Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 211
Filter
1.
Healthcare (Basel) ; 12(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38921341

ABSTRACT

Toloese, a bed composition, is formulated with a combination of minerals of various wavelengths by utilizing a specific ratio and particle size. A maturation mixing technique is used without additional compression processes, resulting in the natural formation of numerous fine pores in the bed structure. At 40 °C, far infrared radiation in the range of 5-20 µm is emitted with a 0.916 radiant ratio, and the measured emitted radiant energy is 3.69 × 102 W/m2·µm. This study aimed to investigate the influence of far infrared radiation emitted from a Toloese bed on endogenous nitric oxide production. Clinical trials were conducted with 20 healthy adults aged 20 years. Blood samples were collected before and after Toloese bed usage for 1 h daily for 3 weeks. Nitric oxide levels in the saliva and blood of men and women significant increased after they used the Toloese bed for 1 h. Additionally, sweating sharply increased in the upper and lower body regions after Toloese bed usage. No hematological changes or adverse effects were observed, but blood glucose, cholesterol, and triglycerides decreased after Toloese bed usage compared with those before Toloese bed usage. These findings demonstrated that far infrared radiation emitted by the Toloese bed induced endogenous nitric oxide production and contributed to significant reductions in blood glucose, cholesterol, and triglyceride levels.

2.
Nanomaterials (Basel) ; 14(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38921897

ABSTRACT

Electromagnetic waves propagating in a layered superconductor with arbitrary momentum, with respect to the main crystallographic directions, exhibit an unavoidable mixing between longitudinal and transverse degrees of freedom. Here we show that this basic physical mechanism explains the emergence of a well-defined absorption peak in the in-plane optical conductivity when light propagates at small tilting angles relative to the stacking direction in layered cuprates. More specifically, we show that this peak, often interpreted as a spurious leakage of the c-axis Josephson plasmon, is instead a signature of the true longitudinal plasma mode occurring at larger momenta. By combining a classical approach based on Maxwell's equations with a full quantum derivation of the plasma modes based on modeling the superconducting phase degrees of freedom, we provide an analytical expression for the absorption peak as a function of the tilting angle and light polarization. We suggest that an all-optical measurement in tilted geometry can be used as an alternative way to access plasma-wave dispersion, usually measured by means of large-momenta scattering techniques like resonant inelastic X-ray scattering (RIXS) or electron energy loss spectroscopy (EELS).

3.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928382

ABSTRACT

Graphene, when electrified, generates far-infrared radiation within the wavelength range of 4 µm to 14 µm. This range closely aligns with the far-infrared band (3 µm to 15 µm), which produces unique physiological effects. Contraction and relaxation of vascular smooth muscle play a significant role in primary hypertension, involving the nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate pathway and the renin-angiotensin-aldosterone system. This study utilized spontaneously hypertensive rats (SHRs) as an untr-HT to investigate the impact of far-infrared radiation at specific wavelengths generated by electrified graphene on vascular smooth muscle and blood pressure. After 7 weeks, the blood pressure of the untr-HT group rats decreased significantly with a notable reduction in the number of vascular wall cells and the thickness of the vascular wall, as well as a decreased ratio of vessel wall thickness to lumen diameter. Additionally, blood flow perfusion significantly increased, and the expression of F-actin in vascular smooth muscle myosin decreased significantly. Serum levels of angiotensin II (Ang-II) and endothelin 1 (ET-1) were significantly reduced, while nitric oxide synthase (eNOS) expression increased significantly. At the protein level, eNOS expression decreased significantly, while α-SMA expression increased significantly in aortic tissue. At the gene level, expressions of eNOS and α-SMA in aortic tissue significantly increased. Furthermore, the content of nitric oxide (NO) in the SHR's aortic tissue increased significantly. These findings confirm that graphene far-infrared radiation enhances microcirculation, regulates cytokines affecting vascular smooth muscle contraction, and modifies vascular morphology and smooth muscle phenotype, offering relief for primary hypertension.


