from towers and aircraft and estimate emissions from these observations by using an inverse model. We find that U.S. C2H6 emissions (4.43 ± 0.2 Tg·yr-1) are approximately three times those estimated by the EPA's 2017 National Emissions Inventory (NEI) platform (1.54 Tg·yr-1) and exhibit a very different seasonal cycle. We also find that changes in U.S. C2H6 emissions are decoupled from reported changes in production; emissions increased 6.3 ± 7.6% (0.25 ± 0.31 Tg) between 2015 and 2020 while reported C2H6 production increased by a much larger amount (78%). Our results also suggest an apparent correlation between C2H6 emissions and C2H6 spot prices, where prices could be a proxy for pressure on the infrastructure across the supply chain. Overall, these results provide insight into how U.S. C2H6 emissions are changing over time.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Ethane , Air Pollutants/analysis , Ethane/analysis , Atmosphere/chemistry , United States , Natural Gas
6.
Environ Pollut ; 359: 124539, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39019309

ABSTRACT

Decabromodiphenyl ethane (DBDPE), as one of the important new brominated flame retardants, is widely utilized in a variety of plastic products. However, the pyrolysis mechanism of DBDPE remains uncertain. In this article, the evolution behavior of the main products during the thermal decomposition of DBDPE is investigated using density functional theory at the theoretical level of M06-2X/6-311++G(2df,p)//M06-2X/6-311+G(d). The results show that the initial reaction starts with the cleavage of the ethane bridge bond, with an absorbed heat value of 298 kJ/mol, and the cleavage of the Caromatic-Br bond generates bromine radical, which is the main competitive reaction, with a heat absorption of 317 kJ/mol. The initial degradation of DBDPE generates a large number of pentabromobenzyl radicals and bromine radicals, which facilitate the secondary pyrolysis of DBDPE to a certain extent, resulting in the formation of possible products such as pentabromobenzyl bromide, pentabromobenzene, pentabromotoluene, hexabromobenzene, pentabromostyrene, and hydrogen bromide. In the pyrolysis system of DBDPE with hydrogen radicals, the reactions are classified into two types: extraction reaction and addition reaction. It can be known that the addition reaction plays a dominant role in the degradation process, with a branching ratio of 89.8% at 1600 K. The degradation of DBDPE with hydrogen radicals is mainly characterized by debromination, and the main products are hydrogen bromide, low-brominated diphenyl ethanes, brominated phenanthrenes, and brominated monoaromatic compounds. In addition, the lowest reaction energy barrier (18 kJ/mol) is required for the addition of hydrogen radical to the ipso-C site of DBDPE. DBDPE is dangerous for the environment and humans since its fate includes bioaccumulation, biomagnification, and toxicity via hormones and endocrine disruptors.


Subject(s)
Bromobenzenes , Flame Retardants , Kinetics , Bromobenzenes/chemistry , Pyrolysis , Models, Chemical
7.
Heliyon ; 10(12): e33289, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022069

ABSTRACT

Dichlorodiphenyltrichloroethane is an organo-chlorine insecticide used for malaria and agricultural pest control, but it is the most persistent pollutant, endangering both human and environmental health. The primary aim of the research is to screen, characterize, and assess putative fungi that degrade DDT for mycoremediation. Samples of soil and wastewater were gathered from Addis Ababa, Koka, and Ziway. Fungi were isolated and purified using potato dextrose media. Matrix-Assisted Laser Desorption, Ionization, and Flight Duration The technique of mass spectrometry was employed to identify fungi. It was found that the finally selected isolate, AS1, was Aspergillus niger. Based on growth factor optimization at DDT concentrations (0, 3500, and 7000 ppm), temperatures (25, 30, and 35 °C), and pH levels (4, 7, and 10), the potential DDT-tolerant fungal isolates were investigated. A Box-Behnken experimental design was used to analyze and optimize fungal biomass and sporulation. The highest biomass (0.981 ± 0.22 g) and spore count (5.60 ± 0.32 log/mL) of A. niger were found through optimization assessment, and this fungus was chosen as a potential DDT-degrader. For DDT degradation investigations by A. niger in DDT-amended liquid media, gas chromatograph-electron capture detector technology was employed. DDT and its main metabolites, DDE and DDD, were eliminated from both media to the tune of 96-99 % at initial DDT concentrations of 1750, 3500, 5250, and 7000 ppm. In conclusion, it is a promising candidate for detoxifying and/or removing DDT and its breakdown products from contaminated environments.

