Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 272
Filter
1.
Int J Mol Sci ; 25(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39125805

ABSTRACT

A previous study showed that high-glucose (HG) conditions induce mitochondria fragmentation through the calcium-mediated activation of extracellular signal-regulated kinase 1/2 (ERK 1/2) in H9C2 cells. This study tested whether empagliflozin could prevent HG-induced mitochondria fragmentation through this pathway. We found that exposing H9C2 cells to an HG concentration decreased cell viability and increased cell apoptosis and caspase-3. Empagliflozin could reverse the apoptosis effect of HG stimulation on H9C2 cells. In addition, the HG condition caused mitochondria fragmentation, which was reduced by empagliflozin. The expression of mitochondria fission protein was upregulated, and fusion proteins were downregulated under HG stimulation. The expression of fission proteins was decreased under empagliflozin treatment. Increased calcium accumulation was observed under the HG condition, which was decreased by empagliflozin. The increased expression of ERK 1/2 under HG stimulation was also reversed by empagliflozin. Our study shows that empagliflozin could reverse the HG condition, causing a calcium-dependent activation of the ERK 1/2 pathway, which caused mitochondria fragmentation in H9C2 cells.


Subject(s)
Apoptosis , Benzhydryl Compounds , Calcium , Glucose , Glucosides , MAP Kinase Signaling System , Mitochondria , Apoptosis/drug effects , Benzhydryl Compounds/pharmacology , Glucosides/pharmacology , Glucose/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Calcium/metabolism , Animals , Rats , Cell Line , MAP Kinase Signaling System/drug effects , Cell Survival/drug effects , Mitochondrial Dynamics/drug effects , Caspase 3/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 1/metabolism
2.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 495-504, 2024 Jun 18.
Article in Chinese | MEDLINE | ID: mdl-38864136

ABSTRACT

OBJECTIVE: To investigate the function and underlying mechanism of cysteine and glycine-rich protein 2 (CSRP2) in neuroblastoma (NB). METHODS: The correlation between the expression level of CSRP2 mRNA and the prognosis of NB children in NB clinical samples was analyzed in R2 Genomics Analysis and Visualization Platform. The small interfering RNA (siRNA) targeting CSRP2 or CSRP2 plasmid were transfected to NB cell lines SK-N-BE(2) and SH-SY5Y. Cell proliferation was observed by crystal violet staining and real-time cellular analysis. The ability of colony formation of NB cells was observed by colony-forming unit assay. Immunofluorescence assay was used to detect the expression of the proliferation marker Ki-67. Flow cytometry analysis for cell cycle proportion was used with cells stained by propidium iodide (PI). Annexin V/7AAD was used to stain cells and analyze the percentage of cell apoptosis. The ability of cell migration was determined by cell wound-healing assay. The level of protein and mRNA expression of CSRP2 in NB primary tumor and NB cell lines were detected by Western blot and quantitative real-time PCR (RT-qPCR). RESULTS: By analyzing the NB clinical sample databases, it was found that the expression levels of CSRP2 in high-risk NB with 3/4 stages in international neuroblastoma staging system (INSS) were significantly higher than that in low-risk NB with 1/2 INSS stages. The NB patients with high expression levels of CSRP2 were shown lower overall survival rate than those with low expression levels of CSRP2. We detected the protein levels of CSRP2 in the NB samples by Western blot, and found that the protein level of CSRP2 in 3/4 INSS stages was significantly higher than that in 1/2 INSS stages. Knockdown of CSRP2 inhibited cell viability and proliferation of NB cells. Overexpression of CSRP2 increased the proliferation of NB cells. Flow cytometry showed that the proportion of sub-G1, G0/G1 and S phase cells and Annexin V positive cells were increased after CSRP2 deficiency. In the cell wound-healing assay, the healing rate of NB cells was significantly attenuated after knockdown of CSRP2. Further mechanism studies showed that the proportion of the proliferation marker Ki-67 and the phosphorylation levels of extracellular signal-regulated kinases 1/2 (ERK1/2) were significantly decreased after CSRP2 knockdown. CONCLUSION: CSRP2 is highly expressed in high-risk NB with 3/4 INSS stages, and the expression levels of CSRP2 are negatively correlated with the overall survival of NB patients. CSRP2 significantly increased the proliferation and cell migration of NB cells and inhibited cell apoptosis via the activation of ERK1/2. All these results indicate that CSRP2 promotes the progression of NB by activating ERK1/2, and this study will provide a potential target for high-risk NB therapy.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Neuroblastoma , Humans , Neuroblastoma/metabolism , Neuroblastoma/pathology , Neuroblastoma/genetics , Cell Line, Tumor , RNA, Small Interfering/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Prognosis , Cell Cycle , Disease Progression , Ki-67 Antigen/metabolism , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics
3.
World J Gastrointest Oncol ; 16(5): 2123-2140, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38764835

