Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76.456
Filter
1.
Front Immunol ; 15: 1415565, 2024.
Article in English | MEDLINE | ID: mdl-38989285

ABSTRACT

How the microbiome regulates responses of systemic innate immune cells is unclear. In the present study, our purpose was to document a novel mechanism by which the microbiome mediates crosstalk with the systemic innate immune system. We have identified a family of microbiome Bacteroidota-derived lipopeptides-the serine-glycine (S/G) lipids, which are TLR2 ligands, access the systemic circulation, and regulate proinflammatory responses of splenic monocytes. To document the role of these lipids in regulating systemic immunity, we used oral gavage with an antibiotic to decrease the production of these lipids and administered exogenously purified lipids to increase the systemic level of these lipids. We found that decreasing systemic S/G lipids by decreasing microbiome Bacteroidota significantly enhanced splenic monocyte proinflammatory responses. Replenishing systemic levels of S/G lipids via exogenous administration returned splenic monocyte responses to control levels. Transcriptomic analysis demonstrated that S/G lipids regulate monocyte proinflammatory responses at the level of gene expression of a small set of upstream inhibitors of TLR and NF-κB pathways that include Trem2 and Irf4. Consistent with enhancement in proinflammatory cytokine responses, decreasing S/G lipids lowered gene expression of specific pathway inhibitors. Replenishing S/G lipids normalized gene expression of these inhibitors. In conclusion, our results suggest that microbiome-derived S/G lipids normally establish a level of buffered signaling activation necessary for well-regulated innate immune responses in systemic monocytes. By regulating gene expression of inflammatory pathway inhibitors such as Trem2, S/G lipids merit broader investigation into the potential dysfunction of other innate immune cells, such as microglia, in diseases such as Alzheimer's disease.


Subject(s)
Monocytes , Signal Transduction , Monocytes/immunology , Monocytes/metabolism , Monocytes/drug effects , Animals , Mice , Microbiota/immunology , Mice, Inbred C57BL , Immunity, Innate , Toll-Like Receptor 2/metabolism , Gene Expression Regulation/drug effects , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Lipopeptides/pharmacology , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , NF-kappa B/metabolism , Inflammation/immunology , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Male , Lipids , Spleen/immunology , Spleen/metabolism , Cytokines/metabolism , Female
2.
Elife ; 132024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989862

ABSTRACT

Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.


Subject(s)
DEAD-box RNA Helicases , Protein Biosynthesis , Proto-Oncogene Proteins , RNA Stability , RNA, Messenger , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Humans , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA Stability/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Ribosomes/metabolism , HEK293 Cells
3.
Elife ; 132024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963418

ABSTRACT

Tiny animals known as tardigrades use a combination of DNA repair machinery and a novel protein to mend their genome after intense ionizing radiation.


Subject(s)
DNA Repair , Animals , Tardigrada/physiology , Tardigrada/radiation effects , Radiation, Ionizing , DNA Damage/radiation effects
4.
Environ Pollut ; 358: 124461, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964643

ABSTRACT

Identifying key molecular pathways and genes involved in the response to urban pollutants is an important step in furthering our understanding of the impact of urbanisation on wildlife. The expansion of urban habitats and the associated human-introduced environmental changes are considered a global threat to the health and persistence of humans and wildlife. The present study experimentally investigates how short-term exposure to three urban-related pollutants -soot, artificial light at night (ALAN) and traffic noise-affects transcriptome-wide gene expression in livers from captive female zebra finches (Taeniopygia guttata). Compared to unexposed controls, 17, 52, and 28 genes were differentially expressed in soot, ALAN and noise-exposed birds, respectively. In soot-exposed birds, the enriched gene ontology (GO) terms were associated with a suppressed immune system such as interferon regulating genes (IRGs) and responses to external stimuli. For ALAN-exposed birds, enriched GO terms were instead based on downregulated genes associated with detoxification, redox, hormonal-, and metabolic processes. Noise exposure resulted in downregulation of genes associated with the GO terms: cellular responses to substances, catabolic and cytokine responses. Among the individually differentially expressed genes (DEGs), soot led to an increased expression of genes related to tumour progression. Likewise, ALAN revealed an upregulation of multiple genes linked to different cancer types. Both sensory pollutants (ALAN and noise) led to increased expression of genes linked to neuronal function. Interestingly, noise caused upregulation of genes associated with serotonin regulation and function (SLC6A4 and HTR7), which previous studies have shown to be under selection in urban birds. These outcomes indicate that short-term exposure to the three urban pollutants perturbate the liver transcriptome, but most often in different ways, which highlights future studies of multiple-stress exposure and their interactive effects, along with their long-term impacts for urban-dwelling wildlife.