8.
Environ Sci Ecotechnol ; 21: 100438, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39036799

ABSTRACT

Ethane, the second most abundant gaseous hydrocarbon in vast anoxic environments, is an overlooked greenhouse gas. Microbial anaerobic oxidation of ethane can be driven by available electron acceptors such as sulfate and nitrate. However, despite nitrite being a more thermodynamically feasible electron acceptor than sulfate or nitrate, little is known about nitrite-driven anaerobic ethane oxidation. In this study, a microbial culture capable of nitrite-driven anaerobic ethane oxidation was enriched through the long-term operation of a nitrite-and-ethane-fed bioreactor. During continuous operation, the nitrite removal rate and the theoretical ethane oxidation rate remained stable at approximately 25.0 mg NO2 -N L-1 d-1 and 11.48 mg C2H6 L-1 d-1, respectively. Batch tests demonstrated that ethane is essential for nitrite removal in this microbial culture. Metabolic function analysis revealed that a species affiliated with a novel genus within the family Rhodocyclaceae, designated as 'Candidatus Alkanivoras nitrosoreducens', may perform the nitrite-driven anaerobic ethane oxidation. In the proposed metabolic model, despite the absence of known genes for ethane conversion to ethyl-succinate and succinate-CoA ligase, 'Ca. A. nitrosoreducens' encodes a prospective fumarate addition pathway for anaerobic ethane oxidation and a complete denitrification pathway for nitrite reduction to nitrogen. These findings advance our understanding of nitrite-driven anaerobic ethane oxidation, highlighting the previously overlooked impact of anaerobic ethane oxidation in natural ecosystems.

9.
Sci Total Environ ; 940: 173575, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38823712

ABSTRACT

Decabromodiphenyl ethane (DBDPE) and polystyrene nanoplastics (PS-NPs) are emerging pollutants that seriously threaten the ecological safety of the aquatic environment. However, the hepatotoxicity effect of their combined exposure on aquatic organisms has not been reported to date. In, this study, the effects of single or co-exposure of DBDPE and PS-NPs on grass carp hepatocytes were explored and biomarkers related to oxidative stress, ferroptosis, and inflammatory cytokines were evaluated. The results show that both single and co-exposure to DBDPE and PS-NPs caused oxidative stress. Oxidative stress was induced by increasing the contents of pro-oxidation factors (ROS, MDA, and LPO), inhibiting the activity of antioxidant enzymes (CAT, GPX, T-SOD, GSH, and T-AOC), and downregulating the mRNA expressions of antioxidant genes (GPX1, GSTO1, SOD1, and CAT); the effects of combined exposure were stronger overall. Both single and co-exposure to DBDPE and PS-NPs also elevated Fe2+ content, promoted the expressions of TFR1, STEAP3, and NCOA4, and inhibited the expressions of FTH1, SLC7A11, GCLC, GSS, and GPX4; these effects resulted in iron overload-induced ferroptosis, where co-exposure had stronger adverse effects on ferroptosis-related biomarkers than single exposure. Moreover, single or co-exposure enhanced inflammatory cytokine levels, as evidenced by increased mRNA expressions of IL-6, IL-12, IL-17, IL-18, IL-1ß, TNF-α, IFN-γ, and MPO. Co-exposure exhibited higher expression of pro-inflammatory cytokines compared to single exposure. Interestingly, the ferroptosis inhibitor ferrostatin-1 intervention diminished the above changes. In brief, the results suggest that DBDPE and PS-NPs trigger elevated levels of inflammatory cytokines in grass crap hepatocytes. This elevation is achieved via oxidative stress and iron overload-mediated ferroptosis, where cytotoxicity was stronger under co-exposure compared to single exposure. Overall, the findings contribute to elucidating the potential hepatotoxicity mechanisms in aquatic organisms caused by co-exposure to DBDPE and PS-NPs.