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) regulate gene expression and play a critical role in cancer physiology. However, there is still a limited understanding of the function and regulatory mechanism of miRNAs in gastric cancer (GC). AIM: To investigate the role and molecular mechanism of miRNA-145-5p (miR145-5p) in the progression of GC. METHODS: Real-time polymerase chain reaction (RT-PCR) was used to detect miRNA expression in human GC tissues and cells. The ability of cancer cells to migrate and invade was assessed using wound-healing and transwell assays, respectively. Cell proliferation was measured using cell counting kit-8 and colony formation assays, and apoptosis was evaluated using flow cytometry. Expression of the epithelial-mesenchymal transition (EMT)-associated protein was determined by Western blot. Targets of miR-145-5p were predicated using bioinformatics analysis and verified using a dual-luciferase reporter system. Serpin family E member 1 (SERPINE1) expression in GC tissues and cells was evaluated using RT-PCR and immunohistochemical staining. The correlation between SERPINE1 expression and overall patient survival was determined using Kaplan-Meier plot analysis. The association between SERPINE1 and GC progression was also tested. A rescue experiment of SERPINE1 overexpression was conducted to verify the relationship between this protein and miR-145-5p. The mechanism by which miR-145-5p influences GC progression was further explored by assessing tumor formation in nude mice. RESULTS: GC tissues and cells had reduced miR-145-5p expression and SERPINE1 was identified as a direct target of this miRNA. Overexpression of miR-145-5p was associated with decreased GC cell proliferation, invasion, migration, and EMT, and these effects were reversed by forcing SERPINE1 expression. Kaplan-Meier plot analysis revealed that patients with higher SERPINE1 expression had a shorter survival rate than those with lower SERPINE1 expression. Nude mouse tumorigenesis experiments confirmed that miR-145-5p targets SERPINE1 to regulate extracellular signal-regulated kinase-1/2 (ERK1/2). CONCLUSION: This study found that miR-145-5p inhibits tumor progression and is expressed in lower amounts in patients with GC. MiR-145-5p was found to affect GC cell proliferation, migration, and invasion by negatively regulating SERPINE1 levels and controlling the ERK1/2 pathway.

4.
Gastric Cancer ; 27(3): 506-518, 2024 05.
Article in English | MEDLINE | ID: mdl-38386237

ABSTRACT

BACKGROUND: Advanced gastric cancer (GC) has a poor prognosis. This study aimed to identify novel GC-related genes as potential therapeutic targets. METHODS: Killer cell lectin-like receptor G2 (KLRG2) was identified as a candidate gene by transcriptome analysis of metastatic GC tissues. Small interfering RNA-mediated KLRG2 knockdown in human GC cell lines was used to investigate KLRG2 involvement in signaling pathways and functional behaviors in vitro and in vivo. Clinicopathological data were analyzed in patients stratified according to tumor KLRG2 mRNA expression. RESULTS: KLRG2 knockdown in GC cells decreased cell proliferation, migration, and invasion; caused cell cycle arrest in G2/M phase; induced apoptosis via caspase activation; suppressed JAK/STAT and MAPK-ERK1/2 pathway activities; and upregulated p53 and p38 MAPK activities. In mouse xenograft models of peritoneal metastasis, the number and weight of disseminated GC nodules were decreased by KLRG2 knockdown. High tumor levels of KLRG2 mRNA were significantly associated with lower 5-year overall survival (OS) and relapse-free survival (RFS) rates in patients with Stage I-III GC (5-year OS rate: 64.4% vs. 80.0%, P = 0.009; 5-year RFS rate: 62.8% vs. 78.1%, P = 0.030). CONCLUSIONS: KLRG2 knockdown attenuated the malignant phenotypes of GC cells via downregulation of JAK/STAT and MAPK-ERK1/2 pathway activity and upregulation of p38 MAPK and p53. Targeted suppression of KLRG2 may serve as a new treatment approach for GC.


Subject(s)
Janus Kinases , Stomach Neoplasms , Humans , Animals , Mice , Janus Kinases/genetics , Janus Kinases/metabolism , Signal Transduction , Stomach Neoplasms/pathology , MAP Kinase Signaling System , Tumor Suppressor Protein p53/genetics , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Cell Proliferation/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , RNA, Messenger/metabolism , Receptors, NK Cell Lectin-Like/genetics , Receptors, NK Cell Lectin-Like/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
5.
Biol Trace Elem Res ; 202(2): 493-503, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37237135

