Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 843
Filter
1.
Molecules ; 29(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999009

ABSTRACT

Skin aging is an inevitable and intricate process instigated, among others, by oxidative stress. The search for natural sources that inhibit this mechanism is a promising approach to preventing skin aging. The purpose of our study was to evaluate the composition of phenolic compounds in the micellar extract of Phaseolus vulgaris sprouts. The results of a liquid chromatography-mass spectrometry (LC-MS) analysis revealed the presence of thirty-two constituents, including phenolic acids, flavanols, flavan-3-ols, flavanones, isoflavones, and other compounds. Subsequently, the extract was assessed for its antioxidant, anti-inflammatory, anti-collagenase, anti-elastase, anti-tyrosinase, and cytotoxic properties, as well as for the evaluation of collagen synthesis. It was demonstrated that micellar extract from common bean sprouts has strong anti-aging properties. The performed WST-8 (a water-soluble tetrazolium salt) assay revealed that selected concentrations of extract significantly increased proliferation of human dermal fibroblasts compared to the control cells in a dose-dependent manner. A similar tendency was observed with respect to collagen synthesis. Our results suggest that micellar extract from Phaseolus vulgaris sprouts can be considered a promising anti-aging compound for applications in cosmetic formulations.


Subject(s)
Antioxidants , Fibroblasts , Phaseolus , Phytochemicals , Plant Extracts , Phaseolus/chemistry , Humans , Phytochemicals/pharmacology , Phytochemicals/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Fibroblasts/drug effects , Skin Aging/drug effects , Cell Proliferation/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
2.
Plants (Basel) ; 13(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38999672

ABSTRACT

The baru (Dipteryx alata Vog.), a fruit native to the Cerrado biome, is well-known for its almonds, which are extensively exploited and exported. Unfortunately, the remaining parts of this fruit are often discarded. This study investigates the fixed chemical constituents of the baru, including the bark, pulp, endocarp, and almonds, using the PS-MS technique in positive and negative ionization modes. Notably, this research presents the first chemical profile of baru almonds in both their raw and roasted states. The analysis identified 57 compounds reported for the first time in a baru and 24 common compounds. The majority of these compounds are classified as flavonoids. In both ionization modes, the peel exhibited a higher proportion of phenolic compounds, although the chemical compounds varied among the peel, pulp, almond, and endocarp. These findings highlight the perspective of bioeconomy and biotechnology. By staggering baru fruit production alongside extractivists, we can optimize the utilization of all parts of the fruit. Furthermore, given the knowledge of the biological properties of flavonoids and the baru composition, we recommend additional studies to analyze their potential in preventing chronic non-communicable diseases.

3.
Phytochemistry ; 226: 114204, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971498

ABSTRACT

From the root barks of a Central African tree Millettia dubia De Wild. (Fabaceae), ten previously undescribed oleanane-type glycosides were isolated by various chromatographic protocols. Their structures were elucidated by spectroscopic methods, mainly 2D NMR experiments and mass spectrometry, as mono- and bidesmosidic glycosides of mesembryanthemoidigenic acid, hederagenin and oleanolic acid. The stimulation of the sweet taste receptor TAS1R2/TAS1R3 by these glycosides was evaluated, and structure/activity relationships were proposed. Two of them showed an agonist effect on TAS1R2/TAS1R3.