Subject(s)
Blood Pressure , Graphite , Hypertension , Infrared Rays , Muscle, Smooth, Vascular , Rats, Inbred SHR , Animals , Rats , Blood Pressure/radiation effects , Male , Muscle, Smooth, Vascular/metabolism , Graphite/chemistry , Hypertension/metabolism , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide Synthase Type III/genetics , Angiotensin II/metabolism , Angiotensin II/blood , Endothelin-1/metabolism , Endothelin-1/genetics , Endothelin-1/blood , Nitric Oxide/metabolism
4.
Biochem Biophys Res Commun ; 723: 150187, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38850809

ABSTRACT

This study investigated the effects of far-infrared (FIR) irradiation on low-density lipoprotein cholesterol (LDL-C) uptake by human hepatocellular carcinoma G2 (HepG2) cells via the regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9). FIR irradiation for 30 min significantly decreased PCSK9 expression (p < 0.01) in HepG2 cells. FIR irradiation substantially increased the low-density lipoprotein receptor (p < 0.0001) and LDL-C uptake (p < 0.01). Activation of transient receptor potential vanilloid (TRPV) channels mimicked the effects of FIR irradiation, significantly decreasing the protein expression of PCSK9 (p < 0.05). Conversely, inhibition of TRP channels using ruthenium red reversed the reduction in PCSK9 protein expression following FIR irradiation (p < 0.01). The specific activation of TRPV4 using 4α-PDD mimicked the effect of FIR irradiation (p < 0.01), whereas PCSK9 reduction by FIR irradiation was significantly reversed by the inhibition of TRPV4 using RN1734 (p < 0.05). These findings implied that FIR irradiation emitted from a ceramic lamp specifically increased TRPV4 activity. These findings provide insights into a novel therapeutic approach using FIR irradiation for LDL-C regulation and its implications for cardiovascular health.


Subject(s)
Cholesterol, LDL , Down-Regulation , Infrared Rays , Proprotein Convertase 9 , TRPV Cation Channels , Humans , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/genetics , Hep G2 Cells , TRPV Cation Channels/metabolism , Cholesterol, LDL/metabolism , Down-Regulation/radiation effects
5.
Micromachines (Basel) ; 15(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675349

ABSTRACT

Retroreflective gratings serve as fundamental optical elements in nanophotonics, with polarization-independent diffraction efficiency being one of the critical parameters for assessing their performance. In the far-infrared spectral range, traditional retroreflective gratings typically refer to metal echelette gratings, but their diffraction efficiency cannot approach 100% due to metal absorption. In the visible and near-infrared spectral ranges, metal echelette gratings have gradually been replaced by all-dielectric metasurfaces because dielectric materials exhibit negligible absorption at specific wavelengths. However, there is still a lack of relevant research in the far-infrared range, mainly due to the weak control capability of the existing devices over the polarization-independent phase. Here, we propose a kind of all-dielectric retroreflective metasurface composed of asymmetric pillars and freely tunable aperiodic multilayer films. The pillar structure can achieve polarization insensitivity, and the insufficient modulation capability of the dielectric materials can be compensated for by aperiodic Ge/ZnS films. The designed metasurface achieves the diffraction efficiency by RCWA, with the maximum larger than 99% and the overall reaching 95% (9.3-9.6 µm). We have provided detailed explanations of the design methodology and fabrication process. Our work lays the groundwork for further exploration and application of far-infrared lasers.

6.
Bioengineering (Basel) ; 11(4)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38671801

ABSTRACT

XRD diffraction and IR absorption were investigated for raw loess powder and heat-treated loess powder. Raw loess retains its useful minerals, but loses their beneficial properties when calcined at 850 °C and 1050 °C. To utilize the useful minerals, loess balls were made using a low-temperature wet-drying method. The radiant energy and transmittance were measured for the loess balls. Far-infrared ray (FIR) emitted from loess bio-balls is selectively absorbed as higher vibrational energy by water molecules. FIR can raise the body's core temperature, thereby improving blood flow through the body's thermoregulatory mechanism. In an exploratory study with 40 participants, when the set temperature of the loess ball mat was increased from 25 °C to 50 °C, blood flow increased by 39.01%, from 37.48 mL/min to 52.11 mL/min, in the left middle finger; in addition, it increased by 39.62%, from 37.15 mL/min to 51.87 mL/min, in the right middle finger. The FIR emitted from loess balls can be widely applied, in various forms, to diseases related to blood flow, such as cold hands and feet, diabetic foot, muscle pain, and menstrual pain.