ABSTRACT

This study aimed to investigate the potential role of pyruvate kinase M2 (PKM2) and extracellular regulated protein kinase (ERK) in arsenic-induced cell proliferation. L-02 cells were treated with 0.2 and 0.4 µmol/L As3+, glycolysis inhibitor (2-deoxy-D-glucose,2-DG), ERK inhibitor [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)-butadiene, U0126] or transfected with PKM2 plasmid. Cell viability, proliferation, lactate acid production, and glucose intake capacity were determined by CCK-8 assay, EdU assay, lactic acid kit and 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]-D-glucose (2-NBDG) uptake kit, respectively. Also, levels of PKM2, phospho-PKM2S37, glucose transporter protein 1 (GLUT1), lactate dehydrogenase A (LDHA), ERK, and phospho-ERK were detected using Western blot and the subcellular localization of PKM2 in L-02 cells was detected by immunocytochemistry (ICC). Treatment with 0.2 and 0.4 µmol/L As3+ for 48 h increased the viability and proliferation of L-02 cells, the proportion of 2-NBDG+ cell and lactic acid in the culture medium, and GLUT1, LDHA, PKM2, phospho-PKM2S37, and phospho-ERK levels and PKM2 in nucleus. Compared with the 0.2 µmol/L As3+ treatment group, the lactic acid in the culture medium, cell proliferation and cell viability, and the expression of GLUT1 and LDHA were reduced in the group co-treated with siRNA-PKM2 and arsenic or in the group co-treated with U0126. Moreover, the arsenic-increased phospho-PKM2S37/PKM2 was decreased by U0126. Therefore, ERK/PKM2 plays a key role in the Warburg effect and proliferation of L-02 cells induced by arsenic, and also might be involved in arsenic-induced upregulation of GLUT1 and LDHA. This study provides a theoretical basis for further elucidating the carcinogenic mechanism of arsenic.


Subject(s)
Arsenic , Humans , Arsenic/toxicity , Arsenic/metabolism , Protein Kinases/metabolism , Glucose Transporter Type 1 , Cell Proliferation , Hepatocytes/metabolism , Glucose/pharmacology , Glucose/metabolism , Lactic Acid , Cell Line, Tumor
6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1036223

ABSTRACT

ObjectiveTo explore the effect and mechanism of the classic famous prescription Anmeidan (AMD) developed in the Qing Dynasty in regulating the hepatic neurotransmitters and circadian rhythm in the rat model of insomnia via the orexin-1 receptor (OX1R)/phosphatidylinositol-specific phospholipase Cβ-1 (PLCβ-1)/protein kinase Cα (PKCα)/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. MethodSixty SPF-grade SD rats were randomized into blank, model, suvorexant (30 mg·kg-1·d-1), and low-, medium-, and high-dose (4.55, 9.09, 18.09 g·kg-1·d-1, respectively) AMD groups, with 10 rats in each group. The rats in other groups except the blank group were modeled by intraperitoneal injection of p-chlorophenylalanine (PCPA) and administrated with corresponding drugs by gavage, and the blank group received an equal volume of normal saline. The general condition, body mass, and 24 h autonomic activity of each group were observed. The pathological changes of the liver tissue were observed by hematoxylin-eosin(HE)staining and Masson staining. The expression of gamma-aminobutyric acid (GABA), 5-hydroxytryptamine (5-HT), epinephrine (EPI), norepinephrine (NE), and acetylcholine (ACh) in the liver tissue was detected by enzyme-linked immunosorbent assay. The glutamate (Glu) expression in the liver tissue was detected by the biochemical method. The mRNA levels of biological clock genes Per1, Per2, Cry1, Cry2, Bmal1, and Bmal2 in the liver were determined by Real-time fluorescence quantitative polymerase chain reaction(Real-time PCR). The protein and mRNA levels of factors in the OX1R/PLCβ-1/PKCα/ERK1/2 signaling pathway in the liver were determined by Western blot and Real-time PCR, respectively. ResultCompared with the blank group, the modeling decreased the body mass (P<0.05, P<0.01) and caused mania and disturbed resting rhythms (P<0.01), hepatic muscle fiber fracture, and edema with inflammatory cell infiltration. In addition, the modeling decreased the GABA, 5-HT, EPI, NE, and ACh content, increased Glu content (P<0.01), down-regulated the mRNA levels of Per1, Per2, Cry1, and Cry2 (P<0.01), up-regulated the mRNA levels of Bmal1 and Bmal2 (P<0.01), and promoted the expression of OX1R, PLCβ-1, PKCα, and ERK1/2 at both protein and mRNA levels (P<0.01). Compared with the model group, suvorexant and AMD increased the body mass (P<0.05, P<0.01), alleviated the mania, and increased the resting time and frequency (P<0.05, P<0.01). Moreover, the medications elevated the levels of GABA, 5-HT, EPI, NE, and ACh, lowered the Glu level, up-regulated the mRNA levels of Per1, Per2, Cry1, and Cry2 (P<0.05, P<0.01), down-regulated the mRNA levels of Bmal1 and Bmal2, and inhibited the expression of OX1R, PLCβ-1, PKCα, and ERK1/2 at both mRNA and protein levels (P<0.05, P<0.01). ConclusionAMD can regulate hepatic neurotransmitters and improve circadian rhythm in insomniac rats by inhibiting the OX1R/PLCβ-1/PKCα/ERK1/2 signaling pathway, and high-dose AMD demonstrated the strongest effect.

