Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Biodegradation ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619793

ABSTRACT

In order to explore the operation performance, kinetic characteristics and bacterial community of the short-cut nitrification and denitrification (SND) system, the SND system with pre-cultured short cut nitrification and denitrification sludge was established and operated under different ferrous ion (Fe (II)) conditions. Experimental results showed that the average NH4+-N removal efficiency (ARE) of SND system was 97.3% on Day 5 and maintained a high level of 94.9% ± 1.3% for a long operation period. When the influent Fe(II) concentration increased from 2.3 to 7.3 mg L-1, the sedimentation performance, sludge concentration and organic matter removal performance were improved. However, higher Fe(II) of 12.3 mg L-1 decreased the removal of nitrogen and CODCr with the relative abundance (RA) of Proteobacteria and Bacteroidetes decreased to 30.28% and 19.41%, respectively. Proteobacteria, Bacteroidetes and Firmicutes were the dominant phyla in SND system. Higher Fe(II) level of 12.3 mg L-1 increase the RA of denitrifying genus Trichococcus (33.93%), and the denitrifying genus Thauera and Tolumonas dominant at Fe(II) level of no more than 7.3 mg L-1.

2.
Water Res ; 255: 121472, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38552492

ABSTRACT

The creation of large amounts of excess sludge and residual nitrogen are critical issues in wastewater biotreatment. This study introduced Fe(II) into an oligotrophic anaerobic reactor (OARFe) that was implemented to modify an anoxic-oxic process to motivate in-situ sludge reduction and enhance denitrification under an effective electron shuttle among organic matter, nitrogen, and Fe. The addition of 15 mg L-1 Fe(II) resulted in a sludge reduction efficiency reached 32.0% with a decreased effluent nitrate concentration of 33.3%. This was mostly attributed to the electron transfer from Fe(II) to organic matters and nitrogen species in OARFe. The participation of Fe(II) led to the upregulation of Geothrix and Terrimonas, which caused active organic matter hydrolysis and cell lysis to stimulate the release of extracellular polymeric substances (EPS) and substance transfer between each layer of EPS. The higher utilization of released bioavailable dissolved organic matter improved endogenous denitrification, which can be combined with iron autotrophic denitrification to realize multiple electron donor-based nitrogen removal pathways, resulting in an increased nitrate removal rate of 58.2% in the absence of external carbon sources. These functional bacteria associated with the transformation of nitrogen and carbon and cycling between ferrous and ferric ions were enriched in OARFe, which contributed to efficient electron transport occurred both inside and outside the cell and increased 2,3,5-triphenyltetrazolium chloride electronic transport system activity by 46.9%. This contributed to the potential operational costs of chemical addition and sludge disposal of Fe-AO being 1.9 times lower than those of conventional A2O processes. These results imply that the addition of ferrous ions to an oligotrophic anaerobic zone for wastewater treatment has the potential for low-cost pollution control.

3.
Sci Total Environ ; 923: 171315, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38431177

ABSTRACT

Development of microalgal-bacterial granular sludge (MBGS) from saline-adapted microalgae is a promising approach for efficient mariculture wastewater treatment, whereas the elusive mechanisms governing granulation have impeded its widespread adoption. In this study, spherical and regular MBGS were successfully developed from mixed culture of pure Spirulina platensis and Chlorella sp. GY-H4 at 10 mg/L Fe2+ concentration. The addition of Fe2+ was proven to induce the formation of Fe-precipitates which served as nucleation sites for microbial attachment and granulation initiation. Additionally, Fe2+ increased the prevalence of exopolysaccharide-producing cyanobacteria, i.e. Synechocystis and Leptolyngbya, facilitating microbial cell adhesion. Furthermore, it stimulated the secretion of extracellular proteins (particularly tryptophan and aromatic proteins), which acted as structural backbone for the development of spherical granule form microalgal flocs. Lastly, it fostered the accumulation of exogenous heterotrophic functional genera, resulting in the efficient removal of DOC (98 %), PO43--P (98 %) and NH4+-N (87 %). Nevertheless, inadequate Fe2+ hindered microalgal floc transformation into granules, excessive Fe2+ expanded the anaerobic zone within the granules, almost halved protein content in the TB-EPS, and inhibited the functional genes expression, ultimately leading to an irregular granular morphology and diminished nutrient removal. This research provides valuable insights into the mechanisms by which Fe2+ promotes the granulation of salt-tolerant microalgae, offering guidance for the establishment and stable operation of MBGS systems in mariculture wastewater treatment.