7.
Neurochem Res ; 49(7): 1735-1750, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38530508

ABSTRACT

The consumption of a high-fat diet (HFD) has been implicated in the etiology of obesity and various neuropsychiatric disturbances, including anxiety and depression. Compelling evidence suggests that far-infrared ray (FIR) possesses beneficial effects on emotional disorders. However, the efficacy of FIR therapy in addressing HFD-induced anxiety and the underlying mechanisms remain to be elucidated. Here, we postulate that FIR emitted from a graphene-based therapeutic device may mitigate HFD-induced anxiety behaviors. The graphene-FIR modify the gut microbiota in HFD-mice, particularly by an enriched abundance of beneficial bacteria Clostridiaceae and Erysipelotrichaceae, coupled with a diminution of harmful bacteria Lachnospiraceae, Anaerovoracaceae, Holdemania and Marvinbryantia. Graphene-FIR also improved intestinal barrier function, as evidenced by the augmented expression of the tight junction protein occludin and G protein-coupled receptor 43 (GPR43). In serum level, we observed the decreased free fatty acids (FFA), lipopolysaccharides (LPS), diamine oxidase (DAO) and D-lactate, and increased the glucagon-like peptide-2 (GLP-2) levels in graphene-FIR mice. Simultaneously, inflammatory cytokines IL-6, IL-1ß, and TNF-α manifested a decrease subsequent to graphene-FIR treatment in both peripheral and central system. Notably, graphene-FIR inhibited over expression of astrocytes and microglia. We further noticed that the elevated the BDNF and decreased TLR4 and NF-κB expression in graphene-FIR group. Overall, our study reveals that graphene-FIR rescued HFD-induced anxiety via improving the intestine permeability and the integrity of blood-brain barrier, and reduced inflammatory response by down regulating TLR4/NF-κB inflammatory pathway.


Subject(s)
Anxiety , Diet, High-Fat , Gastrointestinal Microbiome , Graphite , Mice, Inbred C57BL , Animals , Diet, High-Fat/adverse effects , Male , Graphite/therapeutic use , Graphite/pharmacology , Gastrointestinal Microbiome/drug effects , Anxiety/etiology , Anxiety/metabolism , Infrared Rays/therapeutic use , Obesity/metabolism , Mice , Neuroinflammatory Diseases/metabolism , Mice, Obese , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects
8.
MedComm (2020) ; 5(4): e507, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38525107

ABSTRACT

Meibomian gland dysfunction (MGD)-related dry eye disease (DED) is a significant subtype of DED. In this research, we investigate the effectiveness of far infrared (FIR) functional glasses in the treatment of MGD-related DED. According to the TFO DEWS II diagnostic criteria, 61 eyes with MGD-related DED were included. All participants wore functional FIR glasses throughout the day for a period of 4 weeks and were followed up three times during the treatment. All subjects were followed up thoroughly in accordance with the DED clinical examination procedure. Ultimately, the treatment's impact was assessed. We found the Visual Analogue Scale and Ocular Surface Disease Index scores after FIR treatment were significantly lower than the baseline values (p < 0.05). Compared with the baseline, fluorescein tear breakup time and corneal fluorescein staining score after FIR treatment were significantly improved (p < 0.05). The eyelid margin signs, meibum quality, and meibomian gland expressibility after the 4-week treatment were significantly better than those at baseline (p < 0.05). We can see that wearing the FIR functional glasses significantly relieves the symptoms and signs of patients. We believe FIR therapy could be considered as a new method of MGD-related DED.