7.
Eur J Ophthalmol ; 34(4): 1165-1173, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38099815

ABSTRACT

OBJECTIVE: This study analyzed how high glucose affects CSF1R and p-ERK1/2 expression in RF/6A cells. METHODS: The cells were cultured as high glucose (HG) and normal control (C) groups, and CSF1R shRNA was introduced. Real time PCR was used to detect the expression of CSF1R and p-ERK1/2 mRNA. Western blot was used to detect the expression of CSF1R and p-ERK1/2 proteins. Cell Counting Kit 8 (CCK-8) method was used to detect cell proliferation, while flow cytometry was used to detect apoptosis in HREC. RESULTS: Real-time PCR showed significantly raised CSF1R mRNA expression in HG. CSF1R inhibition lowered HG + LV shCSF1R CSF1R mRNA levels. Western blotting revealed higher CSF1R and p-ERK1/2 protein expression in HG than in C. Their expression level dropped after CSF1R inhibition. The number of tube-forming cells was higher in HG than in C, which reduced after CSF1R suppression. Inhibiting CSF1R also decreased cell proliferation and raised apoptosis. CONCLUSION: Overall, under high glucose, CSF1R and p-ERK1/2 were highly expressed, leading to reduced cellular activity, and CSF1R inhibition helped alleviate this effect.


Subject(s)
Apoptosis , Blotting, Western , Cell Proliferation , Glucose , MAP Kinase Signaling System , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Glucose/pharmacology , Cell Proliferation/drug effects , Apoptosis/drug effects , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , MAP Kinase Signaling System/physiology , Real-Time Polymerase Chain Reaction , Mitogen-Activated Protein Kinase 1/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Flow Cytometry , Animals , Gene Expression Regulation , Cell Line , Microglia/metabolism , Microglia/drug effects , Rats , Signal Transduction , RNA, Small Interfering/genetics
8.
Oncol Lett ; 26(6): 519, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37927415

ABSTRACT

Primary liver cancer is one of the most frequently diagnosed malignant tumors seen in clinics, and typically exhibits aggressive invasive behaviors, a poor prognosis, and is associated with high mortality rates. Long-term stress exposure causes norepinephrine (NE) release and activates the ß-Adrenergic receptor (ß-AR), which in turn exacerbates the occurrence and development of different types of cancers; however, the molecular mechanisms of ß-AR in liver cancer are not fully understood. In the present study, reverse transcription (RT)-PCR and RT-quantitative PCR showed that ß-AR expression was upregulated in human liver cancer cells (HepG2) compared with normal liver cells (LO2). Moreover, NE treatment promoted the growth of HepG2 cells, which could be blocked by propranolol, a ß-AR antagonist. Notably, NE had no significant effect on the migration and epithelial-mesenchymal transition in HepG2 cells. Further experiments revealed that NE increased the phosphorylation levels of the extracellular signal-regulated kinase 1/2 (ERK1/2) and cyclic adenosine monophosphate response element-binding protein (CREB), while inhibition of ERK1/2 and CREB activation significantly blocked NE-induced cell proliferation. In summary, the findings of the present study suggested that ß-adrenergic receptor activation promoted the proliferation of HepG2 cells through ERK1/2/CREB signaling pathways.

9.
Neurosci Lett ; 812: 137363, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37422020

ABSTRACT

The deregulated spinal cord proteins induced by nerve injury are the key to neuropathic pain. Integrated transcriptome and translatome analyses can screen out deregulated proteins controlled by only post-transcriptional regulation. By comparing RNA sequencing (RNA-seq) and ribosome profiling sequencing (Ribo-seq) data, we identified an upregulated protein, chromobox 2 (CBX2), with its mRNA level unchanged in the spinal cord after peripheral nerve injury. CBX2 was mainly distributed in the spinal cord neurons. Blocking the SNL-induced increase of spinal CBX2 attenuated the neuronal and astrocytes hyperactivities and pain hypersensitivities in both the development and maintenance phases. Conversely, mimicking the upregulation of CBX2 in the spinal cord facilitated the activities of neurons and astrocytes and produced evoked nociceptive hypersensitivity and spontaneous pain. Our results also revealed that activating the ERK pathway, upregulating CXCL13 in neurons, and CXCL13 further inducing astrocyte activation were possible downstream signaling mechanisms of CBX2 in pain processing. In conclusion, upregulation of CBX2 after nerve injury leads to nociceptive hyperalgesia by promoting neuronal and astrocyte hyperactivities through the ERK pathway. Inhibiting CBX2 upregulation may be therapeutically beneficial.