Subject(s)
Chlorella , Microalgae , Water Purification , Wastewater , Microalgae/metabolism , Sewage/chemistry , Proteins/metabolism , Bacteria , Water Purification/methods , Iron/metabolism , Biomass , Nitrogen/metabolism
4.
Colloids Surf B Biointerfaces ; 237: 113867, 2024 May.
Article in English | MEDLINE | ID: mdl-38522284

ABSTRACT

In this study, hydrogel beads [SPI/HP-Fe (II)] were prepared by cross-linking soybean isolate protein (SPI) and hawthorn pectin (HP) with ferrous ions as a backbone, and the effects of ultrasound and Fe2+ concentration on the mechanical properties and the degree of cross-linking of internal molecules were investigated. The results of textural properties and water-holding capacity showed that moderate ultrasonic power and Fe2+ concentration significantly improved the stability and water-holding capacity of the hydrogel beads and enhanced the intermolecular interactions in the system. Scanning electron microscopy (SEM) confirmed that the hydrogel beads with 60% ultrasonic power and 8% Fe2+ concentration had a denser network. X-ray photoelectron spectroscopy (XPS) and atomic absorption experiments demonstrated that ferrous ions were successfully loaded into the hydrogel beads with an encapsulation efficiency of 82.5%. In addition, in vitro, simulated digestion experiments were performed to understand how the encapsulated Fe2+ is released from the hydrogel beads, absorbed, and utilized in the gastrointestinal environment. The success of the experiments demonstrated that the hydrogel beads were able to withstand harsh environments, ensuring the bioactivity of Fe2+ and improving its bioavailability. In conclusion, a novel and efficient ferrous ion delivery system was developed using SPI and HP, demonstrating the potential application of SPI/HP-Fe (II) hydrogel beads as an iron supplement to overcome the inefficiency of intake of conventional iron supplements.


Subject(s)
Crataegus , Hydrogels , Hydrogels/chemistry , Pectins/chemistry , Soybean Proteins/chemistry , Glycine max , Iron , Water , Ions
5.
Environ Res ; 250: 118363, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38331141

ABSTRACT

The widespread existence of antibiotics in the environment has attracted growing concerns regarding the potential adverse effects on aquatic organisms, ecosystems, and human health even at low concentrations. Extensive efforts have been devoted to developing new methods for effective elimination of antibiotics from wastewater. Herein, a novel process of Fe2+ catalytically enhanced vacuum ultraviolet (VUV) irradiation was proposed as a promising approach for the removal of antibiotic trimethoprim (TMP) in water. Compared with UVC photolysis, VUV photolysis, and UVC/Fe2+, VUV/Fe2+ could increase the pseudo-first-order reaction rate constant of TMP removal by 6.6-38.4 times and the mineralization rate by 36.5%-59.9%. The excellent performance might originate from the synergistic effect of VUV and Fe2+, i.e., VUV irradiation could effectively split water and largely accelerate the Fe3+/Fe2+ cycle to generate more reactive oxygen species (ROS). EPR results indicated that •OH and O2•- were identified as the main ROS in the UVC/Fe2+ and VUV/Fe2+ processes, while •OH, O2•-, and 1O2 were involved in the VUV process. The operating parameters, such as Fe2+ dosage and initial TMP contents, were evaluated and optimized. Up to 8 aromatic intermediates derived from hydroxylation, demethylation, carbonylation, and methylene group cleavage were identified by UPLC-QTOF-MS/MS technique, the possible pathways of TMP degradation were proposed. Finally, the acute and chronic toxicity of intermediates formed during TMP degradation in the VUV/Fe2+ process were also evaluated.