9.
Adv Sci (Weinh) ; 11(22): e2309330, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38526158

ABSTRACT

Postoperative peritoneal adhesion (PPA) is the most frequent complication after abdominal surgery. Current anti-adhesion strategies largely rely on the use of physical separating barriers creating an interface blocking peritoneal adhesion, which cannot reduce inflammation and suffers from limited anti-adhesion efficacy with unwanted side effects. Here, by exploiting the alternative activated macrophages to alleviate inflammation in adhesion development, a flexible graphene-composite-film (F-GCF) generating far-infrared (FIR) irradiation that effectively modulates the macrophage phenotype toward the anti-inflammatory M2 type, resulting in reduced PPA formation, is designed. The anti-adhesion effect of the FIR generated by F-GCF is determined in the rat abdominal wall abrasion-cecum defect models, which exhibit reduced incidence and area of PPA by 67.0% and 92.1% after FIR treatment without skin damage, significantly superior to the clinically used chitosan hydrogel. Notably, within peritoneal macrophages, FIR reduces inflammation reaction and promotes tissue plasminogen activator (t-PA) level via the polarization of peritoneal macrophages through upregulating Nr4a2 expression. To facilitate clinical use, a wirelessly controlled, wearable, F-GCF-based FIR therapy apparatus (GRAFT) is further developed and its remarkable anti-adhesion ability in the porcine PPA model is revealed. Collectively, the physical, biochemical, and in vivo preclinical data provide compelling evidence demonstrating the clinical-translational value of FIR in PPA prevention.


Subject(s)
Disease Models, Animal , Graphite , Postoperative Complications , Animals , Tissue Adhesions/prevention & control , Rats , Graphite/pharmacology , Postoperative Complications/prevention & control , Swine , Wearable Electronic Devices , Infrared Rays , Rats, Sprague-Dawley
10.
Foods ; 13(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38397584

ABSTRACT

Both the roots and leaves of American ginseng contain ginsenosides and polyphenols. The impact of thermal processing on enhancing the biological activities of the root by altering its component composition has been widely reported. However, the effects of far-infrared irradiation (FIR), an efficient heat treatment method, on the bioactive components of the leaves remain to be elucidated. In the present study, we investigated the effects of FIR heat treatment between 160 and 200 °C on the deglycosylation and dehydration rates of the bioactive components in American ginseng leaves. As the temperature was increased, the amounts of common ginsenosides decreased while those of rare ginsenosides increased. After FIR heat treatment of American ginseng leaves at an optimal 190 °C, the highest total polyphenolic content and kaempferol content were detected, the antioxidant activity was significantly enhanced, and the amounts of the rare ginsenosides F4, Rg6, Rh4, Rk3, Rk1, Rg3, and Rg5 were 41, 5, 37, 64, 222, 17, and 266 times higher than those in untreated leaves, respectively. Moreover, the radical scavenging rates for 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and the reducing power of the treated leaf extracts were 2.17, 1.86, and 1.77 times higher, respectively. Hence, FIR heat treatment at 190 °C is an efficient method for producing beneficial bioactive components from American ginseng leaves.

11.
Lasers Med Sci ; 39(1): 41, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240851

ABSTRACT

Far infrared (FIR) irradiation is commonly used as a convenient, non-contact, non-invasive treatment for diseases such as myocardial ischemia, diabetes, and chronic kidney disease. In this review, we focus on reviewing the potential therapeutic mechanisms of FIR and its cutting-edge applications in cancer detection. Firstly, we searched the relevant literature in the last decade for systematic screening and briefly summarized the biophysical properties of FIR. We then focused on the possible mechanisms of FIR in wound healing, cardiovascular diseases, and other chronic diseases. In addition, we review recent applications of FIR in cancer detection, where Fourier transform infrared spectroscopy and infrared thermography provide additional diagnostic methods for the medical diagnosis of cancer. Finally, we conclude and look into the future development of FIR for disease treatment and cancer detection. As a high-frequency non-ionizing wave, FIR has the advantages of safety, convenience, and low cost. We hope that this review can provide biological information reference and relevant data support for those who are interested in FIR and related high-frequency non-ionizing waves, to promote the further application of FIR in the biomedical field.