4.
mBio ; : e0142324, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012152

ABSTRACT

In terrestrial forested ecosystems, fungi may interact with trees in at least three distinct ways: (i) associated with roots as symbionts; (ii) as pathogens in roots, trunks, leaves, flowers, and fruits; or (iii) decomposing dead tree tissues on soil or even on dead tissues in living trees. Distinguishing the latter two nutrition modes is rather difficult in Hymenochaetaceae (Basidiomycota) species. Herein, we have used an integrative approach of comparative genomics, stable isotopes, host tree association, and bioclimatic data to investigate the lifestyle ecology of the scarcely known neotropical genus Phellinotus, focusing on the unique species Phellinotus piptadeniae. This species is strongly associated with living Piptadenia gonoacantha (Fabaceae) trees in the Atlantic Forest domain on a relatively high precipitation gradient. Phylogenomics resolved P. piptadeniae in a clade that also includes both plant pathogens and typical wood saprotrophs. Furthermore, both genome-predicted Carbohydrate-Active Enzymes (CAZy) and stable isotopes (δ13C and δ15N) revealed a rather flexible lifestyle for the species. Altogether, our findings suggest that P. piptadeniae has been undergoing a pathotrophic specialization in a particular tree species while maintaining all the metabolic repertoire of a wood saprothroph. IMPORTANCE: This is the first genomic description for Phellinotus piptadeniae. This basidiomycete is found across a broad range of climates and ecosystems in South America, including regions threatened by extensive agriculture. This fungus is also relevant considering its pathotrophic-saprotrophic association with Piptadenia goanocantha, which we began to understand with these new results that locate this species among biotrophic and necrotrophic fungi.

5.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000493

ABSTRACT

Plants from the Fabaceae family are widely distributed around the world, especially in Europe, Asia and North America. They are a rich source of isoflavones, compounds with estrogen-like activity, which are suspected of having a chemopreventive effect against hormone-dependent cancers. Following the PRISMA guidelines, we conducted a systematic review aimed at assessing the impact of Fabaceae plant extracts on hormone-dependent cancer cells and the content of active compounds in plant raw materials. We analyzed the results of 63 articles from in vitro and in vivo studies describing the effect of plant extracts containing isoflavones on cancer cells, along with their anti-inflammatory and antioxidant potential. In the process, we determined the research limitations and future research directions. The collected results indicate the plant species with potentially high contents of phytoestrogens and anti-inflammatory, antioxidant and cytotoxic properties. They point to the potential use of plants in the diet as a source of compounds offering cancer prevention.


Subject(s)
Fabaceae , Isoflavones , Neoplasms , Plant Extracts , Humans , Isoflavones/pharmacology , Fabaceae/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Neoplasms/prevention & control , Antioxidants/pharmacology , Animals , Chemoprevention/methods , Phytoestrogens/pharmacology , Anti-Inflammatory Agents/pharmacology
6.
Neotrop Entomol ; 53(4): 715-725, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955944

ABSTRACT

Several crops depend on both managed and wild bees to produce fruits and/or seeds, and the efficiency of numerous wild bees is higher than that of some managed species. Therefore, knowing and understanding the required resources for wild bees could enabled the establishment of management practices to increase their populations. Here, we provide information about the nesting biology of Megachile (Chrysosarus) jenseni, a Faboideae-specialist bee species. Based on observations from two populations occurring in contrasting agroecosystems, this bivoltine species showed common behavioral features shared with other species of subgenus Chrysosarus, such as the use of petal pieces and mud as nesting materials and the utilization of pre-existing cavities. Both studied populations showed a bivoltine life cycle with a rapid early-summer generation and a second generation, with most individuals overwintering. Main causes of mortality were unknown diseases (or other factors), causing the death of preimaginal stages. Moreover, this species was attacked by a cleptoparasite megachilid (Coelioxys remissa), a parasitic eulophid wasp (Melittobia sp.), and a bee fly (Anthrax oedipus). Finally, we discussed the potential use of this leaf-cutter bee species for alfalfa pollination.


Subject(s)
Medicago sativa , Nesting Behavior , Pollination , Animals , Bees/physiology , Female , Wasps/physiology , Brazil , Seasons
7.
Nat Prod Res ; : 1-11, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946337

ABSTRACT

The chemical investigation of the methanol trunk bark extract of Erythrina senegalensis led to the isolation of a new flavanone, 5,7,4'-trihydroxy-3',5'-bis(3-methylbutadienyl)flavanone (trivially named senegalensisnone) (1), together with seven known compounds, abyssinone-V-4'-O-methyl ether (2), abyssinone V (3), Calopocarpin (4), genistein (5) mixture of stigmasterol (6) and ß-sitosterol (7) and ß-sitosterol-3-O-ß-D-glucopyranoside (8). The structures of the isolates were elucidated by extensive spectroscopic and spectrometric analyses (1D and 2D NMR, ESI-MS) and by comparison with previously reported data. The absolute configuration of 1 was deduced based on comparison of its experimental CD with that of similar compound. All the compounds were tested for their antibacterial, antifungal and antioxidant activities. Compound 4 displayed weak antibacterial activity against Salmonella enteritidis with MIC value of 62.5 µg/mL. All the isolates were found to be inactive as antioxidant agents in the DPPH, ABTS and FRAP assays.

8.
New Phytol ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005157

ABSTRACT

Plants express diverse nutrient use and acquisition traits, but it is unclear how trait combinations at the species level are constrained by phylogeny, trait coordination, or trade-offs in resource investment. One trait - nitrogen (N) fixation - is assumed to correlate with other traits and used to define plant functional groups, despite potential confounding effects of phylogeny. We quantified growth, carbon metabolism, fixation rate, root phosphatase activity (RPA), mycorrhizal colonization, and leaf and root morphology/chemistry across 22 species of fixing and nonfixing tropical Fabaceae trees under common conditions. Belowground trait variation was high even among closely related species, and most traits displayed a phylogenetic signal, including N-fixation rate and nodule biomass. Across species, we observed strong positive correlations between physiological traits such as RPA and root respiration. RPA increased ~ fourfold per unit increase in fixation, supporting the debated hypothesis that N-fixers 'trade' N for phosphatases to enhance phosphorus acquisition. Specific root length and root N differed between functional groups, though for other traits, apparent differences became nonsignificant after accounting for phylogenetic nonindependence. We conclude that evolutionary history, trait coordination, and fixation ability contribute to nutrient trait expression at the species level, and recommend explicitly considering phylogeny in analyses of functional groupings.

9.
PhytoKeys ; 240: 1-552, 2024.
Article in English | MEDLINE | ID: mdl-38912426

ABSTRACT

Caesalpinioideae is the second largest subfamily of legumes (Leguminosae) with ca. 4680 species and 163 genera. It is an ecologically and economically important group formed of mostly woody perennials that range from large canopy emergent trees to functionally herbaceous geoxyles, lianas and shrubs, and which has a global distribution, occurring on every continent except Antarctica. Following the recent re-circumscription of 15 Caesalpinioideae genera as presented in Advances in Legume Systematics 14, Part 1, and using as a basis a phylogenomic analysis of 997 nuclear gene sequences for 420 species and all but five of the genera currently recognised in the subfamily, we present a new higher-level classification for the subfamily. The new classification of Caesalpinioideae comprises eleven tribes, all of which are either new, reinstated or re-circumscribed at this rank: Caesalpinieae Rchb. (27 genera / ca. 223 species), Campsiandreae LPWG (2 / 5-22), Cassieae Bronn (7 / 695), Ceratonieae Rchb. (4 / 6), Dimorphandreae Benth. (4 / 35), Erythrophleeae LPWG (2 /13), Gleditsieae Nakai (3 / 20), Mimoseae Bronn (100 / ca. 3510), Pterogyneae LPWG (1 / 1), Schizolobieae Nakai (8 / 42-43), Sclerolobieae Benth. & Hook. f. (5 / ca. 113). Although many of these lineages have been recognised and named in the past, either as tribes or informal generic groups, their circumscriptions have varied widely and changed over the past decades, such that all the tribes described here differ in generic membership from those previously recognised. Importantly, the approximately 3500 species and 100 genera of the former subfamily Mimosoideae are now placed in the reinstated, but newly circumscribed, tribe Mimoseae. Because of the large size and ecological importance of the tribe, we also provide a clade-based classification system for Mimoseae that includes 17 named lower-level clades. Fourteen of the 100 Mimoseae genera remain unplaced in these lower-level clades: eight are resolved in two grades and six are phylogenetically isolated monogeneric lineages. In addition to the new classification, we provide a key to genera, morphological descriptions and notes for all 163 genera, all tribes, and all named clades. The diversity of growth forms, foliage, flowers and fruits are illustrated for all genera, and for each genus we also provide a distribution map, based on quality-controlled herbarium specimen localities. A glossary for specialised terms used in legume morphology is provided. This new phylogenetically based classification of Caesalpinioideae provides a solid system for communication and a framework for downstream analyses of biogeography, trait evolution and diversification, as well as for taxonomic revision of still understudied genera.

10.
Chem Biodivers ; : e202400645, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923658

ABSTRACT

Antimicrobial films were prepared with chitosan containing the methanolic extract of M. tenuiflora leaves (FECT20%, FECT30%, and FECT40%), and their antimicrobial activities were evaluated by agar diffusion. The films were characterized by IR spectroscopy, scanning electron microscopy (SEM) and TG/DTG curves. TG/DTG curves showed thermal stability of chitosan-extract films up to 166 ºC. Micrographs of chitosan-extract films revealed an increase in porosity with the addition of extract. The FECT40% film showed inhibition zone diameters (IZ) against Micrococcus luteus, Staphylococcus aureus, Bacillus subtilis, and B. cereus, ranging from 1.0 ± 0.02 to 0.72 ± 0.09 cm. Only FECT30% and FECT40% inhibited the P. aeruginosa with IZs of 0.68 ± 0.02 and 0.77 ± 0.06 cm, respectively. In turn, the extract showed inhibition against B. subtilis and B. cereus, with IZs values of 0.92 ± 0.2 cm and 0.72 ± 0.05 cm, respectively. Additionally, the crude extract presented antioxidant potential with inhibition percentages of 32.74% ± 0.90 for ABTS and 27.04% ± 1.36 for DPPH. The antimicrobial and antioxidant activities of the crude extract, as well as the antimicrobial property of chitosan-extract films, suggests the potential of these biopolymers for the development of wound healing bandages and new food packaging alternatives.

11.
Plants (Basel) ; 13(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38931095

ABSTRACT

Lespedeza davurica (Laxm.) is a leguminous plant with significant ecological benefits, but its embryonic development mechanism remains unclear. We investigated the flower bud differentiation, megaspore and microspore formation, gametophyte development, and embryo and endosperm development in L. davurica. Our aim was to elucidate the relationship between the external morphology and internal development processes of male and female floral organs during growth, as well as the reproductive factors influencing fruiting. The results indicated that although the pistil develops later than the stamen during flower bud differentiation, both organs mature synchronously before flowering. L. davurica pollen exhibits three germination grooves, a reticulate outer wall, and papillary structures on the anther surface. In vivo pollination experiments revealed abnormal spiral growth of L. davurica pollen tubes within the style and the occurrence of callus plugs, which may reduce the seed setting rate. The anther wall development follows the dicotyledonous type, with tetrads formed through microspore meiosis exhibiting both left-right symmetry and tetrahedral arrangements. L. davurica has a single ovule, and the embryo sac develops in the monosporic polygonum type. After dormancy, the zygote undergoes multiple divisions, progressing through spherical, heart-shaped, and torpedo-shaped embryo stages, culminating in a mature embryo. A mature seed comprises cotyledons, hypocotyl, embryo, radicle, and seed coat. Phylogenetic tree analysis reveals a close genetic relationship between L. davurica and other leguminous plants from the genera Lespedeza and Medicago. This study provides valuable insights into the regulation of flowering and hybrid breeding in leguminous plants and offers a new perspective on the development of floral organs and seed setting rates.

12.
Data Brief ; 54: 110540, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38868387

ABSTRACT

We present a dataset containing nuclear and chloroplast sequences for 71 species in genus Medicago (Fabaceae), as well as for 8 species in genera Melilotus and Trigonella. Sequence data for a total of 130 samples was obtained with high-throughput sequencing of enriched genomic DNA libraries targeting 61 single-copy nuclear genes from across the Medicago truncatula genome. Chloroplast sequence reads were also generated, allowing for the recovery of chloroplast genome sequences for all 130 samples. A fully-resolved phylogenetic tree was inferred from the chloroplast dataset using maximum-likelihoood methods. More than 80% of accepted Medicago species are represented in this dataset, including three subspecies of Medicago sativa (alfalfa). These data can be further utilised for phylogenetic analyses in Medicago and related genera, but also for probe and primer design and plant breeding studies.

13.
AoB Plants ; 16(3): plae032, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38883565

ABSTRACT

Forest and landscape restoration is one of the main strategies for overcoming the environmental crisis. This activity is particularly relevant for biodiversity-rich areas threatened by deforestation, such as tropical forests. Efficient long-term restoration requires understanding the composition and genetic structure of native populations, as well as the factors that influence these genetic components. This is because these populations serve as the seed sources and, therefore, the gene reservoirs for areas under restoration. In the present study, we investigated the influence of environmental, climatic and spatial distance factors on the genetic patterns of Plathymenia reticulata, aiming to support seed translocation strategies for restoration areas. We collected plant samples from nine populations of P. reticulata in the state of Bahia, Brazil, located in areas of Atlantic Forest and Savanna, across four climatic types, and genotyped them using nine nuclear and three chloroplast microsatellite markers. The populations of P. reticulata evaluated generally showed low to moderate genotypic variability and low haplotypic diversity. The populations within the Savanna phytophysiognomy showed values above average for six of the eight evaluated genetic diversity parameters. Using this classification based on phytophysiognomy demonstrated a high predictive power for genetic differentiation in P. reticulata. Furthermore, the interplay of climate, soil and geographic distance influenced the spread of alleles across the landscape. Based on our findings, we propose seed translocation, taking into account the biome, with restricted use of seed sources acquired or collected from the same environment as the areas to be restored (Savanna or Atlantic Forest).

14.
Plants (Basel) ; 13(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891323

ABSTRACT

Sprouts' consumption has become popular due to their wide availability, easy cultivation process, and proven biological activity. Moreover, stress factors, such as limited access to light or disturbed gravity during growth, may contribute to the increased activity and the synthesis of bioactive compounds. In this study, for the first time, the examination of the impact of darkness and simulated microgravity conditions on the white clover sprouts from the Fabaceae family was conducted. Among several species, used in the preliminary attempts, only white clover was satisfactory sprouting in the disturbed gravity conditions, and thus was chosen for further examination. A random positioning machine setup was used during the cultivation process to simulate microgravity conditions. Additionally, the sprouts were cultivated in total darkness. Simulated microgravity and/or darkness during the first few days of the sprouts' growth caused biomass reduction, the increased synthesis of bioactive compounds (isoflavones and phenolics), and changes in the level of abscisic acid and phenylalanine ammonia-lyase. Moreover, it increased the antioxidant properties of the sprouts, while the enhancement of their cytotoxic impact was observed only for androgen-dependent prostate cancer LNCaP cells. To conclude, the presented results are promising in searching for novel functional food candidates and further studies are necessary, directed at other plant families.

15.
Mitochondrial DNA B Resour ; 9(6): 687-691, 2024.
Article in English | MEDLINE | ID: mdl-38835639

ABSTRACT

Arachis lutescens Krapov. & Rigoni 1958 is an important species due to their potentially extensive applications for cultivated peanut breeding. The whole chloroplast genome of A. lutescens was successfully assembled and annotated for the first time. The complete chloroplast genome of A. lutescens is a typically circular structure of 156,398 bp with a GC content of 36.3%. It comprises a large single-copy (LSC) region of 85,950 bp, a small single-copy (SSC) region of 18,800 bp, and two inverted repeat regions (IRs) of 25,824 bp, each. The plastome of A. lutescens contains a total of 125 genes, including 81 protein-coding genes, 36 tRNAs, and eight rRNAs. The phylogenetic analysis strongly supports the close relationship between A. lutescens and cultivated peanut clades. This study contributes to our understanding of the molecular characteristics and evolutionary relationships of this plant species.

16.
Am J Bot ; 111(6): e16352, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38853465

ABSTRACT

PREMISE: Phylogenetic approaches can provide valuable insights on how and when a biome emerged and developed using its structuring species. In this context, Brachystegia Benth, a dominant genus of trees in miombo woodlands, appears as a key witness of the history of the largest woodland and savanna biome of Africa. METHODS: We reconstructed the evolutionary history of the genus using targeted-enrichment sequencing on 60 Brachystegia specimens for a nearly complete species sampling. Phylogenomic inferences used supermatrix (RAxML-NG) and summary-method (ASTRAL-III) approaches. Conflicts between species and gene trees were assessed, and the phylogeny was time-calibrated in BEAST. Introgression between species was explored using Phylonet. RESULTS: The phylogenies were globally congruent regardless of the method used. Most of the species were recovered as monophyletic, unlike previous plastid phylogenetic reconstructions where lineages were shared among geographically close individuals independently of species identity. Still, most of the individual gene trees had low levels of phylogenetic information and, when informative, were mostly in conflict with the reconstructed species trees. These results suggest incomplete lineage sorting and/or reticulate evolution, which was supported by network analyses. The BEAST analysis supported a Pliocene origin for current Brachystegia lineages, with most of the diversification events dated to the Pliocene-Pleistocene. CONCLUSIONS: These results suggest a recent origin of species of the miombo, congruently with their spatial expansion documented from plastid data. Brachystegia species appear to behave potentially as a syngameon, a group of interfertile but still relatively well-delineated species, an aspect that deserves further investigations.


Subject(s)
Phylogeny , Forests , Biological Evolution
17.
Plant Biol (Stuttg) ; 26(5): 821-831, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861656

ABSTRACT

Heteranthery, the presence of different types of anthers on the same flower, is a floral adaptation that aims to balance the need for pollinators to collect pollen as a food resource while ensuring sufficient pollen for pollination. We investigate the role of heteranthery in the pollination of Senna arnottiana flowers and how it is affected by the behaviour of visiting bee species, with a particular focus on the impact of the invasive bumblebee Bombus terrestris. In three populations of S. arnottiana we measured the size of three sets of anthers and style, stigma-anther separation, pollen quantity and fruit set, and contrasted it with the body size, behaviour, and pollination effectiveness of all floral visitors. Different bee species visited S. arnottiana flowers, and their foraging behaviour varied. Large-bodied native bees, including Centris cineraria, Caupolicana sp. and Cadeguala occidentalis, preferentially visited short anthers, whereas B. terrestris, an exotic bumblebee, foraged from both short and long anthers without distinction. In addition, B. terrestris contacted the stigma at a lower rate than large-bodied native bees. Instead of concentrating its pollen-gathering efforts on the feeding anthers, as predicted by the "division of labor" hypothesis, B. terrestris indiscriminately visited both types of anthers similarly. This behaviour of B. terrestris may disrupt the adaptive significance of heteranthery by mixing the roles of pollination and feeding anthers of S. arnottiana. Therefore, our results highlight the potential disruption of this relationship by exotic pollinators and the need to consider it in conservation efforts.


Subject(s)
Flowers , Introduced Species , Pollination , Senna Plant , Animals , Bees/physiology , Pollination/physiology , Flowers/physiology , Senna Plant/physiology , Pollen/physiology , Feeding Behavior/physiology
18.
Am J Bot ; 111(6): e16357, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898619