Subject(s)
Photolysis , Trimethoprim , Ultraviolet Rays , Water Pollutants, Chemical , Trimethoprim/chemistry , Trimethoprim/toxicity , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Kinetics , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Iron/chemistry , Vacuum , Catalysis , Animals
6.
J Mol Model ; 30(2): 52, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38285315

ABSTRACT

CONTEXT: The solvation of metal ions is crucial to understanding relevant properties in physics, chemistry, or biology. Therefore, we present solvation enthalpies and solvation free energies of the ferrous ion in water and ammonia. Our results agree well with the experimental reports for the hydration free energy and hydration enthalpy. We obtained [Formula: see text] kJ mol[Formula: see text] for the hydration free energy and [Formula: see text] kJ mol[Formula: see text] for the hydration enthalpy of ferrous ion in water at room temperature. At ambient temperature, we obtained [Formula: see text] kJ mol[Formula: see text] as the [Formula: see text] ammoniation free energy and [Formula: see text] kJ mol[Formula: see text] for the ammoniation enthalpy. In addition, the free energy of solvation is deeply affected when the temperature increases. This pattern can be attributed to the rise of entropy when the temperature rises. Besides, the temperature does not affect the ammoniation enthalpies and the hydration enthalpy of the [Formula: see text] ion. METHOD: All the geometry optimizations are performed at the MP2 methods associated with the 6-31++g(d,p) basis set of Pople. solvated phase structures of [Formula: see text] ion in water or in ammonia are performed using the PCM model. The [Formula: see text] program suite was used to perform all the calculations. The program TEMPO was also used to evaluate the temperature sensitivity of the different obtained geometries.

7.
ACS Nano ; 17(17): 16743-16756, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37616516

ABSTRACT

Chemodynamic therapy (CDT) is a highly tumor-specific treatment, while its efficacy is compromised by the intratumoral Fenton reaction efficiency, which is determined by the following reaction factors, including the availability of Fenton ions (e.g., Fe2+), the amount of H2O2, and the degree of acidity. Synchronous optimization of these factors is a big challenge for efficient CDT. Herein, a strategy of comprehensively optimizing Fenton reaction factors was developed for traceable multistage augmented CDT by charge-reversal theranostics. The customized pH-responsive poly(ethylene)glycol-poly(ß-amino esters) (PEG-PAE) micelle (PM) was prepared as the carrier. Glucose oxidase (GOx), Fe2+, and pH-responsive second near-infrared (NIR-II) LET-1052 probe were coloaded by PM to obtain the final theranostics. The activity of metastable Fe2+ remained by the unsaturated coordination with PEG-PAE. Then tumor accumulation and exposure of Fe2+ were achieved by charge-reversal cationization of PEG-PAE, which was further enhanced by a GOx catalysis-triggered pH decrease. Together with the abundant H2O2 generation and pH decrease through GOx catalysis, the limiting factors of the Fenton reaction were comprehensively optimized, achieving the enhanced CDT both in vitro and in vivo. These findings provide a strategy for comprehensively optimizing intratumoral Fenton reaction factors to overcome the intrinsic drawbacks of current CDT.