Subject(s)
Bromobenzenes , Carps , Ferroptosis , Hepatocytes , Oxidative Stress , Polystyrenes , Water Pollutants, Chemical , Animals , Oxidative Stress/drug effects , Ferroptosis/drug effects , Carps/physiology , Water Pollutants, Chemical/toxicity , Hepatocytes/drug effects , Polystyrenes/toxicity , Bromobenzenes/toxicity , Inflammation/chemically induced , Flame Retardants/toxicity
10.
Angew Chem Int Ed Engl ; : e202404598, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38945836

ABSTRACT

Acetic acid (AA), a vital compound in chemical production and materials manufacturing, is conventionally synthesized by starting with coal or methane through multiple steps including high-temperature transformations. Here we present a new synthesis of AA from ethane through photocatalytic selective oxidation of ethane by H2O2 at 0-25°C. The catalyst designed for this process comprises g-C3N4 with anchored Pd1 single-atom sites. In-situ studies and computational simulation suggest the immobilized Pd1 atom becomes positively charged under photocatalytic condition. Under photoirradiation, the holes on the Pd1 single-atom of OH-Pd1Å/g-C3N4 serves as a catalytic site for activating a C-H instead of C-C of C2H6 with a low activation barrier of 0.14 eV, through a concerted mechanism. Remarkably, the selectivity for synthesizing AA reaches 98.7%, achieved under atmospheric pressure of ethane at 0°C. By integrating photocatalysis with thermal catalysis, we introduce a highly selective, environmentally friendly, energy-efficient synthetic route for AA, starting from ethane, presenting a promising alternative for AA synthesis. This integration of photocatalysis in low-temperature oxidation demonstrates a new route of selective oxidation of light alkanes.

11.
Environ Sci Technol ; 58(26): 11525-11533, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38898713

ABSTRACT

The microbial oxidation of short-chain gaseous alkanes (SCGAs, consisting of ethane, propane, and butane) serves as an efficient sink to mitigate these gases' emission to the atmosphere, thus reducing their negative impacts on air quality and climate. "Candidatus Alkanivorans nitratireducens" are recently found to mediate nitrate-dependent anaerobic ethane oxidation (n-DAEO). In natural ecosystems, anaerobic ammonium-oxidizing (anammox) bacteria may consume nitrite generated from nitrate reduction by "Ca. A. nitratireducens", thereby alleviating the inhibition caused by nitrite accumulation on the metabolism of "Ca. A. nitratireducens". Here, we demonstrate the coupling of n-DAEO with anammox in a laboratory-scale model system to prevent nitrite accumulation. Our results suggest that a high concentration of ethane (6.9-7.9%) has acute inhibition on anammox activities, thus making the coupling process a significant challenge. By maintaining ethane concentrations within the range of 1.7-5.5%, stable ethane and ammonium oxidation, nitrate reduction, and dinitrogen gas generation without nitrite accumulation were finally achieved. After the accomplished coupling of n-DAEO with anammox, nitrate reduction rates increased by 8.1 times compared to the rate observed with n-DAEO alone. Microbial community profiling via 16S rRNA gene amplicon sequencing showed "Ca. A. nitratireducens" (6.6-12.9%) and anammox bacteria "Candidatus Kuenenia" (3.4-5.6%) were both dominant in the system, indicating they potentially form a syntrophic partnership to jointly contribute to nitrogen removal. Our findings offer insights into the cross-feeding interaction between "Ca. A. nitratireducens" and anammox bacteria in anoxic environments.