5.
Toxicol Res (Camb) ; 13(4): tfae095, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966091

ABSTRACT

Background: Nanotechnology has shown a remarkable progress nevertheless, there is a growing concern about probable neurotoxic and neurodegenerative effects due to NPs exposure. Various toxicological and epidemiological studies reported that the brain is a main target for ultrafine particles. Brain inflammation is considered as a possible mechanism that can participate to neurotoxic and neurodegenerative effects. Whether nanoparticles (NPs) may produce neurotoxicity and promote neurodegenerative is largely unstudied. The present study was done to investigate whether intranasal and intra-peritoneal exposure to cerium oxide nanoparticles (CeO2NPs, nanoceria (NC)) could cause neurotoxicity and neurodegenerative changes in the brain tissue through conducting some behavioral tests, biochemical evaluation, histopathological examinations of brain hippocampus and gene expressions. Method: Fifteen mice were separated into 3 equal groups. In group (I) "control group", mice were received distilled water orally and kept as a control group. Mice in the group (II) "NC I/P group" were injected i.p with cerium oxide nanoparticles at a dose of 40 mg/kg b.wt, twice weekly for 3 weeks. In group (III) "NC I/N group" mice were received nanoceria intranasally (40 mg/kg b.wt), twice weekly for 3 weeks. Results: Exposure to nanceria resulted in oxidative damage in brain tissue, a significant increase in malondialdehyde (MDA) and acetylcholinestrase (AchE) levels, significant decrease in reduced glutathione (GSH) concentration, upregulation in the apoptosis-related genes (c-Jun: c-Jun N-terminal kinases (JNKs), c-Fos: Fos protooncogene, AP-1 transcription factor subunit, c-Myc: c-myelocytomatosis oncogene product or MYC protooncogene, bHLH transcription factor), locomotor and cognitive impairment in mice but the effect was more obvious when nanoceria adminstred intraperitoneally. Conculsion: Nanoceria cause oxidative damage in brain tissue of mice when adminstred nanoceria intraperitoneally more than those received nanoceria intranasal.

6.
Front Plant Sci ; 15: 1398437, 2024.
Article in English | MEDLINE | ID: mdl-38966149

ABSTRACT

Papaya ringspot virus (PRSV) is one of the most devastating viruses of papaya that has significantly hampered papaya production across the globe. Although PRSV resistance is known in some of its wild relatives, such as Vasconcellea cauliflora and in some of the improved papaya genotypes, the molecular basis of this resistance mechanism has not been studied and understood. Plant microRNAs are an important class of small RNAs that regulate the gene expression in several plant species against the invading plant pathogens. These miRNAs are known to manifest the expression of genes involved in resistance against plant pathogens, through modulation of the plant's biochemistry and physiology. In this study we made an attempt to study the overall expression pattern of small RNAs and more specifically the miRNAs in different papaya genotypes from India, that exhibit varying levels of tolerance or resistance to PRSV. Our study found that the expression of some of the miRNAs was differentially regulated in these papaya genotypes and they had entirely different miRNA expression profile in healthy and PRSV infected symptomatic plants. This data may help in improvement of papaya cultivars for resistance against PRSV through new breeding initiatives or biotechnological approaches such as genome editing.