Subject(s)
Hydrogen Peroxide , Precision Medicine , Catalysis , Esters , Glucose Oxidase
8.
J Hazard Mater ; 459: 132229, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37549576

ABSTRACT

In this study, the performance and mechanism of the integrated sulfidated nanosized zero-valent iron and ferrous ions (S-nZVI/Fe2+) system for oxygen activation to remove emerging contaminants (ECs) were comprehensively explored. The S-nZVI/Fe2+ system exhibited a 2.4-8.2 times of increase in the pseudo-first order kinetic rate constant for the oxidative degradation of various ECs compared to the S-nZVI system under aerobic conditions, whereas negligible removal was observed in both nZVI and nZVI/Fe2+ systems. Moreover, remarkable EC mineralization efficiency and benign detoxification capacity were also demonstrated in the S-nZVI/Fe2+ system. We revealed that dosing Fe2+ promoted the corrosion of S-nZVI by maintaining an acidic solution pH, which was conducive to O2 activation by dissolved Fe2+ and surface-absorbed Fe(II) to produce •OH. Furthermore, the generation of H* was enhanced for the further reduction of Fe(III) and H2O2 to Fe(II) and •O2-, resulting in the improvement of consecutive single-electron O2 activation for •OH production. Additionally, bisphenol A (BPA) degradation by S-nZVI/Fe2+ was positively correlated with the S-nZVI dosage, with an optimum S/Fe molar ratio of 0.15. The Fenton-like degradation process by S-nZVI/Fe2+ was pH-insensitive, indicating its robust performance over a wide pH range. This study provides valuable insights for the practical implementation of nZVI-based technology in achieving high-efficiency removal of ECs from water.

9.
ACS Chem Neurosci ; 14(10): 1826-1833, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37104649

ABSTRACT

Ferroptosis and oxytosis are iron- and oxidative stress-dependent cell death pathways strongly implicated in neurodegenerative diseases, cancers, and metabolic disorders. Therefore, specific inhibitors may have broad clinical applications. We previously reported that 3-[4-(dimethylamino)benzyl]-2-oxindole (GIF-0726-r) and derivatives protected the mouse hippocampal cell line HT22 against oxytosis/ferroptosis by suppressing reactive oxygen species (ROS) accumulation. In this study, we evaluated the biological activities of GIF-0726-r derivatives with modifications at the oxindole skeleton and other positions. The addition of a methyl, nitro, or bromo group to C-5 of the oxindole skeleton enhanced antiferroptotic efficacy on HT22 cells during membrane cystine-glutamate antiporter inhibition and ensued intracellular glutathione depletion. In contrast, the substitution of the dimethylamino group on the side chain phenyl ring with a methyl, nitro, or amine group dramatically suppressed antiferroptotic activity regardless of other modifications. Compounds with antiferroptotic activity also directly scavenged ROS and decreased free ferrous ions in both HT22 cells and cell-free reactions while those compounds without antiferroptotic activity had little effect on either ROS or ferrous-ion concentration. Unlike oxindole compounds, which we have previously reported, the antiferroptotic compounds had little effect on the nuclear factor erythroid-2-related factor 2-antioxidant response element pathway. Oxindole GIF-0726-r derivatives with a 4-(dimethylamino)benzyl moiety at C-3 and some types of bulky group at C-5 (whether electron-donating or electron-withdrawing) can suppress ferroptosis, warranting safety and efficacy evaluations in animal models of disease.


Subject(s)
Iron , Neuroprotective Agents , Mice , Animals , Reactive Oxygen Species/metabolism , Iron/pharmacology , Oxindoles/pharmacology , Neuroprotective Agents/pharmacology , Cell Death
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 294: 122560, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-36881962

ABSTRACT

Ferrous ion (Fe2+) is a crucial metal ion in the body and participates in the diseases related to oxidation and reduction. Golgi apparatus is the main subcellular organelle of Fe2+ transport in cells, and the stability of its structure is related to the Fe2+ at an appropriate concentration. In this work, a turn-on type Golgi-targeting fluorescent chemosensor Gol-Cou-Fe2+ was rationally designed for sensitive and selective detection of Fe2+. Gol-Cou-Fe2+ showed excellent capacity of detecting exogenous and endogenous Fe2+ in HUVEC and HepG2 cells. It was used to capture the up-regulated Fe2+ level during the hypoxia. Moreover, the fluorescence of sensor was enhanced over time under Golgi stress combining with the reduce of Golgi matrix protein GM130. However, elimination of Fe2+ or addition of nitric oxide (NO) would restore the fluorescence intensity of Gol-Cou-Fe2+ and the expression of GM130 in HUVEC. Thus, development of chemosensor Gol-Cou-Fe2+ provides a new window for tracking Golgi Fe2+ and elucidating Golgi stress-related diseases.


