Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Article in English | MEDLINE | ID: mdl-38844159

ABSTRACT

OBJECTIVE: We have previously reported that the interleukin-23 p19 subunit (IL-23p19) is required for experimental inflammatory arthritic pain-like behavior and disease. Even though inflammation is often a characteristic feature of osteoarthritis (OA), IL-23 is not usually considered as a therapeutic target in OA. We began to explore the role of IL-23p19 in OA pain and disease utilizing mouse models of OA and patient samples. DESIGN: The role of IL-23p19 in two mouse models of OA, namely collagenase-induced OA and monosodium iodoacetate-induced OA, was investigated using gene-deficient male mice. Pain-like behavior and arthritis were assessed by relative static weight distribution and histology, respectively. In knee synovial tissues from a small cohort of human OA patients, a correlation analysis was performed between IL-23A gene expression and Oxford knee score (OKS), a validated Patient Reported Outcome Measure. RESULTS: We present evidence that i) IL-23p19 is required for the development of pain-like behavior and optimal disease, including cartilage damage and osteophyte formation, in two experimental OA models and ii) IL-23A gene expression in OA knee synovial tissues correlates with a lower OKS (r = -0.742, p = 0.0057). CONCLUSIONS: The findings support the possible targeting of IL-23 as a treatment for OA pain and disease progression.

2.
Braz. j. med. biol. res ; 57: e13304, fev.2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1557318

ABSTRACT

Arthritis has important cardiovascular repercussions. Phenylephrine-induced vasoconstriction is impaired in rat aortas in the early phase of the adjuvant-induced arthritis (AIA), around the 15th day post-induction. Therefore, the present study aimed to verify the effects of AIA on hyporesponsiveness to phenylephrine in rat aortas. AIA was induced by intradermal injection of Mycobacterium tuberculosis (3.8 mg/dL) in the right hind paw of male Wistar rats (n=27). Functional experiments in isolated aortas were carried out 15 days after AIA induction. Morphometric and stereological analyses of the aortas were also performed 36 days after the induction of AIA. AIA did not promote structural modifications in the aortas at any of the time points studied. AIA reduced phenylephrine-induced contraction in endothelium-intact aortas, but not in endothelium-denuded aortas. However, AIA did not change KCl-induced contraction in either endothelium-intact or denuded aortas. L-NAME (non-selective NOS inhibitor), 1400W (selective iNOS inhibitor), and ODQ (guanylyl cyclase inhibitor) reversed AIA-induced hyporesponsiveness to phenylephrine in intact aortas. 7-NI (selective nNOS inhibitor) increased the contraction induced by phenylephrine in aortas from AIA rats. In summary, the hyporesponsiveness to phenylephrine induced by AIA was endothelium-dependent and mediated by iNOS-derived NO through activation of the NO-guanylyl cyclase pathway.

3.
Osteoarthritis Cartilage ; 31(10): 1327-1341, 2023 10.
Article in English | MEDLINE | ID: mdl-37225052

ABSTRACT

OBJECTIVES: We have previously identified a granulocyte macrophage-colony stimulating factor (GM-CSF)/C-C motif ligand 17 (CCL17) pathway in monocytes/macrophages, in which GM-CSF regulates the formation of CCL17, and it is important for an experimental osteoarthritis (OA) model. We explore here additional OA models, including in the presence of obesity, such as a requirement for this pathway. DESIGN: The roles of GM-CSF, CCL17, CCR4, and CCL22 in various experimental OA models, including those incorporating obesity (eight-week high-fat diet), were investigated using gene-deficient male mice. Pain-like behavior and arthritis were assessed by relative static weight distribution and histology, respectively. Cell populations (flow cytometry) and cytokine messenger RNA (mRNA) expression (qPCR) in knee infrapatellar fat pad were analyzed. Human OA sera were collected for circulating CCL17 levels (ELISA) and OA knee synovial tissue for gene expression (qPCR). RESULTS: We present evidence that: i) GM-CSF, CCL17, and CCR4, but not CCL22, are required for the development of pain-like behavior and optimal disease in three experimental OA models, as well as for exacerbated OA development due to obesity, ii) obesity alone leads to spontaneous knee joint damage in a GM-CSF- and CCL17-dependent manner, and iii) in knee OA patients, early indications are that BMI correlates with a lower Oxford Knee Score (r = -0.458 and p = 0.0096), with elevated circulating CCL17 levels (r = 0.2108 and p = 0.0153) and with elevated GM-CSF and CCL17 gene expression in OA synovial tissue. CONCLUSIONS: The above findings indicate that GM-CSF, CCL17, and CCR4 are involved in obesity-associated OA development, broadening their potential as targets for possible treatments for OA.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Osteoarthritis, Knee , Humans , Male , Animals , Mice , Cytokines , Pain , Osteoarthritis, Knee/etiology , Synovial Membrane/metabolism , Chemokine CCL17
4.
Clin Immunol ; 251: 109635, 2023 06.
Article in English | MEDLINE | ID: mdl-37150238