Subject(s)
Ammonium Compounds , Ethane , Nitrates , Oxidation-Reduction , Ammonium Compounds/metabolism , Anaerobiosis , Nitrates/metabolism , Ethane/metabolism , Nitrites/metabolism
12.
Angew Chem Int Ed Engl ; 63(30): e202404660, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38714487

ABSTRACT

Oxygen vacancies (OV) in nonmetallic plasmonic photocatalysts can decrease the energy barrier for CO2 reduction, boosting C1 intermediate production for potential C2 formation. However, their susceptibility to oxidation weakens C1 intermediate adsorption. Herein we proposed a "photoelectron injection" strategy to safeguard OV in W18O49 by creating a W18O49/ZIS (W/Z) plasmonic photocatalyst. Moreover, photoelectrons contribute to the local multi-electron environment of W18O49, enhancing the intrinsic excitation of its hot electrons with extended lifetimes, as confirmed by in situ XPS and femtosecond transient absorption analysis. Density functional theory calculations revealed that W/Z with OV enhances CO2 adsorption, activating *CO production, while reducing the energy barrier for *COH production (0.054 eV) and subsequent *CO-*COH coupling (0.574 eV). Successive hydrogenation revealed that the free energy for *CH2CH2 hydrogenation (0.108 eV) was lower than that for *CH2CH2 desorption for C2H4 production (0.277 eV), favouring C2H6 production. Consequently, W/Z achieves an efficient C2H6 activity of 653.6 µmol g-1 h-1 under visible light, with an exceptionally high selectivity of 90.6 %. This work offers a new strategy for the rational design of plasmonic photocatalysts with high selectivity for C2+ products.

13.
Angew Chem Int Ed Engl ; 63(29): e202404047, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38703385

ABSTRACT

The urgency to mitigate environmental impacts from anthropogenic CO2 emissions has propelled extensive research efforts on CO2 reduction. The current work reports a novel approach involving transforming CO2 and ethane into carbon nanotubes (CNTs) using earth-abundant metals (Fe, Co, Ni) at 750 °C. This route facilitates long-term carbon storage via generating high-value CNTs and produces valuable syngas with adjustable H2/CO ratios as byproducts. Without CO2, direct pyrolysis of ethane undergoes rapid deactivation. The participation of CO2 not only enhances the durability of the catalyst, but also contributes about 30 % of the CNTs production, presenting a viable solution to CO2 challenges. The CNT morphology depends on the catalyst used. Co- and Ni-based catalysts produce CNT with a 20 nm diameter and micrometer length, whereas Fe-based catalysts yield bamboo-like structures. This work represents a pioneering effort in utilizing CO2 and ethane for CNT production with potential environmental and economic benefits.

14.
ACS Appl Mater Interfaces ; 16(21): 27360-27367, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38755957

ABSTRACT

Efficient and economical separation of C2H6/C2H4 is an imperative and extremely challenging process in the petrochemical industry. The C2H6-selective adsorbents with high working capacity and high selectivity are highly desirable from a practical application standpoint. In this study, we constructed a database of fluorinated ionic liquid@covalent organic frameworks (FIL@COFs) and screened out the high-performing FIL@COFs for C2H6-selective separation. Utilizing the optimal machine learning (ML) algorithm (XGBoost) and hyperparameters, we further revealed the key factors influencing the separation performance. The multiscale simulation not only validated the prediction accuracy of ML but also demonstrated that adjusting the largest cavity diameter of COFs with FILs could yield FIL@COFs with high performance for C2H6-selective separation. Our work provides essential guidance for designing new FIL@COF adsorbents for value-added gas purification.