Subject(s)
Fluorescent Dyes , Iron , Fluorescent Dyes/chemistry , Iron/chemistry , Golgi Apparatus/metabolism , Fluorescence , Ions
11.
Bioengineering (Basel) ; 10(2)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36829740

ABSTRACT

Antioxidant foods represent a potent lever to improve diets while creating value. Yet, their cultivation is often tied to a specific area and climate, limiting availability and increasing market cost. Therefore, microorganism-based antioxidant production emerges as a promising technology to solve these problems. In this view, a novel process was investigated for antioxidant accumulation in yeast culture. S. cerevisiae cells were exposed to various hyperbaric air conditions from 1 to 9 bar (A). Yeast cultures exhibited an increased reactive oxygen species content, which induced oxidative defense expression. After a few hours, reactive oxygen species levels decreased while antioxidant contents remained high, leading to a net increase in antioxidant power. At 6 bar (A), yeast achieved the highest net antioxidant power (phenolics content +48.3 ± 18.6 %, reducing power +120 ± 11.4 %) with an acceptable growth rate (0.27 h-1). Regarding time evolution, a 2 h exposure seems to be the optimum: cells have the lowest reactive oxygen species level while their antioxidant power is increased. From a biotechnological perspective, this finding highlights air pressure as an antioxidant-manipulating stress strategy. Moreover, the proposed process led to a patent that could potentially reduce energy and chemical consumption in such antioxidant accumulation processes.

12.
Biochem Biophys Res Commun ; 641: 116-122, 2023 01 22.
Article in English | MEDLINE | ID: mdl-36527745

ABSTRACT

Tyrosine kinase inhibitors of epidermal growth factor receptor (EGFR-TKIs), such as osimertinib, show great success in non-small-cell lung cancer patients with EGFR mutated tumors. However, almost all patients develop resistance to EGFR-TKIs owing to secondary EGFR mutations. Although genetic and irreversible resistance mechanisms have been proposed, little is known about non-genetic and reversible resistance mechanisms. From this perspective, a recent study revealed that acute drug exposure generates drug-tolerant persister cells (DTPs) as a form of non-genetic resistance. However, the biological characteristics of DTPs remain unclear. As lipid peroxidation is related to cancer progression and drug resistance, we focused on ferroptosis, namely programmed cell death induced by the accumulation of lipid peroxides, in DTPs. We examined the biological characteristics of ferroptosis in osimertinib-mediated DTPs derived from PC9 lung adenocarcinoma cells. Unlike PC9 cells, established PC9 DTPs were highly sensitive to the ferroptosis inducer RSL3. Accordingly, PC9 DTPs had increased levels of lipid reactive oxygen species and ferrous ion accumulation. Moreover, RSL3-mediated cell death in PC9 DTPs was completely rescued by treatment with the iron chelator deferoxamine. These results suggest that PC9 DTPs showed increased intracellular ferrous ion accumulation and were susceptible to ferroptosis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Ferroptosis , Lung Neoplasms , Humans , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Drug Resistance, Neoplasm , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , ErbB Receptors/genetics , Mutation
13.
Food Chem Toxicol ; 172: 113586, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36584933

