ABSTRACT
The practice of refrigerating raw milk at the farm has provided a selective advantage for psychrotrophic bacteria that produce heat-stable proteases and lipases causing severe quality problems to the dairy industry. In this work, a protease (AprX) and a lipase (LipM) produced by Pseudomonas fluorescens 041, a highly proteolytic and lipolytic strain isolated from raw milk obtained from a Brazilian farm, have been purified and characterized. Both enzymes were purified as recombinant proteins from Escherichia coli . The AprX metalloprotease exhibited activity in a broad temperature range, including refrigeration, with a maximum activity at 37 °C. It was active in a pH range of 4.0 to 9.0. This protease had maximum activity with the substrates casein and gelatin in the presence of Ca (+2) . The LipM lipase had a maximum activity at 25 °C and a broad pH optimum ranging from 7.0 to 10. It exhibited the highest activity, in the presence of Ca (+2) , on substrates with long-chain fatty acid residues. These results confirm the spoilage potential of strain 041 in milk due to, at least in part, these two enzymes. The work highlights the importance of studies of this kind with strains isolated in Brazil, which has a recent history on the implementation of the cold chain at the dairy farm.
Subject(s)
Lipase/metabolism , Milk/microbiology , Peptide Hydrolases/metabolism , Pseudomonas fluorescens/isolation & purification , Animals , Brazil , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Lipase/chemistry , Lipase/genetics , Lipase/isolation & purification , Peptide Hydrolases/chemistry , Peptide Hydrolases/genetics , Peptide Hydrolases/isolation & purification , Pseudomonas fluorescens/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Refrigeration , Substrate Specificity , TemperatureABSTRACT
The practice of refrigerating raw milk at the farm has provided a selective advantage for psychrotrophic bacteria that produce heat-stable proteases and lipases causing severe quality problems to the dairy industry. In this work, a protease (AprX) and a lipase (LipM) produced by Pseudomonas fluorescens 041, a highly proteolytic and lipolytic strain isolated from raw milk obtained from a Brazilian farm, have been purified and characterized. Both enzymes were purified as recombinant proteins from Escherichia coli. The AprX metalloprotease exhibited activity in a broad temperature range, including refrigeration, with a maximum activity at 37 °C. It was active in a pH range of 4.0 to 9.0. This protease had maximum activity with the substrates casein and gelatin in the presence of Ca+2. The LipM lipase had a maximum activity at 25 °C and a broad pH optimum ranging from 7.0 to 10. It exhibited the highest activity, in the presence of Ca+2, on substrates with long-chain fatty acid residues. These results confirm the spoilage potential of strain 041 in milk due to, at least in part, these two enzymes. The work highlights the importance of studies of this kind with strains isolated in Brazil, which has a recent history on the implementation of the cold chain at the dairy farm.
Subject(s)
Animals , Lipase/metabolism , Milk/microbiology , Peptide Hydrolases/metabolism , Pseudomonas fluorescens/isolation & purification , Brazil , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Lipase/chemistry , Lipase/genetics , Lipase/isolation & purification , Peptide Hydrolases/chemistry , Peptide Hydrolases/genetics , Peptide Hydrolases/isolation & purification , Pseudomonas fluorescens/genetics , Refrigeration , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Substrate Specificity , TemperatureABSTRACT
The practice of refrigerating raw milk at the farm has provided a selective advantage for psychrotrophic bacteria that produce heat-stable proteases and lipases causing severe quality problems to the dairy industry. In this work, a protease (AprX) and a lipase (LipM) produced by Pseudomonas fluorescens 041, a highly proteolytic and lipolytic strain isolated from raw milk obtained from a Brazilian farm, have been purified and characterized. Both enzymes were purified as recombinant proteins from Escherichia coli. The AprX metalloprotease exhibited activity in a broad temperature range, including refrigeration, with a maximum activity at 37 °C. It was active in a pH range of 4.0 to 9.0. This protease had maximum activity with the substrates casein and gelatin in the presence of Ca+2. The LipM lipase had a maximum activity at 25 °C and a broad pH optimum ranging from 7.0 to 10. It exhibited the highest activity, in the presence of Ca+2, on substrates with long-chain fatty acid residues. These results confirm the spoilage potential of strain 041 in milk due to, at least in part, these two enzymes. The work highlights the importance of studies of this kind with strains isolated in Brazil, which has a recent history on the implementation of the cold chain at the dairy farm.(AU)
Subject(s)
Animals , Lipase/metabolism , Milk/microbiology , Peptide Hydrolases/metabolism , Pseudomonas fluorescens/isolation & purification , Enzyme Stability , Escherichia coli/geneticsABSTRACT
Extracellular lipases from the endophytic yeast Candida guilliermondii isolated from castor leaves (Ricinus communis L.) were produced using low-cost raw materials such as agro-industrial residues and applying them in the esterification of oleic acid for evaluating their potential use in biodiesel production. After partial purification using ammonium sulfate, the enzyme was characterized and presented higher activity (26.8 ± 1.5 U mL-1) in the presence of 5 mmol L-1 NaCl at 30 ºC and pH 6.5. The production through submerged fermentation was formerly performed in 150 mL erlenmeyer flasks and, once the enzyme production was verified, assays in a 14 L bioreactor were conducted, obtaining 18 ± 1.4 U mL-1. The produced enzyme was applied in the oleic acid esterification under different solvents: hexane, cyclohexane or cyclohexanone) and different acid:alcohol molar ratios. Higher ester conversion rate (81%) was obtained using hexane and the molar ratio of 1:9 was the best conditions using methanol. The results suggest the potential for development of endophytic yeast in the production of biocatalyst through submerged fermentation using agroindustrial residues as culture medium.
