Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Language
Publication year range
1.
Appl Environ Microbiol ; 86(17)2020 08 18.
Article in English | MEDLINE | ID: mdl-32591380

ABSTRACT

Effective wastewater management is crucial to ensure the safety of water reuse projects and effluent discharge into surface waters. Multiple studies have demonstrated that municipal wastewater treatment with conventional activated sludge processes is inefficient for the removal of a wide spectrum of viruses in sewage. In this study, a well-accepted statistical approach was used to investigate the relationship between viral indicators and human enteric viruses during wastewater treatment in a resource-limited region. Influent and effluent samples from five urban wastewater treatment plants (WWTPs) in Costa Rica were analyzed for somatic coliphage and human enterovirus, hepatitis A virus, norovirus genotypes I and II, and rotavirus. All WWTPs provide primary treatment followed by conventional activated sludge treatment prior to discharge into surface waters that are indirectly used for agricultural irrigation. The results revealed a statistically significant relationship between the detection of at least one of the five human enteric viruses and somatic coliphage. Multiple logistic regression and receiver operating characteristic curve analysis identified a threshold of 3.0 × 103 (3.5 log10) somatic coliphage PFU per 100 ml, which corresponded to an increased likelihood of encountering enteric viruses above the limit of detection (>1.83 × 102 virus targets/100 ml). Additionally, quantitative microbial risk assessment was executed for farmers indirectly reusing WWTP effluent that met the proposed threshold. The resulting estimated median cumulative annual disease burden complied with World Health Organization recommendations. Future studies are needed to validate the proposed threshold for use in Costa Rica and other regions.IMPORTANCE Effective wastewater management is crucial to ensure safe direct and indirect water reuse; nevertheless, few countries have adopted the virus log reduction value management approach established by the World Health Organization. In this study, we investigated an alternative and/or complementary approach to the virus log reduction value framework for the indirect reuse of activated sludge-treated wastewater effluent. Specifically, we employed a well-accepted statistical approach to identify a statistically sound somatic coliphage threshold value which corresponded to an increased likelihood of human enteric virus detection. This study demonstrates an alternative approach to the virus log reduction value framework which can be applied to improve wastewater reuse practices and effluent management.


Subject(s)
Coliphages/isolation & purification , Sewage/virology , Waste Disposal, Fluid/methods , Wastewater/virology , Costa Rica
2.
Int J Hyg Environ Health ; 223(1): 159-170, 2020 01.
Article in English | MEDLINE | ID: mdl-31564507

ABSTRACT

Although water quality from freshwater recreational aquatic environments (RAEs) has been long analyzed worldwide, little information is available about their sediments. The aim of this work was to study the physicochemical and bacteriological quality of water and sediment under different seasonal events. For that, Wierna River (WR) and General Belgrano reservoir (GB) were used as freshwater RAEs models. A total of 33 water and 33 sediment samples (15 from WR and 18 from GB from each phase) were collected and analyzed. Physicochemical variables in water (pH, turbidity, dissolved oxygen, temperature, conductivity, alkalinity, hardness) and sediments (organic matter, humidity, ash, and conductivity) were measured. For the bacteriological characterization, total aerobic mesophiles, total and thermotolerant coliforms, E. coli, enteroccocci, Salmonella spp., and Pseudomonas aeruginosa were evaluated using culture-based methods. Universal and human Bacteroides were also quantified by real-time PCR. Univariate (Kruskall-Wallis), bivariate (Spearman correlation), and multivariate (cluster analysis, principal component analysis) statistical techniques were applied for data analysis. All bacterial indicators were almost two-logs higher in sediments than in water, for both RAEs. Also, due to rainfall events and recreational activities, sediments were resuspended in surface water exceeding in most cases the limit values established by international regulation for bacteria. Significant correlation was observed between culturable bacteria and turbidity (p < 0.05) supporting this. We found that while physicochemical variables clustered samples by geographical location in water and sediments, microbiological aggrupation in water was mostly driven by seasonal events. No aggrupation was observed when using microbiological variables in sediments. Thus, geographical location, type of water and sediments, and seasonal events influenced on RAEs quality. Including sediment analysis during RAEs monitoring campaigns is essential as it will allow knowing the real health risk to which bathers are exposed and proposing solutions to mitigate it.