ABSTRACT

Oxidative stress is the central pathomechanism in multiple cell death pathways, including ferroptosis, a form of iron-dependent programmed cell death. Various phytochemicals, which include the inducers of the nuclear factor erythroid-2-related factor 2-antioxidant response element (Nrf2-ARE) transcription pathway, prevent ferroptosis. We recently reported that several compounds, such as the potent Nrf2-ARE inducer curcumin, protect mouse hippocampus-derived HT22 cells against ferroptosis independently of Nrf2-ARE activity. The present study characterized the anti-ferroptotic mechanisms of two additional Nrf2-ARE inducers, quercetin and resveratrol. Both compounds prevented erastin- and RSL3-induced ferroptosis of wild-type HT22 cells, and also blocked the exacerbated erastin- and RSL3-induced ferroptosis of Nrf2-knockdown HT22 cells. In both HT22 cells, quercetin and resveratrol blocked erastin- and RSL3-induced elevation in reactive oxygen species. These results suggest that the Nrf2-ARE pathway does protect against ferroptosis, but quercetin and resveratrol act by reducing oxidative stress independently of Nrf2-ARE induction. Quercetin and resveratrol also reduced Fe2+ concentrations in HT22 cells and in cell-free reactions. Thus, quercetin and resveratrol likely protect against erastin- and RSL3-induced ferroptosis by inhibiting the iron-catalyzed generation of hydroxyl radicals. Unlike quercetin, resveratrol cannot form a chelate structure with Fe2+ but the density functional theory computation demonstrates that resveratrol can form stable monodentate complexes with the alkene moiety and the electron-rich A ring.


Subject(s)
Ferroptosis , Mice , Animals , Resveratrol/pharmacology , Quercetin/pharmacology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Antioxidant Response Elements , Iron/metabolism , Reactive Oxygen Species/metabolism , Hippocampus/metabolism
14.
Colloids Surf B Biointerfaces ; 221: 112977, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36343479

ABSTRACT

Severe skin wound healing is mainly hindered by bacterial infection and uncontrolled inflammatory reaction. As a wound dressing, multifunctional hydrogel is expected to offer the potential possibility for overcoming current barriers in wound therapeutics. Herein, a natural drug molecule (glycyrrhizic acid, GA) and metal ion (Fe2+) were used to achieve the metal coordination-induced gelation. This as-prepared Fe2+-induced GA hydrogel showed excellent injectability, self-healing property, and sustained release behavior at a relatively lower concentration of GA, thereby reducing the high dose-caused cytotoxicity. In addition to acting as an inducer of gelation, Fe2+ promoted the antibacterial performance of hydrogel against Escherichia coli and Staphylococcus aureus through causing lipid peroxidation, membrane damage, and DNA degradation. Moreover, the released GA from hydrogel significantly accelerated cell migration and inhibited the inflammatory reaction by mediation of NF-κB signaling pathway to downregulate levels of important inflammatory cytokines in lipopolysaccharide-stimulated RAW264.7 cells. Using a mouse skin infected model, we revealed that the Fe2+/GA hydrogel applied to the wound resulted in the rapid wound healing. It is believed that the construction of natural drug molecule-derived hydrogel with antibacterial and anti-inflammatory capabilities may shed a new light to serve as a promising dressing for managing the severe skin wounds.


Subject(s)
Hydrogels , Staphylococcus aureus , Hydrogels/pharmacology , Glycyrrhizic Acid , Iron , Wound Healing , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Escherichia coli
15.
Sci Total Environ ; 858(Pt 3): 160100, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36370779

ABSTRACT

Forward osmosis (FO) is a high-efficiency and low-energy consumption way for algae-laden water treatment, whereas membrane fouling is still an unavoidable problem in its practical application. In this work, a strategy of ferrous-activated calcium peroxide (Fe(II)/CaO2) was proposed to control FO membrane fouling in the purification of algae-laden water. With the treatment of Fe(II)/CaO2, the aggregation of algal contaminants was promoted, the cell viability and integrity were well preserved, and the fluorescent organics were efficiently removed. With respect to the fouling of FO membrane, the flux decline was generally alleviated, and the flux recovery was promoted to varying degrees under different process conditions. It could be revealed through the extended Derjaguin-Landau-Verwey-Overbeek theory that the adhesion of contaminants and membrane surfaces was reduced by Fe(II)/CaO2 treatment. The interface morphologies and functional groups of membrane verified that Fe(II)/CaO2 could mitigate the fouling by reducing the amount of algal contaminants adhering to the FO membrane. The co-coagulation of in-situ Fe(III) together with Ca(OH)2, as well as the oxidation of •OH were the main mechanisms for fouling mitigation. In sum, the Fe(II)/CaO2 process could effectively improve the efficiency of FO for algae-laden water treatment, and has broad application prospects.