Subject(s)
Candida/enzymology , Candida/metabolism , Lipase/isolation & purification , Lipase/metabolism , Candida/growth & development , Candida/isolation & purification , Esterification , Endophytes/enzymology , Hydrogen-Ion Concentration , Oleic Acid/metabolism , Plant Leaves/microbiology , Ricinus/microbiology , Sodium Chloride/metabolismABSTRACT
Extracellular lipases from the endophytic yeast Candida guilliermondii isolated from castor leaves (Ricinus communis L.) were produced using low-cost raw materials such as agro-industrial residues and applying them in the esterification of oleic acid for evaluating their potential use in biodiesel production. After partial purification using ammonium sulfate, the enzyme was characterized and presented higher activity (26.8 ± 1.5 U mL-1) in the presence of 5 mmol L-1 NaCl at 30 ºC and pH 6.5. The production through submerged fermentation was formerly performed in 150 mL erlenmeyer flasks and, once the enzyme production was verified, assays in a 14 L bioreactor were conducted, obtaining 18 ± 1.4 U mL-1. The produced enzyme was applied in the oleic acid esterification under different solvents: hexane, cyclohexane or cyclohexanone) and different acid:alcohol molar ratios. Higher ester conversion rate (81%) was obtained using hexane and the molar ratio of 1:9 was the best conditions using methanol. The results suggest the potential for development of endophytic yeast in the production of biocatalyst through submerged fermentation using agroindustrial residues as culture medium.
Subject(s)
Candida/enzymology , Candida/metabolism , Lipase/isolation & purification , Lipase/metabolism , Candida/growth & development , Candida/isolation & purification , Culture Media/chemistry , Esterification , Endophytes/enzymology , Endophytes/growth & development , Endophytes/isolation & purification , Endophytes/metabolism , Hydrogen-Ion Concentration , Oleic Acid/metabolism , Plant Leaves/microbiology , Ricinus/microbiology , Sodium Chloride/metabolism , TemperatureABSTRACT
Extracellular lipases from the endophytic yeast Candida guilliermondii isolated from castor leaves (Ricinus communis L.) were produced using low-cost raw materials such as agro-industrial residues and applying them in the esterification of oleic acid for evaluating their potential use in biodiesel production. After partial purification using ammonium sulfate, the enzyme was characterized and presented higher activity (26.8 ± 1.5 U mL(-1)) in the presence of 5 mmol L(-1) NaCl at 30 °C and pH 6.5. The production through submerged fermentation was formerly performed in 150 mL erlenmeyer flasks and, once the enzyme production was verified, assays in a 14 L bioreactor were conducted, obtaining 18 ± 1.4 U mL(-1). The produced enzyme was applied in the oleic acid esterification under different solvents: hexane, cyclohexane or cyclohexanone) and different acid:alcohol molar ratios. Higher ester conversion rate (81%) was obtained using hexane and the molar ratio of 1:9 was the best conditions using methanol. The results suggest the potential for development of endophytic yeast in the production of biocatalyst through submerged fermentation using agroindustrial residues as culture medium.