7.
Exp Biol Med (Maywood) ; 249: 10161, 2024.
Article in English | MEDLINE | ID: mdl-38966281

ABSTRACT

Osteosarcoma is a form of bone cancer that predominantly impacts osteoblasts, the cells responsible for creating fresh bone tissue. Typical indications include bone pain, inflammation, sensitivity, mobility constraints, and fractures. Utilising imaging techniques such as X-rays, MRI scans, and CT scans can provide insights into the size and location of the tumour. Additionally, a biopsy is employed to confirm the diagnosis. Analysing genes with distinct expression patterns unique to osteosarcoma can be valuable for early detection and the development of effective treatment approaches. In this research, we comprehensively examined the entire transcriptome and pinpointed genes with altered expression profiles specific to osteosarcoma. The study mainly aimed to identify the molecular fingerprint of osteosarcoma. In this study, we processed 90 FFPE samples from PathWest with an almost equal number of osteosarcoma and healthy tissues. RNA was extracted from Paraffin-embedded tissue; RNA was sequenced, the sequencing data was analysed, and gene expression was compared to the healthy samples of the same patients. Differentially expressed genes in osteosarcoma-derived samples were identified, and the functions of those genes were explored. This result was combined with our previous studies based on FFPE and fresh samples to perform a meta-analysis. We identified 1,500 identical differentially expressed genes in PathWest osteosarcoma samples compared to normal tissue samples of the same patients. Meta-analysis with combined fresh tissue samples identified 530 differentially expressed genes. IFITM5, MMP13, PANX3, and MAGEA6 were some of the most overexpressed genes in osteosarcoma samples, while SLC4A1, HBA1, HBB, AQP7 genes were some of the top downregulated genes. Through the meta-analysis, 530 differentially expressed genes were identified to be identical among FFPE (105 FFPE samples) and 36 fresh bone samples. Deconvolution analysis with single-cell RNAseq data confirmed the presence of specific cell clusters in FFPE samples. We propose these 530 DEGs as a molecular fingerprint of osteosarcoma.


Subject(s)
Bone Neoplasms , Gene Expression Profiling , Osteosarcoma , Osteosarcoma/genetics , Osteosarcoma/pathology , Humans , Gene Expression Profiling/methods , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Paraffin Embedding , Transcriptome/genetics , Gene Expression Regulation, Neoplastic , Tissue Fixation , Formaldehyde
8.
PEC Innov ; 4: 100302, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38966314

ABSTRACT

Objective: Machine learning models were employed to discern patients' impressions from the therapists' facial expressions during a virtual online video counselling session. Methods: Eight therapists simulated an online video counselling session for the same patient. The facial emotions of the therapists were extracted from the session videos; we then utilized a random forest model to determine the therapist's impression as perceived by the patients. Results: The therapists' neutral facial expressions were important controlling factors for patients' impressions. A predictive model with three neutral facial features achieved an accuracy of 83% in identifying patients' impressions. Conclusions: Neutral facial expressions may contribute to patient impressions in an online video counselling environment with spatiotemporal disconnection. Innovation: Expression recognition techniques were applied innovatively to an online counselling setting where therapists' expressions are limited. Our findings have the potential to enhance psychiatric clinical practice using Information and Communication Technology.

9.
J Endocr Soc ; 8(8): bvae121, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38966711

ABSTRACT

Obesity, characterized by the accumulation of excess fat, is a complex condition resulting from the combination of genetic and epigenetic factors. Recent studies have found correspondence between DNA methylation and cell differentiation, suggesting a role of the former in cell fate determination. There is a lack of comprehensive understanding concerning the underpinnings of preadipocyte differentiation, specifically when cells are undergoing terminal differentiation (TD). To gain insight into dynamic genome-wide methylation, 3T3 L1 preadipocyte cells were differentiated by a hormone cocktail. The genomic DNA was isolated from undifferentiated cells and 4 hours, 2 days postdifferentiated cells, and 15 days TD cells. We employed whole-genome bisulfite sequencing (WGBS) to ascertain global genomic DNA methylation alterations at single base resolution as preadipocyte cells differentiate. The genome-wide distribution of DNA methylation showed similar overall patterns in pre-, post-, and terminally differentiated adipocytes, according to WGBS analysis. DNA methylation decreases at 4 hours after differentiation initiation, followed by methylation gain as cells approach TD. Studies revealed novel differentially methylated regions (DMRs) associated with adipogenesis. DMR analysis suggested that though DNA methylation is global, noticeable changes are observed at specific sites known as "hotspots." Hotspots are genomic regions rich in transcription factor (TF) binding sites and exhibit methylation-dependent TF binding. Subsequent analysis indicated hotspots as part of DMRs. The gene expression profile of key adipogenic genes in differentiating adipocytes is context-dependent, as we found a direct and inverse relationship between promoter DNA methylation and gene expression.