Subject(s)
Ferric Compounds , Ferrous Compounds
16.
Acta Pharmaceutica Sinica ; (12): 2250-2259, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-999146

ABSTRACT

Small molecule fluorescent probes have gained widespread attention for their advantages of high selectivity, sensitivity, and easy to operate, and have played a critical role in the detection of various species. They have also demonstrated great potential in the field of biomedical research. Iron, as the most abundant transition metal in the human body, plays a vital role in many physiological functions. Due to the influence of the reductive microenvironment of cell, ferrous ion (Fe2+) is the main component of labile iron in living cells. Heme, consisting of Fe2+ and protoporphyrin IX, is one of the main signaling molecules that wrap biological iron in the human body, and also participates in many physiological and pathological processes. Therefore, the development of small molecule fluorescent probes for detecting Fe2+ and heme as effective monitoring tools will help to further understand their pathological and physiological functions, with potential applications in other fields. This review summarizes the research progress of small molecule fluorescent probes for Fe2+ and heme detection in recent years, and provides insights into future directions for their development.

17.
Article in English | MEDLINE | ID: mdl-36429442

ABSTRACT

Fe(II)-activated potassium periodate (KIO4) oxidation was used to improve the dewaterability of waste-activated sludge for the first time. Compared with those of raw sludge, the capillary suction time (CST), specific resistance filtration (SRF), and water content of filter cake (WC) of sludge treated using the Fe(II)/KIO4 process under the optimal conditions (i.e., the initial pH = 6.8, KIO4 dose = 1.4 mmol/g volatile suspended solids, Fe(II)/KIO4 molar ratio = 1.2) decreased by 64.34%, 84.13%, and 6.69%, respectively. For conditioned sludge flocs, the Zeta potential and particle size were increased, and hydrophilic proteins in extracellular polymeric substances (EPS) were partly degraded, accompanied by the transformation of tightly bound EPS into soluble EPS and the conversion of dense sludge flocs into loose and porous ones. During Fe(II)/KIO4 oxidation, Fe(IV) and the accompanying •OH were determined as the predominant reactive species and the underlying mechanism of sludge EPS degradation was proposed. This work provides a prospective method for conditioning the sludge dewaterability.


Subject(s)
Potassium Compounds , Sewage , Sewage/chemistry , Periodic Acid , Ferrous Compounds/chemistry
18.
Bioresour Technol ; 362: 127844, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36031131

ABSTRACT

The mechanisms of Fe2+ on nitrogen and phosphorus removal and functional bacterial competition in anammox systems was investigated. Under 0.12 mM Fe2+, the performance of nitrogen and phosphorus removal increased by 10.08 % and 151.91 %, respectively, compared with the control stage. Phosphorus removal was achieved through extracellular polymeric substance (EPS) induced biomineralization to form Fe-P minerals, and functional group COC in EPS played a critical role. T-EPSs was the major nucleation site due to it maintaining the supersaturated state (saturation index > 0) of Fe-P minerals for a long time. Population succession showed that Fe2+ weakened the competition between heterotrophic denitrifier (Denitrasoma) and anammox microbe (Candidatus Brocadia) for space and substrates, which was favorable for the enrichment of anammox biomass. Moreover, the variation in gene abundance (such as Hao, Cyt c, and Nir) indicated that Fe2+ improved electron behaviors (generation, transport, and consumption) during the nitrogen metabolism of anammox systems.