Subject(s)
MAP Kinase Signaling System , Neuralgia , Animals , Male , Mice , Astrocytes/metabolism , Hyperalgesia/metabolism , Neuralgia/metabolism , Neurons/metabolism , Signal Transduction , Spinal Cord/metabolism
10.
Zhen Ci Yan Jiu ; 48(5): 469-74, 2023 May 25.
Article in Chinese | MEDLINE | ID: mdl-37247860

ABSTRACT

OBJECTIVE: To observe the effects of electroacupuncture (EA) on the expression levels of N-methyl-D-aspartate receptor (NMDAR), extracellular signal-regulated kinase (ERK)1/2, p38 mitogen activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) in the spinal cord of rats with primary dysmenoramia (PDM), so as to explore the underlying mechanism of EA treating PDM. METHODS: Thirty female SD rats were randomly divided into normal group, model group and EA group, with 10 rats in each group. The PDM rat model was established by subcutaneous injection of estradiol benzoate and oxytocin into the thigh. At the same time of modeling, rats in the EA group were treated with EA (50 Hz) at "Sanyinjiao" (SP36) and "Guanyuan" (CV4) once daily, 20 min each time, for 10 consecutive days. The writhing times, writhing score and writhing latency were observed within 30 min after oxytocin injection. The uterine pathological morphology was observed by HE staining, and pathological score was calculated. Serum prostaglandin F2α (PGF2α) and prostaglandin E2 (PGE2) were determined by ELISA. The protein expression levels of NMDAR, ERK1/2, p38MAPK and JNK in spinal cord were detected by Western blot. RESULTS: Compared with the normal group, the writhing times and writhing score were significantly increased (P<0.05); the endometrial epithelial cells showed vacuolar degeneration, death and hyperemia, the uterine pathological score was increased (P<0.05); the content of serum PGF2α and the ratio of PGF2α/PGE2 were significantly increased (P<0.01), while the content of serum PGE2 was significantly decreased (P<0.01); the expression levels of NMDAR, ERK1/2, p38MAPK and JNK in spinal cord were significantly increased (P<0.05, P<0.01) in the model group. Compared with the model group, the writhing times and writhing score were significantly decreased (P<0.05), the writhing latency was prolonged (P<0.05); the endometrial epithelial cells still showed vacuolar degeneration, death and hyperemia, and the uterine pathological score was decreased (P<0.01); the content of serum PGF2α and the ratio of PGF2α/PGE2 were significantly decreased (P<0.01), while the content of serum PGE2 was significantly increased (P<0.01); the protein expression levels of ERK1/2 and JNK in spinal cord were significantly decreased (P<0.01) in the EA group. CONCLUSION: EA intervention at SP36 and GV4 has obvious analgesic effect on PDM rats, and its mechanisms may be related to reducing serum prostaglandin, alleviating uterine inflammation, and inhibiting the protein expressions of NMDAR, ERK1/2, p38 MAPK and JNK in spinal cord.


Subject(s)
Electroacupuncture , Hyperemia , Animals , Female , Rats , Acupuncture Points , Dinoprost , Dinoprostone , Dysmenorrhea/therapy , Mitogen-Activated Protein Kinases , Oxytocin , p38 Mitogen-Activated Protein Kinases , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/genetics , Spinal Cord
11.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(1): 155-160, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36861170

ABSTRACT

Extracellular signal-regulated kinase 1/2 (ERK1/2) is a serine/threoninekinase involved in the signal transduction cascade of Ras-Raf-mitogen-activated protein kinase (MEK)-ERK.It participates in the cell growth,proliferation and even invasion by regulating gene transcription and expression.The occurrence of a variety of diseases such as lung cancer,liver cancer,ovarian cancer,cervical cancer,endometriosis,and preeclampsia,as well the metastasis and disease progression,is closely associated with the regulation of cell invasion by ERK1/2 signaling pathway.Therefore,exploring the regulation of ERK1/2 signaling on cell invasion and its role in pathogenesis of diseases may help to develop more effective treatment schemes.This article introduces recent progress in the regulation of ERK1/2 signaling on cell invasion and the role of such regulation in diseases,with a view to give new insights into the clinical treatment of ERK 1/2-related diseases.


Subject(s)
Mitogen-Activated Protein Kinases , Signal Transduction , Female , Pregnancy , Humans , Mitogen-Activated Protein Kinase 3 , Cell Cycle , Cell Proliferation
12.
Int J Legal Med ; 137(4): 1245-1252, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36973587

ABSTRACT

Drowning is a common cause of accidental death worldwide, and it continues to be a serious public health problem. However, diagnosing drowning is a challenging task in forensic investigation because it is difficult to prove actual drowning and other submerged deaths with the autopsy techniques that are currently in use. Here, we show biomarkers that may be helpful for the diagnosis of drowning. We divided the experimental animals into four groups (drowning, postmortem submersion, hypoxia, and control) to evaluate the expression patterns of extracellular signal-regulated kinase 1/2 (ERK1/2). On gene expression analysis, only ERK2 was found to be significantly increased in the drowning groups compared to the other cases. In the immunoblot analysis, phosphorylated ERK2 (p-ERK2) was found to be upregulated in the drowning groups. Immunohistochemical staining also showed that p-ERK in alveolar cells revealed a granular pattern in the drowning groups. However, the expression pattern of ERK2 over time after drowning differed between the freshwater and seawater drowning groups. Taken together, these results indicate that ERK2 may be useful for distinguishing between drowning and postmortem submersion if the postmortem interval (PMI) of drowning is short. Conversely, if the PMI is long from the time that death occurs until the discovery of dead bodies, it is possibly more helpful for identifying between freshwater and seawater drowning.