Subject(s)
Cardiovascular Diseases , Coronary Artery Disease , Neoplasms , Renal Insufficiency, Chronic , Humans , Infrared Rays , Wound Healing/radiation effects , Neoplasms/diagnosis , Neoplasms/therapy
12.
Exp Dermatol ; 33(1): e14962, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37950549

ABSTRACT

Far-infrared radiation (FIR) has been investigated for reduction of pain and improvement of dermal blood flow. The FIRTECH patch is a medical device designed to re-emit FIR radiated by the body. This phase 1 study was conducted to evaluate the local effects of the FIRTECH patch on local skin perfusion, microcirculation and oxygenation. This prospective, randomized, open-label, parallel designed study admitted 20 healthy participants to a medical research facility for treatment for 31 h on three anatomical locations. During treatment, imaging assessments consisting of laser speckle contrast imaging, near-infrared spectroscopy, side-stream dark-field microscopy, multispectral imaging and thermography were conducted regularly on patch-treated skin and contralateral non-treated skin. The primary endpoint was baseline perfusion increase during treatment on the upper back. Secondary endpoints included change in baseline perfusion, oxygen consumption and temperature of treated versus untreated areas. The primary endpoint was not statistically significantly different between treated and non-treated areas. The secondary endpoints baseline perfusion on the forearm (least square means [LSMs] difference 2.63 PU, 95% CI: 0.97, 4.28), oxygen consumption (LSMs difference: 0.42 arbitrary units [AUs], 95% CI: 0.04, 0.81) and skin temperature (LSMs difference 0.35°C, 95% CI: 0.16, 0.6) were statistically significantly higher in treated areas. Adverse events observed during the study were mild and transient. The vascular response to the FIRTECH patch was short-lived suggesting a non-thermal vasodilatory effect of the patch. The FIRTECH patch was well tolerated, with mild and transient adverse events observed during the study. These results support the therapeutic potential of FIR in future investigations.


Subject(s)
Skin Temperature , Skin , Humans , Microcirculation/physiology , Prospective Studies , Skin/diagnostic imaging , Skin/blood supply , Perfusion/methods
13.
Appl Spectrosc ; 78(2): 186-196, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38111257

ABSTRACT

Attenuated total reflection infrared (ATR-IR, 4000-400 cm-1), ATR-far-IR (ATR-FIR, 400-50 cm-1), and Raman spectra (4000-10 cm-1) were measured for calcium carbonate, three kinds of minerals (calcite, aragonite, and quartz), two kinds of rocks (obsidian and pumice), and four kinds of biogenic minerals, i.e., coral (aragonite), Ruditapes philippinarum (aragonite), Meretrix lusoria (aragonite), and Corbicula japonica (aragonite), to investigate the polymorphism of minerals and biogenic minerals, differences in the crystal structure among aragonite and aragonite biogenic minerals, water in the minerals and biogenic minerals, Boson peaks of obsidian and pumice, very small amounts of carotenoids in the three kinds of shells, and so on. In this study, we put some emphasis on the low-frequency region of IR (FIR) and Raman spectra. ATR-FIR spectra were measured down to 50 cm-1 and Raman spectra were obtained down to 10 cm-1. Second derivative spectra were calculated for the FIR spectra. It has been found from the present study that the FIR spectra are the most powerful for exploring polymorphism and differences in the crystal structure among aragonite and aragonite biogenic minerals. A Boson peak, which is a characteristic low-frequency Raman band for amorphous materials, was observed at around 40 cm-1 in the Raman spectra of obsidian and pumice. The Boson peak of pumice is located at a lower frequency by 12 cm-1 than that of obsidian, indicating that the mean atomic volume of pumice is larger than that of obsidian. The present study has revealed that IR spectra are useful to investigate the amounts and structure of fluid and bound water. Moreover, it has also been found that Raman spectra can detect a very tiny amount of carotenoids in the shells due to the resonance Raman effect.