Subject(s)
Environmental Monitoring , Geologic Sediments/microbiology , Water Pollution/analysis , Ecosystem , Fresh Water , Rivers/microbiology , Water Microbiology , Water Pollution/statistics & numerical data , Water Quality
3.
Helicobacter ; 24(3): e12582, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30950129

ABSTRACT

BACKGROUND: The quality of raw and drinking water is a matter of considerable concern due to the possibility of fecal contamination. To assess the quality and public health risk of different types of water, the fecal indicator bacteria (FIB) are used. However, some pathogens, such as Helicobacter pylori, may be present in water when FIB cannot be found. H pylori is recognized as the causative agent of chronic gastritis, peptic and duodenal ulcers, and gastric cancer. The aim of this study was to evaluate the relationships among physicochemical parameters, FIB concentrations, and the presence of H pylori DNA in raw and drinking water from Bogotá, Colombia. MATERIALS AND METHODS: A total of 310 water samples were collected 1 day per week from July 2015 to August 2016, and physicochemical parameters (pH, turbidity, conductivity, and residual free chlorine) were measured. Presence of H pylori DNA was determined and quantified by quantitative polymerase chain reaction (qPCR). Fecal indicator bacteria (total coliforms, Escherichia coli, and spores of sulfite-reducing Clostridia) were enumerated by using standard culture techniques. RESULTS: Thirty of 155 (31%) raw water samples and forty-eight of 155 (38.7%) drinking water samples were positive for the presence of H pylori. No statistically significant relationships were found between physicochemical parameters or FIB with the presence or absence of H pylori in any sample (P < 0.05). CONCLUSIONS: This study provides evidence of the presence of H pylori DNA in raw and drinking water in Bogotá, and shows that the detection and enumeration of FIB and physicochemical parameters in water do not correlate with the risk of contamination with H pylori.


Subject(s)
DNA, Bacterial/analysis , Drinking Water/microbiology , Feces/microbiology , Helicobacter Infections/microbiology , Helicobacter pylori/isolation & purification , Chemical Phenomena , Colombia , Environmental Monitoring , Helicobacter pylori/genetics , Humans , Polymerase Chain Reaction , Water Microbiology
4.
Environ Sci Pollut Res Int ; 26(7): 6586-6601, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30628001

ABSTRACT

Surface waters are used by local populations for different purposes, such as recreational activities, water source for human and animal consumption, and irrigation among others, which lead to the need for management strategies on water health and associated risks. During this study, we investigated physicochemical parameters, fecal coliform bacteria, and infectious human enterovirus detection to determine the water quality in different beaches (categorized as an urban area, non-urban areas, and an intermediate position) from San Roque Dam, in Argentina. Multivariate techniques were applied. Principal component analysis allowed identification of subgroup of variables responsible for the water quality. A cluster analysis and multivariate analysis of variance showed the urban beach as the highest pollution area. The following variables (measured at the urban beach) would be enough to describe the quality of the aquatic body: nitrites, fecal coliforms, total phosphorous, and infectious human enterovirus. The infectious human enterovirus was an independent variable detected in 69.1% of the samples showing a steady frequency of detection during the whole period studied and could identify human fecal contaminations as a source of water pollution. The selected variables would contribute to water quality regarding the risk for human health using San Roque dam waters for recreational propose.


Subject(s)
Enterovirus/growth & development , Environmental Monitoring/methods , Water Microbiology , Water Pollution/statistics & numerical data , Animals , Argentina , Feces , Humans , Multivariate Analysis , Water Quality
5.
Fish Shellfish Immunol ; 80: 115-123, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29864586

ABSTRACT

The mussel Perna perna is an intertidal bivalve that is widely distributed, cultivated and consumed in South Africa, Brazil and Venezuela. Among marine resources, bivalve mollusks are one of the most impacted by anthropogenic pollution, as they can accumulate pathogenic bacteria and water pollutants. Hemocytes are molluscan defense cells, and their abundance and functions can be affected in response to contaminants, such as bacterial load. However, no previous study has investigated the immune response of P. perna hemocytes. The aim of this study was to evaluate several immune parameters in P. perna as indicators of fecal pollution in mussel hemolymph and in seawater. We collected mussels and adjacent seawater from beaches with different levels of fecal contamination in Rio de Janeiro state (Brazil): Vermelha Beach (VB); Icaraí Beach (IB); Urca Beach (UB); and Jurujuba Beach (JB). Hemocyte parameters (density, morphology, phagocytic activity and production of Reactive Oxygen Species - ROS) were evaluated using flow cytometry. We quantified Fecal Indicator Bacteria (FIB) in seawater by the multiple tubes technique for each beach and for hemolymph by the spread-plate technique. In agreement with historical evaluation of fecal contamination levels, UB presented the highest FIB abundance in seawater (thermotolerant coliforms, TEC = 1600 NMP 100 mL-1), whereas VB exhibited the lowest (TEC = 17 NMP 100 mL-1). UB mussels had six and eight times higher hemocyte density and phagocytic activity, respectively, than mussels from VB. Mussels from VB and IB presented a significantly lower number of total coliforms in hemolymph and a significantly higher relative internal complexity of hemocytes than those from UB and JB (p ≤ 0.01, PERMANOVA). ROS production by hemocytes was significantly lower in mussels from VB compared to those from JB (p = 0.04, ANOVA). Our results indicate a significant relationship between the level of fecal contamination in aquatic environments and the immune response of mussel hemocytes. Immune-related parameters may therefore be useful as indicators of bivalve health and environmental quality. Our flow cytometric analysis of P. perna hemocytes represents a new approach for studying Perna perna biology and might represent a novel tool for measuring organic pollution and water quality.


Subject(s)
Environmental Monitoring/methods , Feces , Perna/immunology , Water Pollution/analysis , Animals , Brazil , Enterobacteriaceae/isolation & purification , Feces/microbiology , Hemocytes/immunology , Hemocytes/physiology , Hemolymph/microbiology , Perna/microbiology , Phagocytosis , Reactive Oxygen Species/immunology , Respiratory Burst , Seawater , Water Pollutants/analysis
6.
Article in English | MEDLINE | ID: mdl-29257092

ABSTRACT

Enterococci concentration variability at Escambron Beach, San Juan, Puerto Rico, was examined in the context of environmental conditions observed during 2005-2015. Satellite-derived sea surface temperature (SST), turbidity, direct normal irradiance, and dew point were combined with local precipitation, winds, and mean sea level (MSL) observations in a stepwise multiple regression analyses (Akaike Information Criteria model selection). Precipitation, MSL, irradiance, SST, and turbidity explained 20% of the variation in observed enterococci concentrations based upon these analyses. Changes in these parameters preceded increases in enterococci concentrations by 24 h up to 11 days, particularly during positive anomalies of turbidity, SST, and 480-960 mm of accumulated (4 days) precipitation, which relates to bacterial ecology. Weaker, yet still significant, increases in enterococci concentrations were also observed during positive dew point anomalies. Enterococci concentrations decreased with elevated irradiance and MSL anomalies. Unsafe enterococci concentrations per US EPA recreational water quality guidelines occurred when 4-day cumulative precipitation ranged 481-960 mm; irradiance < 667 W·m-2; daily average turbidity anomaly >0.005 sr-1; SST anomaly >0.8 °C; and 3-day average MSL anomaly <-18.8 cm. This case study shows that satellite-derived environmental data can be used to inform future water quality studies and protect human health.


Subject(s)
Bathing Beaches , Enterococcus/isolation & purification , Seawater/microbiology , Water Quality , Puerto Rico
7.
Water Res ; 87: 59-68, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26378732

ABSTRACT

Regulating recreational water exposure to pathogens within the tropics is a major public health and economic concern. Although numerous epidemiological studies estimating the risk to recreational marine water exposure have been conducted since the 1950s, few studies have been done in the tropics. Furthermore, many have suggested that the use of fecal indicator bacteria for monitoring recreational water quality in temperate regions is not appropriate in the tropics. We analyzed a large cohort study of five beaches in Sao Paulo, Brazil, conducted during consecutive weekends in the summer of 1999 that estimated risk to water, sand, and food exposures. Enterococci and Escherichia coli concentrations were measured each day of the study. Elevated risks were estimated for both swimming (OR = 1.36 95% CI: 1.05-1.58) and sand contact (OR = 1.29 95% CI 1.05-1.58). A 1 log increase in enterococci concentration was associated with an 11% increase in risk (OR = 1.11 95% CI: 1.04-1.19). For E. coli a 1-log increase in concentration was associated with 19% increase in risk (OR = 1.19 95% CI: 1.14-1.28). Most countries with beaches in the tropics are lower or middle income countries (LMIC) and rely on tourism as a major source of income. We present data that suggests fecal indicator bacteria such as enterococci are an appropriate indicator of risk in tropical urban settings where contamination is coming from predominantly human sources. Additional studies in tropical settings could help inform and refine guidelines for safe use of recreational waters.


Subject(s)
Bathing Beaches , Enterococcus/isolation & purification , Escherichia coli/isolation & purification , Seawater/microbiology , Water Microbiology , Adolescent , Adult , Brazil/epidemiology , Child , Child, Preschool , Cohort Studies , Environmental Monitoring , Feces/microbiology , Female , Gastrointestinal Diseases/epidemiology , Gastrointestinal Diseases/microbiology , Humans , Infant , Male , Risk Assessment , Swimming , Tropical Climate
8.
Braz J Microbiol ; 44(1): 97-103, 2013.
Article in English | MEDLINE | ID: mdl-24159289

ABSTRACT

Forty-six bottled water samples representing 16 brands from Dhaka, Bangladesh were tested for the numbers of total coliforms, fecal indicator bacteria (i.e., thermotolerant Escherichia coli and Enterococcus spp.) and potential bacterial pathogens (i.e., Aeromonas hydrophila, Pseudomonas aeruginosa, Salmonella spp., and Shigella spp.). Among the 16 brands tested, 14 (86%), ten (63%) and seven (44%) were positive for total coliforms, E. coil and Enterococcus spp., respectively. Additionally, a further nine (56%), eight (50%), six (37%), and four (25%) brands were PCR positive for A. hydrophila lip, P. aeruginosa ETA, Salmonella spp. invA, and Shigella spp. ipaH genes, respectively. The numbers of bacterial pathogens in bottled water samples ranged from 28 ± 12 to 600 ± 45 (A. hydrophila lip gene), 180 ± 40 to 900 ± 200 (Salmonella spp. invA gene), 180 ± 40 to 1,300 ± 400 (P. aeruginosa ETA gene) genomic units per L of water. Shigella spp. ipaH gene was not quantifiable. Discrepancies were observed in terms of the occurrence of fecal indicators and bacterial pathogens. No correlations were observed between fecal indicators numbers and presence/absence of A. hydrophila lip (p = 0.245), Salmonella spp. invA (p = 0.433), Shigella spp. ipaH gene (p = 0.078), and P. aeruginosa ETA (p = 0.059) genes. Our results suggest that microbiological quality of bottled waters sold in Dhaka, Bangladesh is highly variable. To protect public health, stringent quality control is recommended for the bottled water industry in Bangladesh.

9.
Braz. j. microbiol ; Braz. j. microbiol;44(1): 97-103, 2013. tab
Article in English | LILACS | ID: lil-676899

ABSTRACT

Forty-six bottled water samples representing 16 brands from Dhaka, Bangladesh were tested for the numbers of total coliforms, fecal indicator bacteria (i.e., thermotolerant Escherichia coli and Enterococcus spp.) and potential bacterial pathogens (i.e., Aeromonas hydrophil, Pseudomonas aeruginos, Salmonella spp., and Shigella spp.). Among the 16 brands tested, 14 (86%), ten (63%) and seven (44%) were positive for total coliforms, E. coil and Enterococcus spp., respectively. Additionally, a further nine (56%), eight (50%), six (37%), and four (25%) brands were PCR positive for A. hydrophila lip, P. aeruginosa ETA, Salmonella spp. invA, and Shigella spp. ipaH genes, respectively. The numbers of bacterial pathogens in bottled water samples ranged from 28 ± 12 to 600 ± 45 (A. hydrophila lip gene), 180 ± 40 to 900 ± 200 (Salmonella spp. invA gene), 180 ± 40 to 1,300 ± 400 (P. aeruginosa ETA gene) genomic units per L of water. Shigella spp. ipaH gene was not quantifiable. Discrepancies were observed in terms of the occurrence of fecal indicators and bacterial pathogens. No correlations were observed between fecal indicators numbers and presence/absence of A. hydrophila lip (p = 0.245), Salmonella spp. invA (p = 0.433), Shigella spp. ipaH gene (p = 0.078), and P. aeruginosa ETA (p = 0.059) genes. Our results suggest that microbiological quality of bottled waters sold in Dhaka, Bangladesh is highly variable. To protect public health, stringent quality control is recommended for the bottled water industry in Bangladesh.


Subject(s)
Male , Anti-Bacterial Agents , Drinking Water/prevention & control , Coliforms/methods , Coliforms/prevention & control , Enterobacteriaceae Infections , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/pathogenicity , In Vitro Techniques , Polymerase Chain Reaction , Water Pollution , Methods , Virulence , Water Samples
SELECTION OF CITATIONS
SEARCH DETAIL