10.
Front Psychol ; 15: 1350631, 2024.
Article in English | MEDLINE | ID: mdl-38966733

ABSTRACT

Core to understanding emotion are subjective experiences and their expression in facial behavior. Past studies have largely focused on six emotions and prototypical facial poses, reflecting limitations in scale and narrow assumptions about the variety of emotions and their patterns of expression. We examine 45,231 facial reactions to 2,185 evocative videos, largely in North America, Europe, and Japan, collecting participants' self-reported experiences in English or Japanese and manual and automated annotations of facial movement. Guided by Semantic Space Theory, we uncover 21 dimensions of emotion in the self-reported experiences of participants in Japan, the United States, and Western Europe, and considerable cross-cultural similarities in experience. Facial expressions predict at least 12 dimensions of experience, despite massive individual differences in experience. We find considerable cross-cultural convergence in the facial actions involved in the expression of emotion, and culture-specific display tendencies-many facial movements differ in intensity in Japan compared to the U.S./Canada and Europe but represent similar experiences. These results quantitatively detail that people in dramatically different cultures experience and express emotion in a high-dimensional, categorical, and similar but complex fashion.

11.
ACS Synth Biol ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968167

ABSTRACT

Genomic integration is commonly used to engineer stable production hosts. However, so far, for many microbial workhorses, only a few integration sites have been characterized, thereby restraining advanced strain engineering that requires multiple insertions. Here, we report on the identification of novel genomic integration sites, so-called landing pads, for Pseudomonas putida KT2440. We identified genomic regions with constant expression patterns under diverse experimental conditions by using RNA-Seq data. Homologous recombination constructs were designed to insert heterologous genes into intergenic sites in these regions, allowing condition-independent gene expression. Ten potential landing pads were characterized using four different msfGFP expression cassettes. An insulated probe sensor was used to study locus-dependent effects on recombinant gene expression, excluding genomic read-through of flanking promoters under changing cultivation conditions. While the reproducibility of expression in the landing pads was very high, the msfGFP signals varied strongly between the different landing pads, confirming a strong influence of the genomic context. To showcase that the identified landing pads are also suitable candidates for heterologous gene expression in other Pseudomonads, four equivalent landing pads were identified and characterized in Pseudomonas taiwanensis VLB120. This study shows that genomic "hot" and "cold" spots exist, causing strong promoter-independent variations in gene expression. This highlights that the genomic context is an additional parameter to consider when designing integrable genomic cassettes for tailored heterologous expression. The set of characterized genomic landing pads presented here further increases the genetic toolbox for deep metabolic engineering in Pseudomonads.

12.
J Plant Physiol ; 301: 154301, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38968782

ABSTRACT

Abscisic acid (ABA) and gibberellin (GA) are major regulators of seed dormancy, an adaptive trait closely associated with preharvest sprouting. This study examined transcriptional regulation of ABA and GA metabolism genes and modulation of ABA and GA levels in seeds of barley genotypes exhibiting a range of dormancy phenotype. We observed a very strong negative correlation between genetic variation in seed germination and embryonic ABA level (r = 0.85), which is regulated by transcriptional modulation of HvNCED1 and/or HvCYP707A genes. A strong positive correlation was evident between variation in seed germination and GA level (r = 0.64), mediated via transcriptional regulation of GA biosynthesis genes, HvGA20ox2 and/or HvGA3oxs, and GA catabolism genes, HvGA2ox3 and/or HvGA3ox6. Modulation of the ABA and GA levels in the genotypes led to the prevalence of ABA to GA level ratio that exhibited a very strong negative correlation (r = 0.84) with seed germination, highlighting the importance of a shift in ABA/GA ratio in determining genetic variation of dormancy in barley seeds. Our results overall show that transcriptional regulation of specific ABA and GA metabolism genes underlies genetic variation in ABA/GA ratio and seed dormancy, reflecting the potential use of these genes as molecular tools for enhancing preharvest sprouting resistance in barley.