Subject(s)
Candida/enzymology , Candida/metabolism , Lipase/isolation & purification , Lipase/metabolism , Candida/growth & development , Candida/isolation & purification , Culture Media/chemistry , Endophytes/enzymology , Endophytes/growth & development , Endophytes/isolation & purification , Endophytes/metabolism , Esterification , Hydrogen-Ion Concentration , Oleic Acid/metabolism , Plant Leaves/microbiology , Ricinus/microbiology , Sodium Chloride/metabolism , TemperatureABSTRACT
The purpose of the present study was to screen and identify the lipase-producing microorganisms from various regions of Iran. Samples collected from hot spring, Persian Gulf, desert area and oil-contaminated soil, were analyzed for thermophilic extracellular-lipase producing organisms. Six strains with high activity on rhodamine B plates were selected for chemical identification and further study. Among these isolated bacteria, four strains show higher activity in pH-Stat method at 55 °C. These strains were identified by PCR amplification of 16s rRNA genes using universal primers. Fermentation increased the activity up to 50%. The growth medium, designed for lipase production, increased the activity up to 4.55 folds. The crude supernatant of ZR-5 after fermentation and separation the cells, was lyophilized and the activity was measured. Total activity of this strain was 12 kU/g that shows its potential for industrial uses. Further study is required for purification of enzyme and calculation its specific activity. Immobilization is another approach should be considered.
Subject(s)
Bacteria/enzymology , Bacteria/isolation & purification , Lipase , Bacterial Typing Techniques , Bacteria/classification , Bacteria/genetics , Culture Media/chemistry , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Environmental Microbiology , Enzyme Stability , Hydrogen-Ion Concentration , Iran , Lipase/chemistry , Molecular Sequence Data , /genetics , Sequence Analysis, DNA , TemperatureABSTRACT
The purpose of the present study was to screen and identify the lipase-producing microorganisms from various regions of Iran. Samples collected from hot spring, Persian Gulf, desert area and oil-contaminated soil, were analyzed for thermophilic extracellular-lipase producing organisms. Six strains with high activity on rhodamine B plates were selected for chemical identification and further study. Among these isolated bacteria, four strains show higher activity in pH-Stat method at 55 °C. These strains were identified by PCR amplification of 16s rRNA genes using universal primers. Fermentation increased the activity up to 50%. The growth medium, designed for lipase production, increased the activity up to 4.55 folds. The crude supernatant of ZR-5 after fermentation and separation the cells, was lyophilized and the activity was measured. Total activity of this strain was 12 kU/g that shows its potential for industrial uses. Further study is required for purification of enzyme and calculation its specific activity. Immobilization is another approach should be considered.
Subject(s)
Bacteria/enzymology , Bacteria/isolation & purification , Lipase/metabolism , Bacteria/classification , Bacteria/genetics , Bacterial Typing Techniques , Culture Media/chemistry , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Environmental Microbiology , Enzyme Stability , Hydrogen-Ion Concentration , Iran , Lipase/chemistry , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , TemperatureABSTRACT
The purpose of the present study was to screen and identify the lipase-producing microorganisms from various regions of Iran. Samples collected from hot spring, Persian Gulf, desert area and oil-contaminated soil, were analyzed for thermophilic extracellular-lipase producing organisms. Six strains with high activity on rhodamine B plates were selected for chemical identification and further study. Among these isolated bacteria, four strains show higher activity in pH-Stat method at 55 °C. These strains were identified by PCR amplification of 16s rRNA genes using universal primers. Fermentation increased the activity up to 50%. The growth medium, designed for lipase production, increased the activity up to 4.55 folds. The crude supernatant of ZR-5 after fermentation and separation the cells, was lyophilized and the activity was measured. Total activity of this strain was 12 kU/g that shows its potential for industrial uses. Further study is required for purification of enzyme and calculation its specific activity. Immobilization is another approach should be considered.
ABSTRACT
A lipase-producing yeast strain isolated from crude cheese and identified as Trichosporon spp produced 7.3 U/mL (59.3 U/µg) after 72h of cultivation. Lipase showed optimum activity at pH 7.0-8.0 and 45-50ºC. Extraction by the two-phase aqueous system (PEG-phosphate salts) showed an elevated recuperation (99.8%) of enzymatic activity in the PEG phase.
Uma levedura produtora de lipase isolada de queijo coalho e identificada como Trichosporon spp produziu 7,3 U/mL (59,3 U/µg) após 72h de cultivo. A lipase mostrou atividade ótima em pH 7,0-8,0 e temperatura ótima entre 45-50ºC. Extração pelo sistema PEG - sais de fosfato apresentou 99,8% de recuperação da atividade enzimática na fase PEG.