Subject(s)
Drowning , Animals , Drowning/diagnosis , Mitogen-Activated Protein Kinase 1 , Forensic Medicine , Autopsy , Biomarkers/metabolism , Forensic Pathology
13.
Biochem Biophys Rep ; 34: 101436, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36824069

ABSTRACT

Erb-b2 receptor tyrosine kinase 2 (ErbB2) is an oncogene that frequently overexpressed in a subset of cancers. Anti-ErbB2 therapies have been developed to treat these types of cancers. However, less is known about how anti-ErbB2 drugs affect the trafficking and degradation of ErbB2. We demonstrate that the reversible and irreversible tyrosine kinase inhibitors (TKIs) differentially modulate the subcellular trafficking and downregulation of ErbB2. Only the irreversible TKIs can induce the loss of ErbB2 expression, which is not dependent on proteasome or lysosome. The irreversible TKIs promote ErbB2 endocytosis from plasma membrane and enhance the ErbB2 accumulation at endosomes. The endocytosis of ErbB2 is mediated by a dynamin-dependent but clathrin-independent mechanism. Blocking of ErbB2 endocytosis can impair the TKI-induced ErbB2 downregulation.

14.
Eur J Med Res ; 28(1): 99, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36841777

ABSTRACT

BACKGROUND: Hyperbaric oxygen (HBO) plays positive roles in the therapy of traumatic brain injury (TBI); however, the mechanism underlying its effects on TBI is largely unknown. The study aims to elucidate the molecular mechanism implicated with the interaction between platelet-derived growth factor-BB (PDGF-BB) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway, which may play critical roles during HBO treatment both in the astrocyte scratching model in vitro and rat TBI model in vivo. METHODS: Changes in neurological function and wound healing were evaluated using the neurological severity scores (NSS) scale, immunohistochemistry, western blotting, and qRT-PCR, respectively. RESULTS: The results showed that PDGF-BBi (PDGB interfered with small RNA) dramatically improves neuronal viability in vitro when transfected into the scratched astrocytes derived from the cerebral cortex of neonatal rats. Moreover, in vivo experiments revealed that HBO therapy substantially elevated the NSS scores and simultaneously reduced the mortality in TBI rats, as indicated by the NSS scales. Notably, HBO therapy was found to possess the ability to inhibit glial cell proliferation, promote the regeneration of neurons and synapses, and ultimately facilitate the wound healing, as revealed by immunohistochemistry and glial scar formation found in TBI rats. Importantly, HBO markedly decreased the expression levels of PDGF-BB and ERK1/2. It can clearly be seen that downregulated PDGF-BB and ERK1/2 levels were corresponding with the status of significant amelioration of the therapeutic effect of HBO. Conversely, the upregulation of PDGF-BB and ERK1/2 levels was in line with the opposite effect. CONCLUSION: It has been concluded that HBO therapy may play its active role in TBI treatment dependent on astrogliosis inhibition, which may be achieved by downregulating the ERK1/2 signaling pathway mediated by PDGF-BB.


Subject(s)
Brain Injuries, Traumatic , Hyperbaric Oxygenation , Rats , Animals , Becaplermin/pharmacology , Hyperbaric Oxygenation/methods , Gliosis , Mitogen-Activated Protein Kinase 3/pharmacology , MAP Kinase Signaling System , Signal Transduction , Oxygen , Cells, Cultured
15.
Neural Regen Res ; 18(8): 1743-1749, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36751800

ABSTRACT

Ischemic stroke can cause blood-brain barrier (BBB) injury, which worsens brain damage induced by stroke. Abnormal expression of tight junction proteins in endothelial cells (ECs) can increase intracellular space and BBB leakage. Selective inhibition of mitogen-activated protein kinase, the negative regulatory substrate of mitogen-activated protein kinase phosphatase (MKP)-1, improves tight junction protein function in ECs, and genetic deletion of MKP-1 aggravates ischemic brain injury. However, whether the latter affects BBB integrity, and the cell type-specific mechanism underlying this process, remain unclear. In this study, we established an adult male mouse model of ischemic stroke by occluding the middle cerebral artery for 60 minutes and overexpressed MKP-1 in ECs on the injured side via lentiviral transfection before stroke. We found that overexpression of MKP-1 in ECs reduced infarct volume, reduced the level of inflammatory factors interleukin-1ß, interleukin-6, and chemokine C-C motif ligand-2, inhibited vascular injury, and promoted the recovery of sensorimotor and memory/cognitive function. Overexpression of MKP-1 in ECs also inhibited the activation of cerebral ischemia-induced extracellular signal-regulated kinase (ERK) 1/2 and the downregulation of occludin expression. Finally, to investigate the mechanism by which MKP-1 exerted these functions in ECs, we established an ischemic stroke model in vitro by depriving the primary endothelial cell of oxygen and glucose, and pharmacologically inhibited the activity of MKP-1 and ERK1/2. Our findings suggest that MKP-1 inhibition aggravates oxygen and glucose deprivation-induced cell death, cell monolayer leakage, and downregulation of occludin expression, and that inhibiting ERK1/2 can reverse these effects. In addition, co-inhibition of MKP-1 and ERK1/2 exhibited similar effects to inhibition of ERK1/2. These findings suggest that overexpression of MKP-1 in ECs can prevent ischemia-induced occludin downregulation and cell death via deactivating ERK1/2, thereby protecting the integrity of BBB, alleviating brain injury, and improving post-stroke prognosis.