Subject(s)
Nitrogen , Phosphorus , Anaerobic Ammonia Oxidation , Bioreactors/microbiology , Denitrification , Extracellular Polymeric Substance Matrix/chemistry , Iron , Nitrogen/analysis , Oxidation-Reduction , Sewage
19.
Chemosphere ; 307(Pt 4): 136168, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36037944

ABSTRACT

To improve the performance and solve the restrictions of UV/chlorine process (e.g., the narrow pH application range and high disinfection by-products (DBPs) formation), a Fe2+ assisted advanced oxidation process with electrochemically generated chlorine (UV/E-Cl/Fe2+) was proposed for carbamazepine (CBZ) degradation, which eliminated CBZ (5 mg/L) within 4 min under the optimal conditions. Compared with UV/electro-generated chlorine (UV/E-Cl) and anodic oxidation-chlorination/Fe2+ (AO-Cl/Fe2+) processes, the apparent first-order kinetics constant in UV/E-Cl/Fe2+ increased by 2.56 and 3.18 times respectively, and the energy consumption was lower (1.15 kWh/m3-log). Simultaneously, the pH application range could be expanded to 9, and DBPs formed in this process were 17.1% less than those in UV/E-Cl. Through quenching tests, electron paramagnetic resonance (EPR) experiments, measurement of •OH concentration, quantification of methyl phenyl sulfoxide (PMSO) and benzosulfone (PMSO2) and processes comparison, possible CBZ degradation pathways and mechanism of UV/E-Cl/Fe2+ were proposed, in which Fe(IV) played the dominant role in the early stage, while the production of radicals (i.e., •OH and Cl•) was enhanced with the increase of chlorine generation, accelerating the CBZ removal. Furthermore, this process demonstrated wide application prospect in treating various contaminants and real wastewaters. In conclusion, this study offers an effective and energy-efficient method for organic pollutants degradation.


Subject(s)
Water Pollutants, Chemical , Water Purification , Carbamazepine , Chlorides , Chlorine , Disinfection , Halogens , Kinetics , Oxidation-Reduction , Ultraviolet Rays , Wastewater , Water Pollutants, Chemical/analysis , Water Purification/methods
20.
Sci Total Environ ; 851(Pt 2): 158239, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36007651

ABSTRACT

The availability of dissolved silicon (DSi) exerts an important control on phytoplankton communities in freshwater environments: DSi limitation can shift species dominance to non-siliceous algae and increase the likelihood of harmful algal blooms. The availability of DSi in the water column in turn depends on the dissolution kinetics of amorphous silica (ASi), including diatoms frustules and phytoliths. Here, batch dissolution experiments conducted with diatom frustules from three diatom species and synthetic Aerosil OX 50 confirmed the previously reported non-linear dependence of ASi dissolution rate on the degree of undersaturation of the aqueous solution. At least two first-order dissolution rate constants are therefore required to describe the dissolution kinetics at high (typically, ≥0.55) and low (typically, <0.55) degrees of undersaturation. Our results further showed aqueous ferrous ion (Fe2+), which is ubiquitous in anoxic waters, strongly inhibited ASi dissolution. The inhibition is attributed to the preferential binding of Fe2+ to Q2 groups (i.e., surface silicate groups bonded to the silica lattice via two bridging oxygen) which stabilizes the silica surface. However, further increasing the aqueous Fe2+ concentration likely catalyzes the detachment of Q3 groups (i.e., silicate groups bonded to the silica lattice via three bridging oxygen) from the surface. Overall, our study illustrates the manyfold effects the aqueous solution composition, notably the inhibition effect of Fe2+ under anoxic conditions, has on ASi dissolution. The results help to explain the controversial redox dependence of DSi internal loading from sediments, which is vital to quantitatively understanding silicon (Si) cycling in freshwater systems.


Subject(s)
Diatoms , Silicon Dioxide , Silicon Dioxide/chemistry , Silicon , Solubility , Diatoms/metabolism , Fresh Water , Water/metabolism , Oxygen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...