14.
Int J Mol Sci ; 24(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37958813

ABSTRACT

Far-infrared (FIR), characterized by its specific electromagnetic wavelengths, has emerged as an adjunctive therapeutic strategy for various diseases, particularly in ameliorating manifestations associated with renal disorders. Although FIR was confirmed to possess antioxidative and anti-inflammatory attributes, the intricate cellular mechanisms through which FIR mitigates lead (Pb)-induced nephrotoxicity remain enigmatic. In this study, we investigated the effects of FIR on Pb-induced renal damage using in vitro and in vivo approaches. NRK52E rat renal cells exposed to Pb were subsequently treated with ceramic-generated FIR within the 9~14 µm range. Inductively coupled plasma mass spectrometry (ICP-MS) enabled quantitative Pb concentration assessment, while proteomic profiling unraveled intricate cellular responses. In vivo investigations used Wistar rats chronically exposed to lead acetate (PbAc) at 6 g/L in their drinking water for 15 weeks, with or without a concurrent FIR intervention. Our findings showed that FIR upregulated the voltage-gated calcium channel, voltage-dependent L type, alpha 1D subunit (CaV1.3), and myristoylated alanine-rich C kinase substrate (MARCKS) (p < 0.05), resulting in increased calcium influx (p < 0.01), the promotion of mitochondrial activity, and heightened ATP production. Furthermore, the FIR intervention effectively suppressed ROS production, concurrently mitigating Pb-induced cellular death. Notably, rats subjected to FIR exhibited significantly reduced blood Pb levels (30 vs. 71 µg/mL; p < 0.01), attenuated Pb-induced glomerulosclerosis, and enhanced Pb excretion compared to the controls. Our findings suggest that FIR has the capacity to counteract Pb-induced nephrotoxicity by modulating calcium influx and optimizing mitochondrial function. Overall, our data support FIR as a novel therapeutic avenue for Pb toxicity in the kidneys.


Subject(s)
Calcium , Lead , Rats , Animals , Rats, Wistar , Calcium/metabolism , Lead/toxicity , Proteomics , Calcium Channels, L-Type
15.
J Korean Med Sci ; 38(41): e335, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37873631

ABSTRACT

BACKGROUND: Far-infrared (FIR) irradiation has been reported to improve diverse cardiovascular diseases, including heart failure, hypertension, and atherosclerosis. The dysregulated proliferation of vascular smooth muscle cells (VSMCs) is well established to contribute to developing occlusive vascular diseases such as atherosclerosis and in-stent restenosis. However, the effects of FIR irradiation on VSMC proliferation and the underlying mechanism are unclear. This study investigated the molecular mechanism through which FIR irradiation inhibited VSMC proliferation. METHODS: We performed cell proliferation and cell death assay, adenosine 5'-triphosphate (ATP) assay, inhibitor studies, transfection of dominant negative (dn)-AMP-activated protein kinase (AMPK) α1 gene, and western blot analyses. We also conducted confocal microscopic image analyses and ex vivo studies using isolated rat aortas. RESULTS: FIR irradiation for 30 minutes decreased VSMC proliferation without altering the cell death. Furthermore, FIR irradiation accompanied decreases in phosphorylation of the mammalian target of rapamycin (mTOR) at Ser2448 (p-mTOR-Ser2448) and p70 S6 kinase (p70S6K) at Thr389 (p-p70S6K-Thr389). The phosphorylation of AMPK at Thr172 (p-AMPK-Thr172) was increased in FIR-irradiated VSMCs, which was accompanied by a decreased cellular ATP level. Similar to in vitro results, FIR irradiation increased p-AMPK-Thr172 and decreased p-mTOR-Ser2448 and p-p70S6K-Thr389 in isolated rat aortas. Pre-treatment with compound C, a specific AMPK inhibitor, or ectopic expression of dn-AMPKα1 gene, significantly reversed FIR irradiation-decreased VSMC proliferation, p-mTOR-Ser2448, and p-p70S6K-Thr389. On the other hand, hyperthermal stimulus (39°C) did not alter VSMC proliferation, cellular ATP level, and AMPK/mTOR/p70S6K phosphorylation. Finally, FIR irradiation attenuated platelet-derived growth factor (PDGF)-stimulated VSMC proliferation by increasing p-AMPK-Thr172, and decreasing p-mTOR-Ser2448 and p-p70S6K-Thr389 in PDGF-induced in vitro atherosclerosis model. CONCLUSION: These results show that FIR irradiation decreases the basal and PDGF-stimulated VSMC proliferation, at least in part, by the AMPK-mediated inhibition of mTOR/p70S6K signaling axis irrespective of its hyperthermal effect. These observations suggest that FIR therapy can be used to treat arterial narrowing diseases, including atherosclerosis and in-stent restenosis.