16.
Cell Commun Signal ; 21(1): 17, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36691021

ABSTRACT

BACKGROUND: The inflammatory response induced by intestinal ischaemia‒reperfusion injury (I/R) is closely associated with infectious complications and mortality in critically ill patients, and the timely and effective clearance of apoptotic cells is an important part of reducing the inflammatory response. Studies have shown that the efferocytosis by phagocytes plays an important role. Recently, studies using small intestine organoid models showed that macrophage efferocytosis could promote the repair capacity of the intestinal epithelium. However, no studies have reported efferocytosis in the repair of I/R in animal models. RESULTS: We used an in vivo efferocytosis assay and discovered that macrophage efferocytosis played an indispensable role in repairing and maintaining intestinal barrier function after I/R. In addition, the specific molecular mechanism that induced macrophage efferocytosis was Cth-ERK1/2 dependent. We found that Cth drove macrophage efferocytosis in vivo and in vitro. Overexpression/silencing Cth promoted/inhibited the ERK1/2 pathway, respectively, which in turn affected efferocytosis and mediated intestinal barrier recovery. In addition, we found that the levels of Cth and macrophage efferocytosis were positively correlated with the recovery of intestinal function in clinical patients. CONCLUSION: Cth can activate the ERK1/2 signalling pathway, induce macrophage efferocytosis, and thus promote intestinal barrier repair. Video Abstract.


Subject(s)
Cystathionine gamma-Lyase , Intestines , MAP Kinase Signaling System , Macrophages , Animals , Cystathionine gamma-Lyase/metabolism , Macrophages/metabolism , Phagocytosis , Signal Transduction , Humans , Mice , Intestines/injuries , Intestines/physiology
17.
Am J Respir Cell Mol Biol ; 68(3): 314-325, 2023 03.
Article in English | MEDLINE | ID: mdl-36378826

ABSTRACT

TRPA1 (transient receptor potential ankyrin 1) is a nonselective Ca2+-permeable cation channel, which was originally cloned from human lung fibroblasts (HLFs). TRPA1-mediated Ca2+ entry is evoked by exposure to several chemicals, including allyl isothiocyanate (AITC), and a protective effect of TRPA1 activation in the development of cardiac fibrosis has been proposed. Yet the function of TRPA1 in TGF-ß1 (transforming growth factor-ß1)-driven fibroblast-to-myofibroblast differentiation and the development of pulmonary fibrosis remains elusive. TRPA1 expression and function were analyzed in cultured primary HLFs, and mRNA concentrations were significantly reduced after adding TGF-ß1. Expression of genes encoding fibrosis markers (e.g., ACTA2, SERPINE1 [plasminogen activator inhibitor 1], FN1 [fibronectin], COL1A1 [type I collagen]) was increased after siRNA-mediated downregulation of TRPA1 mRNA in HLFs. Moreover, AITC-induced Ca2+ entry in HLFs was decreased after TGF-ß1 treatment and by application of TRPA1 siRNAs, while AITC treatment alone did not reduce cell viability or enhance apoptosis. Most interestingly, AITC-induced TRPA1 activation augmented ERK1/2 (extracellular signal-regulated kinase 1/2) and SMAD2 linker phosphorylation, which might inhibit TGF-ß-receptor signaling. Our results suggest an inhibitory function of TRPA1 channels in TGF-ß1-driven fibroblast-to-myofibroblast differentiation. Therefore, activation of TRPA1 channels might be protective during the development of pulmonary fibrosis in patients.


Subject(s)
Pulmonary Fibrosis , Transforming Growth Factor beta1 , Humans , Transforming Growth Factor beta1/metabolism , Pulmonary Fibrosis/pathology , Myofibroblasts/metabolism , Fibroblasts/metabolism , Cell Differentiation/physiology , Fibrosis , RNA, Messenger/genetics , Cells, Cultured , TRPA1 Cation Channel/metabolism
18.
Article in English | MEDLINE | ID: mdl-36414184