13.
J Genet Genomics ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969260

ABSTRACT

The specification of germ cells in zebrafish mostly relies on an inherited mechanism by which localized maternal determinants, called germ plasm, confer germline fate in the early embryo. Extensive studies have partially allowed the identification of key regulators governing germ plasm formation and subsequent germ cell development. RNA-binding proteins, acting in concert with other germ plasm components, play essential roles in the organization of the germ plasm and the specification, migration, maintenance, and differentiation of primordial germ cells. The loss of their functions impairs germ cell formation and causes sterility or sexual conversion. Evidence is emerging that they instruct germline development through differential regulation of mRNA fates in somatic and germ cells. However, the challenge remains to decipher the complex interplay of maternal germ plasm components in germ plasm compartmentalization and germ cell specification. Since failure to control the developmental outcome of germ cells disrupts the formation of gametes, it is important to gain a complete picture of regulatory mechanisms operating in the germ cell lineage. This review sheds light on the contributions of RNA-binding proteins to germ cell development in zebrafish and highlights intriguing questions that remain open for future investigation.

15.
J Biosci Bioeng ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38969548

ABSTRACT

Human interferon gamma (hIFN-γ) plays a pivotal role as a soluble cytokine with diverse functions in both innate and adaptive immunity. In a previous investigation, we pinpointed three critical amino acid residues, i.e., threonine (T) 27, phenylalanine (F) 29, and leucine (L) 30, on the IFN-γ structure, which are integral to the epitope recognized by anti-IFN-γ autoantibodies. It is crucial to impede the interaction between this epitope and autoantibodies for effective therapy in adult-onset immunodeficiency (AOID). However, the challenge arises from the diminished solubility of the T27AF29L30A mutant in Escherichia coli BL21(DE3). This study delves into a targeted strategy aimed at improving the soluble expression of IFN-γ T27AF29AL30A. This is achieved through the utilization of five chaperone plasmids: pG-KJE8, pKJE7, pGro7, pG-Tf2, and pTf16. These plasmids, encoding cytoplasmic chaperones, are co-expressed with the IFN-γ mutant in E. coli BL21(DE3), and we meticulously analyze the proteins in cell lysate and inclusion bodies using SDS-PAGE and Western blotting. Our findings reveal the remarkable efficacy of pG-KJE8, which houses cytoplasmic chaperones DnaK-DnaJ-GrpE and GroEL-GroES, in significantly enhancing the solubility of IFN-γ T27AF29AL30A. Importantly, this co-expression not only addresses solubility concerns but also preserves the functional dimerized structure, as confirmed by sandwich ELISA. This promising outcome signifies a significant step forward in developing biologic strategies for AOID.

16.
Microb Cell Fact ; 23(1): 190, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956607

ABSTRACT

BACKGROUND: Carbonic anhydrase (CA) enzymes facilitate the reversible hydration of CO2 to bicarbonate ions and protons. Identifying efficient and robust CAs and expressing them in model host cells, such as Escherichia coli, enables more efficient engineering of these enzymes for industrial CO2 capture. However, expression of CAs in E. coli is challenging due to the possible formation of insoluble protein aggregates, or inclusion bodies. This makes the production of soluble and active CA protein a prerequisite for downstream applications. RESULTS: In this study, we streamlined the process of CA expression by selecting seven top CA candidates and used two bioinformatic tools to predict their solubility for expression in E. coli. The prediction results place these enzymes in two categories: low and high solubility. Our expression of high solubility score CAs (namely CA5-SspCA, CA6-SazCAtrunc, CA7-PabCA and CA8-PhoCA) led to significantly higher protein yields (5 to 75 mg purified protein per liter) in flask cultures, indicating a strong correlation between the solubility prediction score and protein expression yields. Furthermore, phylogenetic tree analysis demonstrated CA class-specific clustering patterns for protein solubility and production yields. Unexpectedly, we also found that the unique N-terminal, 11-amino acid segment found after the signal sequence (not present in its homologs), was essential for CA6-SazCA activity. CONCLUSIONS: Overall, this work demonstrated that protein solubility prediction, phylogenetic tree analysis, and experimental validation are potent tools for identifying top CA candidates and then producing soluble, active forms of these enzymes in E. coli. The comprehensive approaches we report here should be extendable to the expression of other heterogeneous proteins in E. coli.