Subject(s)
Atherosclerosis , Coronary Restenosis , Rats , Animals , Platelet-Derived Growth Factor/pharmacology , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , AMP-Activated Protein Kinases/metabolism , Muscle, Smooth, Vascular , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , Cell Proliferation , Phosphorylation , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Mammals/metabolism
16.
Foods ; 12(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37685146

ABSTRACT

The effects of far infrared radiation drying (FID) on physical properties (drying kinetics, color, shrinkage ratio, rehydration ratio, and microstructural characterization) and volatile odor characteristics (volatile odor profile distinction and volatile compounds) of shiitake mushrooms were evaluated in this study. During the FID, the drying time decreased with the increase in drying temperature, and it had a less significant effect in the lower temperature range. The increase in drying temperature led to increasing shrinkage and collapse in the microstructure, resulting in a decreased rehydration rate and highlighting the influence of microstructure characteristics on macroscopic properties. Higher drying temperatures employed in the FID process were found to be associated with a decreasing L* value and an increasing ΔE value. The application of principal component analysis can effectively distinguish the significant effect of FID on the volatile odor profiles of shiitake mushrooms. Compared to raw shiitake mushrooms, FID treatment has endowed samples with a greater variety of volatile compounds. After processing with FID, there have been increases in volatile components such as sulfur compounds, acids, nitrogen compounds, and aldehydes, while volatile components like alcohols, ketones, and hydrocarbons have shown decreases.

17.
Front Med (Lausanne) ; 10: 1268212, 2023.
Article in English | MEDLINE | ID: mdl-37746066

ABSTRACT

Background: Hemostatic abnormality has contributed to vascular access thrombosis in patients with chronic kidney disease (CKD). Previous studies have demonstrated that far-infrared radiation (FIR) therapy can maintain the patency and maturity of arteriovenous fistulas of patients undergoing hemodialysis (HD). However, prolonged access bleeding is observed once FIR is conducted at the end of dialysis. FIR can block the binding of platelet and von Willebrand factor (vWF), a predictor of hemostatic abnormality and vascular access thrombosis. However, clinical studies exploring FIR and vWF are sparse. Methods: We recruited 20 HD patients, 21 CKD patients, and 20 controls to examine the alteration of vWF and a disintegrin and metalloproteinase with thrombospondin type 1 repeats 13 (ADAMTS13) following a single 40-min session of FIR therapy. In addition, the alteration of these factors in the HD group was examined following a 40-min FIR session thrice a week for 3 months. Results: A decreasing trend in the vWF activity-antigen ratio of participants in all groups following a single FIR session was observed. In addition, the ratio in the HD group was significantly lower following 3 months of FIR therapy. The subgroup analysis revealed a consistent trend and multiple regression analysis showed that participants not taking hydroxymethylglutaryl-coenzyme A reductase inhibitor, diabetes mellitus, and higher hemoglobin levels were the significant factors. The alteration of the vWF activity-antigen ratio correlated moderately to that of ADAMTS13 antigen and activity. Conclusion: FIR may alter the ratio of ultra-large vWF multimers through ADAMTS13, contributing to inhibiting platelet-endothelium interactions of CKD patients.