ABSTRACT

The rabbitfish Siganus canaliculatus is the first marine teleost reported to possess long-chain polyunsaturated fatty acids (LC-PUFA) biosynthetic ability; its regulatory mechanisms have been investigated at the transcriptional and posttranscriptional levels, but little is known about its regulation at the cellular signaling level. The present study investigated the regulatory role of the G-protein-coupled receptor 120 (GPR120) signaling pathway in LC-PUFA biosynthesis in rabbitfish. S. canaliculatus hepatocyte line (SCHL) cells treated with GRP120 agonists (TUG891 and GW9508) showed significantly lower docosahexaenoic acid (DHA) content and mRNA levels of the key genes involved in LC-PUFA biosynthesis, encoding Δ6/Δ5 Fads2, Elovl5, and transcriptional factor Srebp1c. Transcriptome analysis of the treated SCHL cells showed significantly lower mRNA levels of genes encoding extracellular signal-regulated kinase 1 (ERK1), AMP-activated protein kinase (AMPKα2), target of rapamycin (TORC2) and Srebp1c, suggesting that these proteins are potentially involved in the GRP120 signaling pathway. Moreover, treatment of SCHL cells with signaling chemicals of ERK1, AMPKα2, TORC2, and Srebp1c confirmed the involvement of the ERK1-Srebp1c signaling pathway in the regulation of LC-PUFA biosynthesis. The mRNA levels of Srebp1c, Δ6/Δ5 fads2 and elovl5 were significantly lower in cells treated with PUFAs (linoleic acid, α-linolenic acid, arachidonic acid, eicosapentaenoic acid, DHA) but higher in those treated with ERK1 inhibitors (U0126 and CI-1040). CI-1040-treated cells showed significantly higher DHA content, but the other treatment groups (except PD98059) showed significantly lower DHA content. These results indicate that the GPR120-ERK1-Srebp1c signaling pathway regulates rabbitfish LC-PUFA biosynthesis, representing a novel regulatory mechanism in vertebrates.


Subject(s)
Fish Proteins , Fishes , Animals , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Fishes/genetics , Fishes/metabolism , Fatty Acids, Unsaturated/metabolism , Signal Transduction , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/metabolism , RNA, Messenger/metabolism , Receptors, G-Protein-Coupled , Mechanistic Target of Rapamycin Complex 2/metabolism , Fatty Acid Desaturases/genetics
19.
Thyroid ; 33(2): 251-260, 2023 02.
Article in English | MEDLINE | ID: mdl-36333931

ABSTRACT

Background: Thyrotropin-releasing hormone (TRH) is primarily produced in the hypothalamus and regulates the thyrotropin secretion from the pituitary. TRH is distributed ubiquitously in the extrahypothalamic region, especially in pancreatic islets, while its physiological role remains nebulous. We have previously established a TRH-deficient mouse model, and showed impaired glucose tolerance and downregulated expression of fibroblast growth factor 21 (FGF21) in islets. Recent studies have demonstrated the physiological roles of pancreatic FGF21. Therefore, in this study, we elucidate the direct functions of TRH in pancreatic islets via the regulation of FGF21. Methods: To explore the functions of TRH in pancreatic islets, a microarray analysis using isolated islets from TRH-knockout mice was conducted. The regulatory mechanism of TRH in pancreatic FGF21 was investigated using islet cell lines; reverse transcription-quantitative polymerase chain reaction and Western blotting were used to determine the mRNA and protein expression levels of FGF21 in pancreatic islets and islet cell lines. Induction of FGF21 expression by TRH treatment was examined in vitro. To identify the transcription factors binding to the region responsible for TRH-induced stimulation of the FGF21 promoter, electromobility shift assays were conducted. Results: Among the detected and considerably changed genes in microarray, FGF21 was the most consistently downregulated in TRH-deficient mice islets. FGF21 was strongly co-expressed with insulin in mouse islets, and TRH stimulated endogenous Fgf21 mRNA expression in the islet cell line ßHC9. The E-box site in the FGF21 promoter was responsible for TRH-induced stimulation via the extracellular signal-regulated kinase (ERK)1/2 signaling pathway. The transcription factor upstream stimulatory factor 1 (USF1) could specifically bind to the E-box site. Overexpression of USF1 increased FGF21 promoter activity. Conclusion: FGF21 was transcriptionally upregulated by TRH through the ERK1/2 and USF1 pathways in pancreatic ß cells.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Mice , Animals , Thyrotropin-Releasing Hormone/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , RNA, Messenger/metabolism
20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-970461

ABSTRACT

Extracellular signal-regulated kinase 1/2 (ERK1/2) is a serine/threoninekinase involved in the signal transduction cascade of Ras-Raf-mitogen-activated protein kinase (MEK)-ERK.It participates in the cell growth,proliferation and even invasion by regulating gene transcription and expression.The occurrence of a variety of diseases such as lung cancer,liver cancer,ovarian cancer,cervical cancer,endometriosis,and preeclampsia,as well the metastasis and disease progression,is closely associated with the regulation of cell invasion by ERK1/2 signaling pathway.Therefore,exploring the regulation of ERK1/2 signaling on cell invasion and its role in pathogenesis of diseases may help to develop more effective treatment schemes.This article introduces recent progress in the regulation of ERK1/2 signaling on cell invasion and the role of such regulation in diseases,with a view to give new insights into the clinical treatment of ERK 1/2-related diseases.


Subject(s)
Female , Pregnancy , Humans , Mitogen-Activated Protein Kinase 3 , Signal Transduction , Mitogen-Activated Protein Kinases , Cell Cycle , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL