ABSTRACT
Population genetics theory predicts a relationship between fitness, genetic diversity (H0) and effective population size (Ne), which is often tested through heterozygosity-fitness correlations (HFCs). We tested whether population and individual fertility and heterozygosity are correlated in two endangered Mexican spruces (Picea martinezii and Picea mexicana) by combining genomic, demographic and reproductive data (seed development and germination traits). For both species, there was a positive correlation between population size and seed development traits, but not germination rate. Individual genome-wide heterozygosity and seed traits were only correlated in P. martinezii (general-effects HFC), and none of the candidate single nucleotide polymorphisms (SNPs) associated with individual fertility showed heterozygote advantage in any species (no local-effects HFC). We observed a single and recent (c. 30 thousand years ago (ka)) population decline for P. martinezii; the collapse of P. mexicana occurred in two phases separated by a long period of stability (c. 800 ka). Recruitment always contributed more to total population census than adult trees in P. mexicana, while this was only the case in the largest populations of P. martinezii. Equating fitness to either H0 or Ne, as traditionally proposed in conservation biology, might not always be adequate, as species-specific evolutionary factors can decouple the expected correlation between these parameters.
Subject(s)
Biological Evolution , Endangered Species , Forests , Genetic Fitness , Reproduction , Seeds , Trees , Trees/genetics , Trees/physiology , Seeds/genetics , Seeds/physiology , Seeds/growth & development , Reproduction/genetics , Picea/genetics , Picea/physiology , Picea/growth & development , Heterozygote , Germination/genetics , Polymorphism, Single Nucleotide/genetics , Population Density , Genetic VariationABSTRACT
The yellow-breasted capuchin monkey (Sapajus xanthosternos) is one of the seven Brazilian primates that are currently threatened with extinction. Although the species is known to be threatened by habitat loss, hunting, and illegal pet trade, few data exist on how these threats influence its long-term population persistence. We conducted population viability analyses (PVAs) to estimate minimum viable populations of S. xanthosternos under 10 threat scenarios (i.e., varying hunting pressure and varying number of infants captured for the pet trade) for five forest fragments with different estimated carrying capacities (K). We also estimated the minimum forest fragment size required to sustain viable populations living under the same 10 threat scenarios, based on critical numbers of K obtained in sensitivity tests, below which the population would be unviable. Our PVAs suggests that hunting has a higher impact on population viability in comparison to threats from the pet trade. Annual losses of adult and young females from hunting had the most detrimental effect on population persistence under all forest fragment sizes. Such hunting pressure is not sustainable for populations living in areas ≤3,460 ha, since these areas may not support populations of ≥84 individuals. The seven largest of the 13 protected areas currently harboring capuchins should be effective at maintaining viable populations in the long term even under the greatest threat scenarios we modeled. Other large forest patches, mainly in the western part of the species distribution, are recommended as priority areas for protection to increase the chances of capuchins' survival for the long term. In addition, forest fragments of ≤782.8 ha cannot maintain viable populations, even when there are no threats from hunting or from captures for the pet trade. Increased law enforcement is necessary to prevent the hunting and capture of capuchins, especially within larger forest fragments. Am. J. Primatol. 78:950-960, 2016. © 2016 Wiley Periodicals, Inc.
Subject(s)
Cebus , Forests , Animals , Brazil , Conservation of Natural Resources , Ecosystem , Endangered Species , Female , Male , Population DynamicsABSTRACT
Este artículo revisa tres de las principales causas de amenaza a la diversidad biológica, como son la fragmentación y pérdida del hábitat, así como la invasión de especies exóticas, principalmente en lo que compete a sus implicaciones evolutivas. Los efectos de la fragmentación y/o pérdida del hábitat pueden revisarse a la luz de la sinergia entre factores demográficos y genéticos que moldean cambios evolutivos o que llevan a las poblaciones al vórtice de la extinción. Las invasiones biológicas, aunque han generado pérdidas considerables en la diversidad biológica, ofrecen un escenario interesante para estudiar procesos evolutivos contemporáneos.
This paper reviews three of the main threats to biological diversity, such as habitat fragmentation /habitat loss, and invasion of exotic species, mainly from their evolutionary implications. Effects of habitat fragmentation/habitat loss could be addressed by looking at the synergy between demographic and genetic factors that together shape evolutionary changes or otherwise bring populations to extinction vortex. Biological invasions, in spite of their strong negative effects on biological diversity, offer an interesting scenario to study contemporary evolutionary processes.