15.
Small ; : e2401965, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739099

ABSTRACT

Selective separation of ethylene and ethane (C2H4/C2H6) is a formidable challenge due to their close molecular size and boiling point. Compared to industry-used cryogenic distillation, adsorption separation would offer a more energy-efficient solution when an efficient adsorbent is available. Herein, a class of C2H4/C2H6 separation adsorbents, doped carbon molecular sieves (d-CMSs) is reported which are prepared from the polymerization and subsequent carbonization of resorcinol, m-phenylenediamine, and formaldehyde in ethanol solution. The study demonstrated that the polymer precursor themselves can be a versatile platform for modifying the pore structure and surface functional groups of their derived d-CMSs. The high proportion of pores centered at 3.5 Å in d-CMSs contributes significantly to achieving a superior kinetic selectivity of 205 for C2H4/C2H6 separation. The generated pyrrolic-N and pyridinic-N functional sites in d-CMSs contribute to a remarkable elevation of Henry selectivity to 135 due to the enhancement of the surface polarity in d-CMSs. By balancing the synergistic effects of kinetics and thermodynamics, d-CMSs achieve efficient separation of C2H4/C2H6. Polymer-grade C2H4 of 99.71% purity can be achieved with 75% recovery using the devised d-CMSs as reflected in a two-bed vacuum swing adsorption simulation.

16.
Environ Sci Technol ; 58(19): 8251-8263, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38695612

ABSTRACT

The novel brominated flame retardant, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), has increasingly been detected in environmental and biota samples. However, limited information is available regarding its toxicity, especially at environmentally relevant concentrations. In the present study, adult male zebrafish were exposed to varying concentrations of BTBPE (0, 0.01, 0.1, 1, and 10 µg/L) for 28 days. The results demonstrated underperformance in mating behavior and reproductive success of male zebrafish when paired with unexposed females. Additionally, a decline in sperm quality was confirmed in BTBPE-exposed male zebrafish, characterized by decreased total motility, decreased progressive motility, and increased morphological malformations. To elucidate the underlying mechanism, an integrated proteomic and phosphoproteomic analysis was performed, revealing a predominant impact on mitochondrial functions at the protein level and a universal response across different cellular compartments at the phosphorylation level. Ultrastructural damage, increased expression of apoptosis-inducing factor, and disordered respiratory chain confirmed the involvement of mitochondrial impairment in zebrafish testes. These findings not only provide valuable insights for future evaluations of the potential risks posed by BTBPE and similar chemicals but also underscore the need for further research into the impact of mitochondrial dysfunction on reproductive health.


Subject(s)
Reproduction , Zebrafish , Animals , Male , Reproduction/drug effects , Spermatozoa/drug effects , Testis/drug effects , Testis/metabolism , Flame Retardants/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Female
17.
J Hazard Mater ; 473: 134684, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38788581

ABSTRACT

The increase of electronic waste worldwide has resulted in the exacerbation of combined decabromodiphenyl ethane (DBDPE) and cadmium (Cd) pollution in soil, posing a serious threat to the safety of soil organisms. However, whether combined exposure increases toxicity remains unclear. Therefore, this study primarily investigated the toxic effects of DBDPE and Cd on earthworms at the individual, tissue, and cellular levels under single and combined exposure. The results showed that the combined exposure significantly increased the enrichment of Cd in earthworms by 50.32-90.42 %. The toxicity to earthworms increased with co-exposure, primarily resulting in enhanced oxidative stress, inhibition of growth and reproduction, intensified intestinal and epidermal damage, and amplified coelomocyte apoptosis. PLS-PM analysis revealed a significant and direct relationship between the accumulation of target pollutants in earthworms and oxidative stress, damage, as well as growth and reproduction of earthworms. Furthermore, IBR analysis indicated that SOD and POD were sensitive biomarkers in earthworms. Molecular docking elucidated that DBDPE and Cd induced oxidative stress responses in earthworms through the alteration of the conformation of the two enzymes. This study enhances understanding of the mechanisms behind the toxicity of combined pollution and provides important insights for assessing e-waste contaminated soils.


Subject(s)
Bromobenzenes , Cadmium , Molecular Docking Simulation , Oligochaeta , Oxidative Stress , Soil Pollutants , Animals , Oligochaeta/drug effects , Oligochaeta/metabolism , Oxidative Stress/drug effects , Cadmium/toxicity , Soil Pollutants/toxicity , Bromobenzenes/toxicity , Superoxide Dismutase/metabolism , Apoptosis/drug effects
18.
Chemistry ; 30(34): e202401006, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38625163

