Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Diseases ; 12(9)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39329867

ABSTRACT

The COVID-19 epidemic had a profound impact on global health and the economy and Ghana was no exception to its far-reaching consequences. Regarding detection of the causative agent-the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), reverse-transcription-qPCR (RT-qPCR) is widely recognized as a very sensitive and reliable diagnostic technique used globally. There are, however, high operational costs in acquiring test kits, equipment, and accessories for RT-qPCR testing, which pose significant challenges in resource-limited settings. Hence, this proof-of-concept study set out to develop a more affordable COVID-19 protocol for use in low or lower-middle-income settings, such as Ghana, that would bypass the traditional extraction process using inexpensive reagents and evaluate the possibility of processing samples collected using wooden shaft swabs. Several less expensive media were used for the extraction-free process. Results demonstrated that direct RT-qPCR assay after 5 min heat inactivation of virus at 95 °C in 0.1× PBS or molecular grade water resulted in viral detection with quantification cycle (Cq) values that are comparable to results obtained following the extraction process. Also, wooden shaft swabs could be used for sampling if incubation times are kept to less than 6 h. The study demonstrates that extraction-free protocols are one way to minimize the cost of COVID-19 testing by RT-qPCR.

2.
Int J Mol Sci ; 25(16)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39201783

ABSTRACT

This study comprehensively evaluated the DNA/RNA Defend Pro (DRDP) sample collection buffer, designed to inactivate and stabilize patient samples. The primary objectives were to assess DRDP's efficacy in ensuring sample stability, facilitating extraction-free polymerase chain reaction (PCR), and ensuring compatibility with rapid antigen testing (RAT). Ninety-five diagnostic nasopharyngeal swab samples tested for influenza virus (influenza A), respiratory syncytial virus (RSV A), and/or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were 10-fold diluted with DRDP and anonymized. Initial characterization and retesting of these samples using cobas Liat confirmed 88 samples as positive, validating the presence of viral targets. Results from rapid antigen testing showed lower sensitivity compared to nucleic acid amplification testing (NAAT) but maintained perfect specificity, with 40 out of 88 positive samples by cobas Liat also testing positive for RAT. Direct RT-qPCR of DRDP-diluted samples demonstrated robust compatibility, with 72 out of 88 samples positive for cobas Liat also testing positive by direct RT-qPCR. Non-concordant results could be explained by the 200-fold lower input of extraction-free NAAT. Stability testing involved incubating 31 positive samples at 4 °C, 20 °C, and 37 °C for 7 days, with extraction-free NAAT. DRDP guaranteed viral RNA stability at all temperatures for influenza A, SARS-CoV-2, and RSV A, showing stability up to 7 days at 4 °C. In conclusion, DRDP is an effective stabilizing medium compatible with direct RT-qPCR and rapid antigen testing and shows great potential for optimizing diagnostic processes, particularly in resource-limited or time-sensitive scenarios.


Subject(s)
Nasopharynx , SARS-CoV-2 , Specimen Handling , Nasopharynx/virology , Humans , Specimen Handling/methods , SARS-CoV-2/isolation & purification , SARS-CoV-2/immunology , SARS-CoV-2/genetics , RNA, Viral/analysis , RNA, Viral/isolation & purification , RNA, Viral/genetics , Buffers , Influenza A virus/isolation & purification , Influenza A virus/immunology , Influenza A virus/genetics , Sensitivity and Specificity , COVID-19/diagnosis , COVID-19/virology , Antigens, Viral/analysis , Influenza, Human/diagnosis , Influenza, Human/virology
4.
J Virol Methods ; 296: 114217, 2021 10.
Article in English | MEDLINE | ID: mdl-34171343

ABSTRACT

Due to the coronavirus disease 2019 pandemic, the demand for an easily accessible high-throughput screening test is increasing. We aimed to evaluate the usefulness of the extrac-tion-free polymerase chain reaction (PCR) as a screening test to detect severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Real-time reverse transcription PCR was performed in 300 samples (260 SARS-CoV-2 positives and 40 negatives), using both the conventional nucleic acid extraction method (standard method) and the direct method without nucleic acid extraction (direct method). The overall agreement between the standard and direct methods was 86.8 % (kappa 0.60), and the sensitivity of the direct method compared to the standard method was 85.4 %. When the cycle threshold (Ct) value was less than 35, the sensitivity was approximately 90 %-98 %, and when Ct exceeded 35, it decreased to approximately 60 %-65 %. The extraction-free PCR could be useful as a screening test that processes many samples in a short time.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , COVID-19/virology , Humans , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
5.
Am J Clin Pathol ; 156(1): 24-33, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33940605

ABSTRACT

OBJECTIVES: We conducted an analytic and clinical comparison of a novel high-definition polymerase chain reaction PCR (HDPCR) assay to traditional real-time PCR (RT-PCR) for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in upper respiratory specimens. METHODS: Analytic performance of RT-PCR, HDPCR, and extraction-free HDPCR was established through replicate testing of a serially diluted clinical specimen containing SARS-CoV-2. A clinical comparison of all 3 assays was conducted using 351 prospectively collected upper respiratory swab specimens obtained from symptomatic and asymptomatic individuals collected in various transport media. RESULTS: RT-PCR and HDPCR assays using extracted nucleic acid demonstrated similar analytic limits of detection (LoD) and clinical performance, with 100% positive and negative agreement. Extraction-free HDPCR demonstrated a 1.5 to 2.0 log10 increase in LoD based on cycle threshold values. However, clinical performance of extraction-free HDPCR remained high, demonstrating 97.8% positive and 99.6% negative agreement with RT-PCR. An overall increase in "invalid" and "presumptive" results was observed when using the extraction-free method, but this was highly variable based on transport medium used. CONCLUSIONS: HDPCR performs similar to RT-PCR for the detection of SARS-CoV-2. The use of an extraction-free HDPCR protocol maintained high clinical performance despite reduced analytic LoD, with the benefit of reduced hands-on time and cost of reagents associated with nucleic acid extraction.


Subject(s)
COVID-19/genetics , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing/methods , Humans , Limit of Detection , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/pathogenicity , Sensitivity and Specificity , Specimen Handling/methods
SELECTION OF CITATIONS
SEARCH DETAIL