Subject(s)
Carbonic Anhydrases , Computational Biology , Escherichia coli , Solubility , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/enzymology , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/genetics , Computational Biology/methods , Phylogeny , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Carbon Dioxide/metabolism
17.
Microb Cell Fact ; 23(1): 191, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956640

ABSTRACT

BACKGROUND: In this study, we isolated a cellulase-producing bacterium, Bacillus amyloliquefaciens strain elh, from rice peel. We employed two optimization methods to enhance the yield of cellulase. Firstly, we utilized a one-variable-at-a-time (OVAT) approach to evaluate the impact of individual physical and chemical parameters. Subsequently, we employed response surface methodology (RSM) to investigate the interactions among these factors. We heterologously expressed the cellulase encoding gene using a cloning vectorin E. coli DH5α. Moreover, we conducted in silico molecular docking analysis to analyze the interaction between cellulase and carboxymethyl cellulose as a substrate. RESULTS: The bacterial isolate eh1 exhibited an initial cellulase activity of 0.141 ± 0.077 U/ml when cultured in a specific medium, namely Basic Liquid Media (BLM), with rice peel as a substrate. This strain was identified as Bacillus amyloliquefaciens strain elh1 through 16S rRNA sequencing, assigned the accession number OR920278 in GenBank. The optimal incubation time was found to be 72 h of fermentation. Urea was identified as the most suitable nitrogen source, and dextrose as the optimal sugar, resulting in a production increase to 5.04 ± 0.120 U/ml. The peak activity of cellulase reached 14.04 ± 0.42 U/ml utilizing statistical optimization using Response Surface Methodology (RSM). This process comprised an initial screening utilizing the Plackett-Burman design and further refinement employing the BOX -Behnken Design. The gene responsible for cellulase production, egl, was effectively cloned and expressed in E. coli DH5α. The transformed cells exhibited a cellulase activity of 22.3 ± 0.24 U/ml. The egl gene sequence was deposited in GenBank with the accession number PP194445. In silico molecular docking revealed that the two hydroxyl groups of carboxymethyl cellulose bind to the residues of Glu169 inside the binding pocket of the CMCase. This interaction forms two hydrogen bonds, with an affinity score of -5.71. CONCLUSIONS: Optimization of cultural conditions significantly enhances the yield of cellulase enzyme when compared to unoptimized culturing conditions. Additionally, heterologous expression of egl gene showed that the recombinant form of the cellulase is active and that a valid expression system can contribute to a better yield of the enzyme.


Subject(s)
Bacillus amyloliquefaciens , Cellulase , Cloning, Molecular , Molecular Docking Simulation , Oryza , Cellulase/genetics , Cellulase/biosynthesis , Cellulase/metabolism , Bacillus amyloliquefaciens/enzymology , Bacillus amyloliquefaciens/genetics , Oryza/microbiology , Fermentation , Escherichia coli/genetics , Escherichia coli/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry
18.
BMC Vet Res ; 20(1): 283, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956647

ABSTRACT

BACKGROUND: The neuroimmune network plays a crucial role in regulating mucosal immune homeostasis within the digestive tract. Synaptosome-associated protein 25 (SNAP-25) is a presynaptic membrane-binding protein that activates ILC2s, initiating the host's anti-parasitic immune response. METHODS: To investigate the effect of Moniezia benedeni (M. benedeni) infection on the distribution of SNAP-25 in the sheep's small intestine, the recombinant plasmid pET-28a-SNAP-25 was constructed and expressed in BL21, yielding the recombinant protein. Then, the rabbit anti-sheep SNAP-25 polyclonal antibody was prepared and immunofluorescence staining was performed with it. The expression levels of SNAP-25 in the intestines of normal and M. benedeni-infected sheep were detected by ELISA. RESULTS: The results showed that the SNAP-25 recombinant protein was 29.3 KDa, the titer of the prepared immune serum reached 1:128,000. It was demonstrated that the rabbit anti-sheep SNAP-25 polyclonal antibody could bind to the natural protein of sheep SNAP-25 specifically. The expression levels of SNAP-25 in the sheep's small intestine revealed its primary presence in the muscular layer and lamina propria, particularly around nerve fibers surrounding the intestinal glands. Average expression levels in the duodenum, jejunum, and ileum were 130.32 pg/mg, 185.71 pg/mg, and 172.68 pg/mg, respectively. Under conditions of M. benedeni infection, the spatial distribution of SNAP-25-expressing nerve fibers remained consistent, but its expression level in each intestine segment was increased significantly (P < 0.05), up to 262.02 pg/mg, 276.84 pg/mg, and 326.65 pg/mg in the duodenum, jejunum, and ileum, and it was increased by 101.06%, 49.07%, and 89.16% respectively. CONCLUSIONS: These findings suggest that M. benedeni could induce the SNAP-25 expression levels in sheep's intestinal nerves significantly. The results lay a foundation for further exploration of the molecular mechanism by which the gastrointestinal nerve-mucosal immune network perceives parasites in sheep.


Subject(s)
Intestine, Small , Sheep Diseases , Synaptosomal-Associated Protein 25 , Animals , Sheep , Sheep Diseases/metabolism , Sheep Diseases/parasitology , Intestine, Small/metabolism , Synaptosomal-Associated Protein 25/metabolism , Synaptosomal-Associated Protein 25/genetics , Enteric Nervous System/metabolism , Rabbits
19.
Plant Methods ; 20(1): 100, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956683

ABSTRACT

BACKGROUND: Optimization of a highly efficient transient expression system is critical for the study of gene function, particularly in those plants in which stable transformation methods are not widely available. Agrobacterium tumefaciens­mediated transient transformation is a simple and low-cost method that has been developed and applied to a wide variety of plant species. However, the transient expression in spinach (Spinacia oleracea L.) is still not reported. RESULTS: We developed a transient expression system in spinach leaves of the Sp75 and Sp73 varieties. Several factors influencing the transformation efficiency were optimized such as Agrobacterium strain, spinach seedling stage, leaf position, and the expression time after injection. Agrobacterium strain GV3101 (pSoup-p19) was more efficient than AGL1 in expressing recombinant protein in spinach leaves. In general, Sp75 leaves were more suitable than Sp73 leaves, regardless of grow stage. At four-leaf stage, higher intensity and efficiency of transient expression were observed in group 1 (G1) of Sp75 at 53 h after injection (HAI) and in G1 of Sp73 at 64 HAI. At six-leaf stage of Sp75, group 3 (G3) at 72 HAI were the most effective condition for transient expression. Using the optimized expression system, we detected the subcellular localization of a transcriptional co-activator SoMBF1c and a NADPH oxidase SoRbohF. We also detected the interaction of the protein kinase SoCRK10 and the NADPH oxidase SoRbohB. CONCLUSION: This study established a method of highly efficient transient expression mediated by Agrobacterium in spinach leaves. The transient expression system will facilitate the analysis of gene function and lay a solid foundation for molecular design breeding of spinach.

20.
Genomics Inform ; 22(1): 10, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956704

ABSTRACT

Autoimmune disorders (ADs) are chronic conditions resulting from failure or breakdown of immunological tolerance, resulting in the host immune system attacking its cells or tissues. Recent studies report shared effects, mechanisms, and evolutionary origins among ADs; however, the possible factors connecting them are unknown. This study attempts to identify gene signatures commonly shared between different autoimmune disorders and elucidate their molecular pathways linking the pathogenesis of these ADs using an integrated gene expression approach. We employed differential gene expression analysis across 19 datasets of whole blood/peripheral blood cell samples with five different autoimmune disorders (rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, Crohn's disease, and type 1 diabetes) to get nine key genes-EGR1, RUNX3, SMAD7, NAMPT, S100A9, S100A8, CYBB, GATA2, and MCEMP1 that were primarily involved in cell and leukocyte activation, leukocyte mediated immunity, IL-17, AGE-RAGE signaling in diabetic complications, prion disease, and NOD-like receptor signaling confirming its role in immune-related pathways. Combined with biological interpretations such as gene ontology (GO), pathway enrichment, and protein-protein interaction (PPI) network, our current study sheds light on the in-depth research on early detection, diagnosis, and prognosis of different ADs.

SELECTION OF CITATIONS
SEARCH DETAIL
...