ABSTRACT

Direct determination of the equilibrium adsorption and spectroscopic observation of adsorbent-adsorbate interaction is crucial to evaluate the olefin/paraffin separation performance of porous adsorbents. However, the experimental characterization of competitive adsorption of various adsorbates at atomic-molecular level in the purification of multicomponent gas mixtures is challenging and rarely conducted. Herein, solid-state NMR spectroscopy is employed to examine the effect of co-adsorbed guest adsorbates on the separation of ethylene/ethane mixtures on Mg-MOF-74, Zn-MOF-74 and UTSA-74. 1H MAS NMR facilitates the determination of equilibrium uptake and adsorption selectivity of ethylene/ethane in ternary mixtures. The co-adsorption of H2O and CO2 significantly leads to the degradation of ethylene uptake and ethylene/ethane selectivity. The detailed host-guest and guest-guest interactions are unraveled by 2D 1H-1H spin diffusion homo-nuclear correlation and static 25Mg NMR experiments. The experimental results verify H2O coordinated on open metal sites can supply a new adsorption site for ethylene and ethane. The effects of guest adsorbates on the adsorption capacity and adsorption selectivity of ethylene/ethane mixtures are in the following order: H2O>CO2>O2. This work provides a direct approach for exploring the equilibrium adsorption and detailed separation mechanism of multicomponent gas mixtures using MOFs adsorbents.

19.
Chemphyschem ; 25(12): e202400095, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38525872

ABSTRACT

The catalytic dehydrogenation of light alkanes is key to transform low-cost hydrocarbons to high value-added chemicals. Although Pt is extremely efficient at catalyzing this reaction, it suffers from coke formation that deactivates the catalyst. Dopants such as Sn are widely used to increase the stability and lifetime of Pt. In this work, the dehydrogenation reaction of ethane catalyzed by Pt3 and Pt2X (X=Si, Ge, Sn, P and Al) nanocatalysts has been studied computationally by means of density functional calculations. Our results show how the presence of dopants in the nanocluster structure affects its electronic properties and catalytic activity. Exploration of the potential energy surfaces show that non-doped catalyst Pt3 present low selectivity towards ethylene formation, where acetylene resulting from double dehydrogenation reaction will be obtained as a side product (in agreement with the experimental evidence). On the contrary, the inclusion of Si, Ge, Sn, P or Al as dopant agents implies a selectivity enhancement, where acetylene formation is not energetically favoured. These results demonstrate the effectiveness of such dopant elements for the design of Pt-based catalysts on ethane dehydrogenation.

20.
ACS Appl Mater Interfaces ; 16(7): 9068-9077, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38345827

ABSTRACT

Metal-organic frameworks (MOFs), a sort of crystalline porous coordination polymers composed of metal ions and organic linkers, have been intensively studied for their ability to take up nonpolar gas-phase molecules such as ethane and ethylene. In this context, interpenetrated MOFs, where multiple framework nets are entwined, have been considered promising materials for capturing nonpolar molecules due to their relatively higher stability and smaller micropores. This study explores a solvent-assisted reversible strategy to interpenetrate and deinterpenetrate a Cu(II)-based MOF, namely, MOF-143 (noninterpenetrated form) and MOF-14 (doubly interpenetrated forms). Interpenetration was achieved using protic solvents with small molecular sizes such as water, methanol, and ethanol, while deinterpenetration was accomplished with a Lewis-basic solvent, pyridine. Additionally, this study investigates the adsorptive separation of ethane and ethylene, which is a significant application in the chemical industry. The results showed that interpenetrated MOF-14 exhibited higher ethane and ethylene uptakes compared to the noninterpenetrated MOF-143 due to narrower micropores. Furthermore, we demonstrate that pristine MOF-14 displayed higher ethane selectivity than transformed MOF-14 from MOF-143 by identifying the "fraction of micropore volume" as a key factor influencing ethane uptake. These findings highlight the potential of controlled transformations between interpenetrated and noninterpenetrated MOFs, anticipating that larger MOF crystals with narrower micropores and higher crystallinity will be more suitable for selective gas capture and separation applications.

SELECTION OF CITATIONS
SEARCH DETAIL