ABSTRACT

PREMISE: Wild species are strategic sources of valuable traits to be introduced into crops through hybridization. For peanut, the 33 currently described wild species in the section Arachis are particularly important because of their sexual compatibility with the domesticated species, Arachis hypogaea. Although numerous wild accessions are carefully preserved in seed banks, their morphological similarities pose challenges to routine classification. METHODS: Using a high-density array, we genotyped 272 accessions encompassing all diploid species in section Arachis. Detailed relationships between accessions and species were revealed through phylogenetic analyses and interpreted using the expertise of germplasm collectors and curators. RESULTS: Two main groups were identified: one with A genome species and the other with B, D, F, G, and K genomes. Species groupings generally showed clear boundaries. Structure within groups was informative, for instance, revealing the history of the proto-domesticate A. stenosperma. However, some groupings suggested multiple sibling species. Others were polyphyletic, indicating the need for taxonomic revision. Annual species were better defined than perennial ones, revealing limitations in applying classical and phylogenetic species concepts to the genus. We suggest new species assignments for several accessions. CONCLUSIONS: Curated by germplasm collectors and curators, this analysis of species relationships lays the foundation for future species descriptions, classification of unknown accessions, and germplasm use for peanut improvement. It supports the conservation and curation of current germplasm, both critical tasks considering the threats to the genus posed by habitat loss and the current restrictions on new collections and germplasm transfer.


Subject(s)
Arachis , Crops, Agricultural , Phylogeny , Arachis/genetics , Arachis/classification , Crops, Agricultural/genetics , Genome, Plant , Seed Bank , Genotype
19.
Phytochemistry ; 225: 114189, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38905919

ABSTRACT

Eight previously undescribed diterpenoids, caesamins A-H (1-8), were separated and identified from the seeds of Caesalpinia minax Hance. Their structures were characterized by extensive spectroscopic data and X-ray crystallographic analysis. Structurally, caesamin A (1) is the first cassane-type diterpenoid with a C23 carbon skeleton containing an unusual isopropyl. Caesamin F (6) represents the first example of cleistanthane diterpenoid from the genus Caesalpinia. Caesamins B (2) and F (6) exhibited inhibitory activity against LPS-induced nitric oxide production in RAW 264.7 macrophages with IC50 values of 45.67 ± 0.92 and 42.99 ± 0.24 µM, comparable to positive control 43.69 ± 2.62 µM of NG-Monomethyl-L-arginine. Furthermore, the chemotaxonomic significance of the isolates was discussed.


Subject(s)
Caesalpinia , Diterpenes , Nitric Oxide , Seeds , Caesalpinia/chemistry , Diterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/isolation & purification , Mice , Seeds/chemistry , Animals , RAW 264.7 Cells , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Molecular Structure , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Macrophages/drug effects , Structure-Activity Relationship , Dose-Response Relationship, Drug
20.
Bioresour Bioprocess ; 11(1): 53, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767701

ABSTRACT

Hypertension is a major global public health issue, affecting quarter of adults worldwide. Numerous synthetic drugs are available for treating hypertension; however, they often come with a higher risk of side effects and long-term therapy. Modern formulations with active phytoconstituents are gaining popularity, addressing some of these issues. This study aims to discover novel antihypertensive compounds in Cassia fistula, Senna alexandrina, and Cassia occidentalis from family Fabaceae and understand their interaction mechanism with hypertension targeted genes, using network pharmacology and molecular docking. Total 414 compounds were identified; initial screening was conducted based on their pharmacokinetic and ADMET properties, with a particular emphasis on adherence to Lipinski's rules. 6 compounds, namely Germichrysone, Benzeneacetic acid, Flavan-3-ol, 5,7,3',4'-Tetrahydroxy-6, 8-dimethoxyflavon, Dihydrokaempferol, and Epiafzelechin, were identified as effective agents. Most of the compounds found non-toxic against various indicators with greater bioactivity score. 161 common targets were obtained against these compounds and hypertension followed by compound-target network construction and protein-protein interaction, which showed their role in diverse biological system. Top hub genes identified were TLR4, MMP9, MAPK14, AKT1, VEGFA and HSP90AA1 with their respective associates. Higher binding affinities was found with three compounds Dihydrokaempferol, Flavan-3-ol and Germichrysone, -7.1, -9.0 and -8.0 kcal/mol, respectively. The MD simulation results validate the structural flexibility of two complexes Flavan-MMP9 and Germich-TLR4 based on no. of hydrogen bonds, root mean square deviations and interaction energies. This study concluded that C. fistula (Dihydrokaempferol, Flavan-3-ol) and C. occidentalis (Germichrysone) have potential therapeutic active constituents to treat hypertension and in future novel drug formulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...