ABSTRACT

IL-34 shares a common receptor with M-CSF, while it can bind to other distinct receptors including protein-tyrosine phosphatase zeta (PTPζ), and syndecan1 (SDC-1). In physiological conditions, IL-34 has a critical role in the maintenance and development of Langerhans and microglial cells in part through PTPζ ligation. Conversely, in autoimmune diseases such as rheumatoid arthritis (RA), SDC-1-induced phosphorylation of M-CSFR was responsible for the pathological effect of IL-34 in patient cells and/or preclinical models. Intriguingly, enrichment of IL-34 is strongly linked to rheumatoid factor (RF), disease activity score (DAS)28, erythrocyte sedimentation rate (ESR), c-reactive protein (CRP), and radiographic progression. In parallel, IL-34-induced naïve cell reprogramming into glycolytic RA CD14+CD86+GLUT1+ macrophage was dysregulated via M-CSFR or SDC-1 antibody therapy. Moreover, the inflammatory and erosive imprints of IL-34 arthritic mice were mitigated by glucose uptake inhibition and SDC-1, or RAG deficiency through nullifying macrophage metabolic rewiring and their ability to advance Th1/Th17 cell polarization. Consistently, IL-34-/- and SDC-1-/- mice could effectively impair CIA joint inflammation, osteoclast formation, and neovascularization by restraining monocyte infiltration as well as suppressing the inflammatory macrophage and T effector cell reconfiguration via metabolic deactivation. In conclusion, targeting IL-34/SDC-1 signaling, or its interconnected metabolites can uniquely intercept the crosstalk between glycolytic RA myeloid and lymphoid cells and their ability to trigger arthritis.


Subject(s)
Arthritis, Rheumatoid , Animals , Mice , Cell Differentiation , Interleukins/metabolism , Macrophages , Monocytes , Humans
5.
Adv Rheumatol ; 63(1): 14, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36949513

ABSTRACT

BACKGROUND: Rheumatoid arthritis is an autoimmune inflammatory disease that often leads patients to muscle impairment and physical disability. This study aimed to evaluate changes in the activity of proteasome system in skeletal muscles of mice with collagen-induced arthritis (CIA) and treated with etanercept or methotrexate. METHODS: Male DBA1/J mice were divided into four groups (n = 8 each): CIA-Vehicle (treated with saline), CIA-ETN (treated with etanercept, 5.5 mg/kg), CIA-MTX (treated with methotrexate, 35 mg/kg) and CO (healthy control group). Mice were treated two times a week for 6 weeks. Clinical score and hind paw edema were measured. Muscles were weighted after euthanasia and used to quantify proteasome activity, gene (MuRF-1, PMSα4, PSMß5, PMSß6, PSMß7, PSMß8, PSMß9, and PSMß10), and protein (PSMß1, PSMß5, PSMß1i, PSMß5i) expression of proteasome subunits. RESULTS: Both treatments slowed disease development, but only CIA-ETN maintained muscle weight compared to CIA-MTX and CIA-Vehicle groups. Etanercept treatment showed caspase-like activity of 26S proteasome similar to CO group, while CIA-Vehicle and CIA-MTX had higher activity compared to CO group (p: 0.0057). MuRF-1 mRNA expression was decreased after etanercept administration compared to CIA-Vehicle and CO groups (p: 0.002, p: 0.007, respectively). PSMß8 and PSMß9 mRNA levels were increased in CIA-Vehicle and CIA-MTX compared to CO group, while CIA-ETN presented no difference from CO. PMSß6 mRNA expression was higher in CIA-Vehicle and CIA-MTX groups than in CO group. Protein levels of the PSMß5 subunit were increased in CO group compared to CIA-Vehicle; after both etanercept and methotrexate treatments, PSMß5 expression was higher than in CIA-Vehicle group and did not differ from CO group expression (p: 0.0025, p: 0.001, respectively). The inflammation-induced subunit ß1 (LMP2) was enhanced after methotrexate treatment compared to CO group (p: 0.043). CONCLUSIONS: The results of CIA-Vehicle show that arthritis increases muscle proteasome activation by enhanced caspase-like activity of 26S proteasome and increased PSMß8 and PSMß9 mRNA levels. Etanercept treatment was able to maintain the muscle weight and to modulate proteasome so that its activity and gene expression were compared to CO after TNF inhibition. The protein expression of inflammation-induced proteasome subunit was increased in muscle of CIA-MTX group but not following etanercept treatment. Thus, anti-TNF treatment may be an interesting approach to attenuate the arthritis-related muscle wasting.


Subject(s)
Antirheumatic Agents , Arthritis, Experimental , Male , Humans , Mice , Animals , Etanercept/pharmacology , Etanercept/therapeutic use , Methotrexate/therapeutic use , Antirheumatic Agents/therapeutic use , Arthritis, Experimental/drug therapy , Proteasome Endopeptidase Complex , Tumor Necrosis Factor Inhibitors/therapeutic use , Drug Therapy, Combination , Treatment Outcome , Muscle, Skeletal , Inflammation/drug therapy
6.
Acta Odontol Scand ; 81(1): 40-49, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35694780

ABSTRACT

OBJECTIVE: This study aimed to evaluate whether ligature-induced periodontitis and rheumatoid arthritis (RA) potentiate the deleterious effects on functional capacity, periodontal and synovial tissues, leukocyte migration, and interleukin 17 (IL-17) levels, and to investigate the repercussions of single Freund's Complete Adjuvant (FCA) injection associated with periodontitis. MATERIALS AND METHODS: Fifty-one male Wistar rats were randomised into six groups: control (CG, n = 8), RA (RAG, n = 9), periodontitis (PG, n = 9), periodontitis and RA (PRAG, n = 9), periodontitis and intradermal injection (PIDG, n = 9), and periodontitis and intra-articular injection (PIAG, n = 7). The animals underwent ligature placement and one or two injections with FCA to induce RA. Motor disability, nociceptive threshold, joint edema, and muscle strength were assessed, and the animals were euthanized on day 30. Synovial fluid, hemimandibles, and knee joints were collected. RESULTS: PRAG showed no reduction of edema or improvement of muscle strength, whereas it showed most significant changes in leukocyte migration, morphological analyses of the synovial membrane (SM), and radiographic and histometric analyses of the jaw. The PIAG showed some alterations, though not permanent. CONCLUSION: Ligature-induced periodontitis and RA induced by two FCA injections accentuated the deleterious effects on functional capacity, leukocyte migration, synovial and periodontal tissues.


Subject(s)
Arthritis, Rheumatoid , Periodontitis , Animals , Male , Rats , Arthritis, Rheumatoid/complications , Edema/chemically induced , Leukocytes , Models, Theoretical , Periodontitis/complications , Rats, Wistar , Cell Movement , Interleukin-17
7.
Adv Rheumatol ; 63: 14, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1447130

ABSTRACT

Abstract Background Rheumatoid arthritis is an autoimmune inflammatory disease that often leads patients to muscle impairment and physical disability. This study aimed to evaluate changes in the activity of proteasome system in skeletal muscles of mice with collagen-induced arthritis (CIA) and treated with etanercept or methotrexate. Methods Male DBA1/J mice were divided into four groups (n = 8 each): CIA-Vehicle (treated with saline), CIA-ETN (treated with etanercept, 5.5 mg/kg), CIA-MTX (treated with methotrexate, 35 mg/kg) and CO (healthy control group). Mice were treated two times a week for 6 weeks. Clinical score and hind paw edema were measured. Muscles were weighted after euthanasia and used to quantify proteasome activity, gene (MuRF-1, PMSα4, PSMβ5, PMSβ6, PSMβ7, PSMβ8, PSMβ9, and PSMβ10), and protein (PSMβ1, PSMβ5, PSMβ1i, PSMβ5i) expression of proteasome subunits. Results Both treatments slowed disease development, but only CIA-ETN maintained muscle weight compared to CIA-MTX and CIA-Vehicle groups. Etanercept treatment showed caspase-like activity of 26S proteasome similar to CO group, while CIA-Vehicle and CIA-MTX had higher activity compared to CO group (p: 0.0057). MuRF-1 mRNA expression was decreased after etanercept administration compared to CIA-Vehicle and CO groups (p: 0.002, p: 0.007, respectively). PSMβ8 and PSMβ9 mRNA levels were increased in CIA-Vehicle and CIA-MTX compared to CO group, while CIA-ETN presented no difference from CO. PMSβ6 mRNA expression was higher in CIA-Vehicle and CIA-MTX groups than in CO group. Protein levels of the PSMβ5 subunit were increased in CO group compared to CIA-Vehicle; after both etanercept and methotrexate treatments, PSMβ5 expression was higher than in CIA-Vehicle group and did not differ from CO group expression (p: 0.0025, p: 0.001, respectively). The inflammation-induced subunit β1 (LMP2) was enhanced after methotrexate treatment compared to CO group (p: 0.043). Conclusions The results of CIA-Vehicle show that arthritis increases muscle proteasome activation by enhanced caspase-like activity of 26S proteasome and increased PSMβ8 and PSMβ9 mRNA levels. Etanercept treatment was able to maintain the muscle weight and to modulate proteasome so that its activity and gene expression were compared to CO after TNF inhibition. The protein expression of inflammation-induced proteasome subunit was increased in muscle of CIA-MTX group but not following etanercept treatment. Thus, anti-TNF treatment may be an interesting approach to attenuate the arthritis-related muscle wasting.

8.
Stem Cells Transl Med ; 11(12): 1177-1185, 2022 12 30.
Article in English | MEDLINE | ID: mdl-36318277

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes progressive joint destruction. Despite the advances in the treatment of this condition there remains a clinical need for safe therapies leading to clinical remission. Mesenchymal stem/stromal cells (MSCs) play immunomodulatory and regenerative roles which can be partly mediated by their secretome. In recent years, the important contribution of extracellular vesicles (EVs) to MSC actions has received an increasing interest as a new therapeutic approach. We provide an extensive overview of the immunomodulatory properties of MSC EVs and their effects on articular cells such as fibroblast-like synoviocytes that play a central role in joint destruction. This review discusses the anti-arthritic effects of MSC EVs in vitro and in animal models of RA as well as their potential mechanisms. Recent preclinical data suggest that transfer of non-coding RNAs by MSC EVs regulates key signaling pathways involved in the pathogenesis of RA. We also examine a number of EV modifications for improving their anti-arthritic efficacy and carrier ability for drug delivery.


Subject(s)
Arthritis, Rheumatoid , Extracellular Vesicles , Mesenchymal Stem Cells , Animals , Arthritis, Rheumatoid/therapy , Extracellular Vesicles/metabolism , Cells, Cultured , Signal Transduction , Mesenchymal Stem Cells/metabolism
9.
Bone Joint Res ; 11(7): 484-493, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35801532

ABSTRACT

AIMS: Insufficient treatment response in rheumatoid arthritis (RA) patients requires novel treatment strategies to halt disease progression. The potential benefit of combination of cytokine-inhibitors in RA is still unclear and needs further investigation. To explore the impact of combined deficiency of two major cytokines, namely interleukin (IL)-1 and IL-6, in this study double deficient mice for IL-1αß and IL-6 were investigated in different tumour necrosis factor (TNF)-driven inflammatory bone disorders, namely peripheral arthritis and sacroiliitis, as well as systemic bone loss. METHODS: Disease course, histopathological features of arthritis, and micro-CT (µCT) bone analysis of local and systemic bone loss were assessed in 15-week-old IL1-/-IL6-/- hTNFtg in comparison to IL1-/- hTNFtg, IL6-/- hTNFtg, and hTNFtg mice. µCT bone analysis of single deficient and wild-type mice was also performed. RESULTS: Combined deficiency of IL-1/IL-6 markedly ameliorated TNF-mediated arthritis and bilateral sacroiliitis, but without additive benefits compared to single IL-1 deficiency. This finding confirms the important role of IL-1 and the marginal role of IL-6 in TNF-driven pathways of local joint damage, but questions the efficacy of potential combinatorial therapies of IL-1 and IL-6 in treatment of RA. In contrast, combined deficiency of IL-1/IL-6 led to an additive protective effect on TNF-driven systemic bone loss compared to single IL-1 and IL-6 deficiency. This finding clearly indicates a common contribution of both IL-1 and IL-6 in TNF-driven systemic bone loss, and points to a discrepancy of cytokine dependency in local and systemic TNF-driven mechanisms of inflammatory arthritis. CONCLUSION: Combinatorial treatments in RA might provide different benefits to inflammatory local arthritis and systemic comorbidities. Cite this article: Bone Joint Res 2022;11(7):484-493.

10.
Ther Hypothermia Temp Manag ; 12(1): 30-37, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33904783

ABSTRACT

Gout arthritis commonly affects joint regions by deposition of crystals, promoting functional damage mainly during periods of exacerbation. Cryotherapy is a commonly used resource to contain inflammatory processes, however, its use during a gout crisis is not yet well understood. Therefore, the objective was to evaluate the parameters of Wistar rats submitted to an experimental gout model and treated with dual cryotherapy protocol. Twenty-one male Wistar rats were used, separated into three groups: control group (CG), lesion group (LG), and lesion + cryotherapy group (LCG). Gout model induction was through intra-articular injection, with urate crystal solution, in the right knee and cryoimmersion treatment was performed for 20 minutes at a temperature of 5° ± 2°C. Seven evaluations and two treatment moments were performed, and the following parameters were analyzed: joint edema, grip strength, joint disability, motor function, and leukocyte migration through synovial lavage. In the statistical analysis we used SPSS 20.0 with Generalized Linear Models, with least significant difference posttest, always with 5% significance level. The treatment reduced edema, promoted strength recovery, and was effective in reducing total leukocytes in the synovial fluid. No difference was observed between the injured groups for joint disability and motor function. Cryotherapy promoted edema reduction and increased pelvic limb grip strength in Wistar rats during the acute period.


Subject(s)
Gout , Hypothermia, Induced , Animals , Cryotherapy , Gout/pathology , Gout/therapy , Inflammation , Male , Rats , Rats, Wistar
11.
Rheumatology (Oxford) ; 61(3): 913-925, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34559213

ABSTRACT

Despite extensive research, there is still no treatment that would lead to remission in all patients with rheumatoid arthritis as our understanding of the affected site, the synovium, is still incomplete. Recently, single-cell technologies helped to decipher the cellular heterogeneity of the synovium; however, certain synovial cell populations, such as endothelial cells or peripheral neurons, remain to be profiled on a single-cell level. Furthermore, associations between certain cellular states and inflammation were found; whether these cells cause the inflammation remains to be answered. Similarly, cellular zonation and interactions between individual effectors in the synovium are yet to be fully determined. A deeper understanding of cell signalling and interactions in the synovium is crucial for a better design of therapeutics with the goal of complete remission in all patients.


Subject(s)
Arthritis, Rheumatoid/pathology , Synovial Membrane/cytology , B-Lymphocytes/physiology , Cell Communication/physiology , Endothelial Cells/physiology , Fibroblasts/physiology , Genetic Heterogeneity , Granulocytes/physiology , Humans , Macrophages/physiology , Peripheral Nervous System/cytology , Phagocytes/physiology , Signal Transduction/physiology , Single-Cell Analysis , T-Lymphocytes/physiology , Transcriptome
12.
Pharmaceutics ; 13(11)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34834283

ABSTRACT

Macrophages play a crucial role in the initiation and progression of rheumatoid arthritis (RA). Liposomes can be used to deliver therapeutics to macrophages by exploiting their phagocytic ability. However, since macrophages serve as the immune system's first responders, it is inadvisable to systemically deplete these cells. By loading the liposomes with the photosensitizer IRDye700DX, we have developed and tested a novel way to perform photodynamic therapy (PDT) on macrophages in inflamed joints. PEGylated liposomes were created using the film method and post-inserted with micelles containing IRDye700DX. For radiolabeling, a chelator was also incorporated. RAW 264.7 cells were incubated with liposomes with or without IRDye700DX and exposed to 689 nm light. Viability was determined using CellTiterGlo. Subsequently, biodistribution and PDT studies were performed on mice with collagen-induced arthritis (CIA). PDT using IRDye700DX-loaded liposomes efficiently induced cell death in vitro, whilst no cell death was observed using the control liposomes. Biodistribution of the two compounds in CIA mice was comparable with excellent correlation of the uptake with macroscopic and microscopic arthritis scores. Treatment with 700DX-loaded liposomes significantly delayed arthritis development. Here we have shown the proof-of-principle of performing PDT in arthritic joints using IRDye700DX-loaded liposomes, allowing locoregional treatment of arthritis.

13.
Bone ; 146: 115887, 2021 05.
Article in English | MEDLINE | ID: mdl-33592328

ABSTRACT

The main well recognized action of bisphosphonates (BPs) is their antiresorptive capacity, making them first-line drugs in the treatment of osteoporosis and other metabolic bone diseases. In this review we have compiled other possible actions of BPs, particularly in the areas of immunomodulation, anti-inflammatory capacity and in the prevention of structural joint damage in inflammatory rheumatic diseases. The immunomodulatory capacity of BPs has been focused on the mechanisms involved in the acute-phase response associated with the administration of nitrogen containing BPs (N-BPs), with the stimulus of pro-inflammatory cytokines, through the mevalonate pathway, activation of T-cells and the decrease in the cytotoxic T-lymphocyte antigen-4 (CTLA-4). In relation to their anti-inflammatory capacity, special attention has been given to their effect on preventing structural damage in inflammatory joint diseases and on the differential immune response in bone lesions of the most common and representative inflammatory rheumatic diseases, i.e. rheumatoid arthritis and spondyloarthropathies. The present data indicate that more studies are needed to improve the knowledge on the effect of BPs on inflammatory-mediated diseases and particularly on the prevention and/or treatment of the structural damage in these disorders, since these agents could be a potential useful concomitant therapy.


Subject(s)
Arthritis, Rheumatoid , Osteoporosis , Rheumatic Diseases , Anti-Inflammatory Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Cytokines , Diphosphonates/therapeutic use , Humans , Rheumatic Diseases/drug therapy
14.
Rheumatology (Oxford) ; 60(6): 2852-2861, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33313793

ABSTRACT

OBJECTIVES: Cardiovascular (CV) mortality in RA patients is 50% higher than in the general population. There is increasing recognition that systemic inflammation is a major driver of this. IL-6 is implicated in cardiovascular disease (CVD) in the general population but its role in CVD in RA is undefined. Of the two modes of IL-6 signalling, trans-signalling is pro-inflammatory whereas classical signalling is linked with inflammation resolution. This study examines the role of IL-6 trans-signalling in CVD in a mouse model and patients with RA. METHODS: Myography determined the effect of IL-6 trans-signalling blockade, using sgp130Fc, on aortic constriction in murine collagen-induced arthritis. Serum CCL2 and sVCAM-1 as soluble biomarkers of sIL-6R trans-signalling were investigated in a human cross-sectional study. An observational longitudinal study investigated the association between these biomarkers and progression of subclinical atherosclerosis in early RA by measuring carotid intima-media thickness (CIMT). RESULTS: sgp130Fc reduced arthritis severity, serum CCL2 and sVCAM-1 and restored vascular function in collagen-induced arthritis (CIA). In established RA, sVCAM-1 correlated with the 28-joint DAS (DAS28) and CV risk. In early RA, baseline DAS28 was associated with CIMT change at 6 months. CIMT 'rapid progressors' at 12 months had higher baseline sVCAM-1, haemoglobin A1c, cholesterol:high-density lipoprotein cholesterol ratio and LDL cholesterol. CONCLUSIONS: IL-6 trans-signalling plays a pivotal role in vascular dysfunction in CIA. In early RA, sVCAM-1 was associated with progression of subclinical atherosclerosis. Inflammation from RA onset in CVD-susceptible individuals may accelerate atherosclerosis. IL-6 trans-signalling blockade may be beneficial to RA patients and perhaps for atherosclerosis in the general population.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Cardiovascular Diseases/drug therapy , Etanercept/pharmacology , Interleukin-6/metabolism , Recombinant Fusion Proteins/pharmacology , Vascular Cell Adhesion Molecule-1/metabolism , Animals , Antirheumatic Agents/pharmacology , Arthritis, Experimental , Arthritis, Rheumatoid/complications , Biomarkers/metabolism , Cardiovascular Diseases/etiology , Cross-Sectional Studies , Disease Models, Animal , Female , Humans , Male , Mice , Middle Aged
15.
Exp Cell Res ; 398(1): 112404, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33245891

ABSTRACT

Pristane-induced arthritis (PIA) could be adoptively transferred by splenic T cells in rats, and innate immunity should play critical roles in T cell activation. However, in pre-clinical stage, the activation mechanism of innate cells like macrophages remains unclear. Here we found that PIA was dependent on macrophages since cell depletion alleviated disease severity. Splenic macrophages of PIA rats showed M1 phenotypic shifting. The quantitative proteomics analysis suggested that macrophages initiated metabolic reprogramming with the conversion of aerobic oxidation to glycolysis in response to pristane in vivo. Notably, macrophages treated with pristane showed mitochondrial dysregulation and increased glycolysis flux and enzyme activity. Additionally, TNFα production, strongly associating with the glycolysis enzyme Ldha/Ldhb, could be reduced as glycolysis was inhibited or be enhanced as citrate cycle was blocked. This work provides detailed insights into the molecular mechanisms of pristane-mediated metabolic reprogramming in macrophages and suggests a new therapeutic strategy for arthritic disorders.


Subject(s)
Arthritis, Experimental/chemically induced , Inflammation/chemically induced , Macrophages/drug effects , Terpenes/pharmacology , Anaerobiosis/drug effects , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Cells, Cultured , Deoxyglucose/pharmacology , Glycolysis/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Macrophages/metabolism , Malonates/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Nitro Compounds/pharmacology , Propionates/pharmacology , Rats , Terpenes/antagonists & inhibitors , Wortmannin/pharmacology
16.
Rheumatology (Oxford) ; 60(4): 1974-1983, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33197269

ABSTRACT

OBJECTIVE: High levels of IL-22 are present in serum and synovial fluid of patients with RA. As both pro- and anti-inflammatory roles for IL-22 have been described in studies using animal models of RA, its exact function in arthritis remains poorly defined. With this study we aimed to further unravel the mechanism by which IL-22 exerts its effects and to decipher its therapeutic potential by overexpression of IL-22 either locally or systemically during experimental arthritis. METHODS: CIA was induced in DBA-1 mice by immunization and booster injection with type II collagen (col II). Before arthritis onset, IL-22 was overexpressed either locally by intra-articular injection or systemically by i.v. injection using an adenoviral vector and clinical arthritis was scored for a period of 10 days. Subsequently, joints were isolated for histological analysis of arthritis severity and mRNA and protein expression of various inflammatory mediators was determined in the synovium, spleen and serum. RESULTS: Local IL-22 overexpression did not alter arthritis pathology, whereas systemic overexpression of IL-22 potently reduced disease incidence, severity and pathology during CIA. Mice systemically overexpressing IL-22 showed strongly reduced serum cytokine levels of TNF-α and macrophage inflammatory protein 1α that correlated significantly with the enhanced expression of the negative immune regulator SOCS3 in the spleen. CONCLUSION: With this study, we revealed clear anti-inflammatory effects of systemic IL-22 overexpression during CIA. Additionally, we are the first to show that the protective effect of systemic IL-22 during experimental arthritis is likely orchestrated via upregulation of the negative regulator SOCS3.


Subject(s)
Arthritis, Experimental/therapy , Interleukins/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Animals , Arthritis, Experimental/immunology , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Disease Models, Animal , Female , Joints/pathology , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Real-Time Polymerase Chain Reaction , Suppressor of Cytokine Signaling 3 Protein/immunology , Interleukin-22
17.
Front Immunol ; 11: 1861, 2020.
Article in English | MEDLINE | ID: mdl-32973768

ABSTRACT

Indoleamine-2,3-dioxygenase (IDO)1 and IDO2 are two closely related tryptophan catabolizing enzymes encoded by linked genes. The IDO pathway is also immunomodulatory, with IDO1 well-characterized as a mediator of tumor immune evasion. Due to its homology with IDO1, IDO2 has been proposed to have a similar immunoregulatory function. Indeed, IDO2, like IDO1, is necessary for the differentiation of regulatory T cells in vitro. However, compared to IDO1, in vivo studies demonstrated a contrasting role for IDO2, with experiments in preclinical models of autoimmune arthritis establishing a proinflammatory role for IDO2 in mediating B and T cell activation driving autoimmune disease. Given their potentially opposing roles in inflammatory responses, interpretation of results obtained using IDO1 or IDO2 single knockout mice could be complicated by the expression of the other enzyme. Here we use IDO1 and IDO2 single and double knockout (dko) mice to define the differential roles of IDO1 and IDO2 in B cell-mediated immune responses. Autoreactive T and B cell responses and severity of joint inflammation were decreased in IDO2 ko, but not IDO1 ko arthritic mice. Dko mice had a reduction in the number of autoantibody secreting cells and severity of arthritis: however, percentages of differentiated T cells and their associated cytokines were not reduced compared to IDO1 ko or wild-type mice. These data suggest that autoreactive B cell responses are mediated by IDO2, while autoreactive T cell responses are indirectly affected by IDO1 expression in the IDO2 ko mice. IDO2 also influenced antibody responses in models of influenza infection and immunization with T cell-independent type II antigens. Taken together, these studies provide evidence for the contrasting roles IDO1 and IDO2 play in immune responses, with IDO1 mediating T cell suppressive effects and IDO2 working directly in B cells as a proinflammatory mediator of B cell responses.


Subject(s)
B-Lymphocytes/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , Lymphocyte Activation/immunology , T-Lymphocytes/immunology , Animals , Arthritis, Experimental/immunology , Humans , Inflammation/immunology , Mice , Mice, Knockout , Orthomyxoviridae Infections/immunology
18.
Mediterr J Rheumatol ; 31(2): 190-194, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32676556

ABSTRACT

Omega-3 fatty acids are unsaturated fatty acids thought to play a role in health and disease. They are known as essential fatty acids, as they cannot be synthesized in mammals. Omega-3 fatty acids have a beneficial effect on the secondary prevention of coronary artery disease and stroke and are essential for the development and function of the nervous system and the retina in man. Omega-3 fatty acids are thought to have immunomodulatory properties as they act as precursors to lipid mediators of inflammation which may limit or modulate the inflammatory response. Omega-3 fatty acids seem to prevent or attenuate experimental arthritis. They may have a beneficial effect in the treatment of rheumatoid arthritis. Clinical studies have shown that omega-3 fatty acids may have a modulatory effect on disease activity, namely on the number of swollen and tender joints. It appears that omega-3 fatty acids may modulate disease activity in rheumatoid arthritis.