18.
Front Surg ; 10: 1260979, 2023.
Article in English | MEDLINE | ID: mdl-37753529

ABSTRACT

Introduction: Arteriovenous fistula (AVF) is the first choice of vascular access for hemodialysis treatment, and its surgical maturity rate is not high, and its postoperative complications (mostly stenosis) significantly shorten its life. At present, there are few studies on treatment methods to improve the maturity and survival of AVF. In this study, the effect of far infrared therapy (FIR) on the maturity and longevity of arteriovenous fistula in hemodialysis patients was discussed, and the protective mechanism of AVF induced by FIR therapy was explored, aiming at exploring a new treatment method. Methods: The hemodialysis patients admitted to the 900th Hospital of the Chinese Joint Logistics Support Force of the People's Liberation Army from January 2021 to April 2023 were randomly divided into control group and intervention group, with 40 cases in each group. Among them, the control group was coated with mucopolysaccharide polysulfonate cream; Intervention group: The patients were treated with mucopolysaccharide polysulfonate cream and far infrared radiation at the same time. After 3 months' intervention, the arteriovenous fistula (vein diameter, mature time of arteriovenous fistula, blood flow controlled by pump during dialysis, blood flow of brachial artery during dialysis and the occurrence of complications of internal fistula (oozing, occlusion and infection) and the pain score (numerical rating scale, NRS) of the two groups were compared, and the curative effects were compared. Results: There was no significant difference in general data between the two groups (P > 0.05), which indicated that the study was comparable. After 3 months' intervention, the vein diameter, pump-controlled blood flow and brachial artery blood flow in the intervention group were significantly higher than those in the control group (P < 0.05). And the maturity time, NRS score and complication rate of arteriovenous fistula were significantly lower than those of the control group (P < 0.05). The primary patency rate of AVF in the intervention group was higher than that in the control group, and the overall patency rate between the two groups was statistically significant (P < 0.05). Conclusions: As a promising new treatment method, far infrared therapy can effectively promote the maturity of AVF, increase venous diameter, pump controlled blood flow during dialysis, brachial artery blood flow during dialysis, and prolong the service life of AVF.

19.
Materials (Basel) ; 16(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37570056

ABSTRACT

The paper presents a study of the crystal structure of anhydrous halides LiF, LiCl and LiBr using density functional theory. Models composed of 125 atoms were used for this study. The theoretical values of the lattice parameters and the distribution of charges in the crystals were determined. Using the assumed models at the level of theory DFT/B3LYP/6-31+g*, the theoretical infrared spectra of lithium halides (LiF, LiCl and LiBr) were calculated for the first time. Additionally, measurements of experimental far-infrared (FIR) spectra were performed for these salts. All the obtained theoretical values were compared with experimental data obtained by us and those available in the literature.

20.
Foods ; 12(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37372625

ABSTRACT

In this paper, the effects of different ultrasonic pretreatment processes on the far-infrared drying characteristics, quality indexes, and microstructure of licorice are evaluated. The results showed that ultrasonic pretreatment, combined with far-infrared drying, significantly reduced the drying time and moisture content of licorice compared with those of the control group. The highest total flavonoid content was obtained at an ultrasound power of 80 W. The total phenolic content (0.686 mg gallic acid equivalent/g) was higher than that in the control group, the increase was 19.4%, and its content was the highest at the sonication frequency of 20 kHz. The antioxidant capacity tended to increase and then decrease with the increase in sonication time, sonication power, and sonication frequency, and was the highest at 30 min of sonication. The soluble sugar content (31.490 mg glucose equivalent/g) was the highest at 30 kHz and 30 min. Observation of the microstructure revealed that the surface structure of the ultrasonic pretreated licorice slices changed significantly, forming more micropore channels, which facilitated the mass heat transfer during the drying process. In conclusion, ultrasonic pretreatment can significantly improve the quality of licorice tablets and significantly reduce the time required for subsequent drying. The combination of pretreatment parameters of 60 W ultrasonic power and 40 kHz ultrasonic frequency for 30 min was found to be an optimal combination of pretreatment parameters; therefore, this study may provide a technical reference for the industrialization of licorice drying.

SELECTION OF CITATIONS
SEARCH DETAIL
...