19.
Inflammopharmacology ; 28(4): 979-992, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32048121

ABSTRACT

Arthritis can be defined as a painful musculoskeletal disorder that affects the joints. Hesperidin methyl chalcone (HMC) is a flavonoid with analgesic, anti-inflammatory, and antioxidant effects. However, its effects on a specific cell type and in the zymosan-induced inflammation are unknown. We aimed at evaluating the effects of HMC in a zymosan-induced arthritis model. A dose-response curve of HMC (10, 30, or 100 mg/kg) was performed to determine the most effective analgesic dose after intra-articular zymosan stimuli. Knee joint oedema was determined using a calliper. Leukocyte recruitment was performed by cell counting on knee joint wash as well as histopathological analysis. Oxidative stress was measured by colorimetric assays (GSH, FRAP, ABTS and NBT) and RT-qPCR (gp91phox and HO-1 mRNA expression) performed. In vitro, oxidative stress was assessed by DCFDA assay using RAW 264.7 macrophages. Cytokine production was evaluated in vivo and in vitro by ELISA. In vitro NF-κB activation was analysed by immunofluorescence. We observed HMC reduced mechanical hypersensitivity and knee joint oedema, leukocyte recruitment, and pro-inflammatory cytokine levels. We also observed a reduction in zymosan-induced oxidative stress as per increase in total antioxidant capacity and reduction in gp91phox and increase in HO-1 mRNA expression. Accordingly, total ROS production and macrophage NFκB activation were diminished. HMC interaction with NFκB p65 at Ser276 was revealed using molecular docking analysis. Thus, data presented in this work suggest the usefulness of HMC as an analgesic and anti-inflammatory in a zymosan-induced arthritis model, possibly by targeting NFκB activation in macrophages.


Subject(s)
Arthralgia/drug therapy , Chalcones/pharmacology , Hesperidin/analogs & derivatives , Inflammation/drug therapy , Macrophage Activation/drug effects , Macrophages/drug effects , NF-kappa B/metabolism , Zymosan/pharmacology , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/physiology , Arthralgia/chemically induced , Arthralgia/metabolism , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Cell Line , Cytokines/metabolism , Disease Models, Animal , Edema/chemically induced , Edema/drug therapy , Edema/metabolism , Hesperidin/pharmacology , Inflammation/chemically induced , Inflammation/metabolism , Macrophages/metabolism , Mice , Molecular Docking Simulation/methods , Oxidative Stress/drug effects , RAW 264.7 Cells , Signal Transduction/drug effects
20.
Front Pharmacol ; 11: 594479, 2020.
Article in English | MEDLINE | ID: mdl-33519457

ABSTRACT

The tachykinin hemokinin-1 (HK-1) is involved in immune cell development and inflammation, but little is known about its function in pain. It acts through the NK1 tachykinin receptor, but several effects are mediated by a yet unidentified target. Therefore, we investigated the role and mechanism of action of HK-1 in arthritis models of distinct mechanisms with special emphasis on pain. Arthritis was induced by i.p. K/BxN serum (passive transfer of inflammatory cytokines, autoantibodies), intra-articular mast cell tryptase or Complete Freund's Adjuvant (CFA, active immunization) in wild type, HK-1- and NK1-deficient mice. Mechanical- and heat hyperalgesia determined by dynamic plantar esthesiometry and increasing temperature hot plate, respectively, swelling measured by plethysmometry or micrometry were significantly reduced in HK-1-deleted, but not NK1-deficient mice in all models. K/BxN serum-induced histopathological changes (day 14) were also decreased, but early myeloperoxidase activity detected by luminescent in vivo imaging increased in HK-1-deleted mice similarly to the CFA model. However, vasodilation and plasma protein extravasation determined by laser Speckle and fluorescent imaging, respectively, were not altered by HK-1 deficiency in any models. HK-1 induced Ca2+-influx in primary sensory neurons, which was also seen in NK1-deficient cells and after pertussis toxin-pretreatment, but not in extracellular Ca2+-free medium. These are the first results showing that HK-1 mediates arthritic pain and cellular, but not vascular inflammatory mechanisms, independently of NK1 activation. HK-1 activates primary sensory neurons presumably via Ca2+ channel-linked receptor. Identifying its target opens new directions to understand joint pain leading to novel therapeutic opportunities.

SELECTION OF CITATIONS
SEARCH DETAIL
...