Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters











Publication year range
1.
Plant J ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39376043

ABSTRACT

Long non-coding RNAs (lncRNAs) play an important role in various biological processes in plants. However, there have been few reports on the evolutionary signatures of lncRNAs in closely related cotton species. The lncRNA transcription patterns in two tetraploid cotton species and their putative diploid ancestors were compared in this paper. By performing deep RNA sequencing, we identified 280 429 lncRNAs from 21 tissues in four cotton species. lncRNA transcription evolves more rapidly than mRNAs, and exhibits more severe turnover phenomenon in diploid species compared to that in tetraploid species. Evolutionarily conserved lncRNAs exhibit higher expression levels, and lower tissue specificity compared with species-specific lncRNAs. Remarkably, tissue expression of homologous lncRNAs in Gossypium hirsutum and G. barbadense exhibited similar patterns, suggesting that these lncRNAs may be functionally conserved and selectively maintained during domestication. An orthologous lncRNA, lncR4682, was identified and validated in fibers of G. hirsutum and G. barbadense with the highest conservatism and expression abundance. Through virus-induced gene silencing in upland cotton, we found that lncR4682 and its target genes GHPAS2 and GHKCS19 positively regulated fiber elongation. In summary, the present study provides a systematic analysis of lncRNAs in four closely related cotton species, extending the understanding of transcriptional conservation of lncRNAs across cotton species. In addition, LncR4682-PAS2-KCS19 contributes to cotton fiber elongation by participating in the biosynthesis of very long-chain fatty acids.

2.
Int J Mol Sci ; 25(17)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39273506

ABSTRACT

Cotton fiber is the leading natural textile material, and fiber elongation plays an essential role in the formation of cotton yield and quality. Although a number of components in the molecular network controlling cotton fiber elongation have been reported, a lot of players still need to be functionally dissected to understand the regulatory mechanism of fiber elongation comprehensively. In the present study, an R2R3-MYB transcription factor gene, GhMYB201, was characterized and functionally verified via CRISPR/Cas9-mediated gene editing. GhMYB201 was homologous to Arabidopsis AtMYB60, and both coding genes (GhMYB201At and GhMYB201Dt) were preferentially expressed in elongating cotton fibers. Knocking-out of GhMYB201 significantly reduced the rate and duration of fiber elongation, resulting in shorter and coarser mature fibers. It was found that GhMYB201 could bind and activate the transcription of cell wall loosening genes (GhRDLs) and also ß-ketoacyl-CoA synthase genes (GhKCSs) to enhance very-long-chain fatty acid (VLCFA) levels in elongating fibers. Taken together, our data demonstrated that the transcription factor GhMYB201s plays an essential role in promoting fiber elongation via activating genes related to cell wall loosening and VLCFA biosynthesis.


Subject(s)
Cell Wall , Cotton Fiber , Fatty Acids , Gene Expression Regulation, Plant , Gossypium , Plant Proteins , Transcription Factors , Cell Wall/metabolism , Cell Wall/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Gossypium/genetics , Gossypium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Fatty Acids/metabolism , Fatty Acids/biosynthesis
3.
New Phytol ; 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39307962

ABSTRACT

Cotton cultivation spans over 30 million hectares across 85 countries and regions, with more than half participating in the global cotton textile trade. The elongated cotton fiber cell is an ideal model for studying cell elongation and understanding plant growth and development. Brassinosteroids (BRs), recognized for their role in cell elongation, offer the potential for improving cotton fiber quality and yield. Despite extensive research highlighting BR's positive impact on fiber development, a comprehensive review on this topic has been lacking. This review addresses this gap, providing a detailed analysis of the latest advancements in BR signaling and its effects on cotton fiber development. We explore the complex network of BR biosynthesis components, signaling molecules, and regulators, including crosstalk with other pathways and transcriptional control mechanisms. Additionally, we propose molecular strategies and highlight key genetic elements for optimizing BR-related genes to enhance fiber quality and yield. The review emphasizes the importance of BR homeostasis and the hormonal landscape during cotton fiber development, offering insights into targeted manipulation opportunities and challenges. This consolidation offers a comprehensive understanding of BR's multifaceted roles in fiber development, outlining a strategic approach for BR optimization in cotton fiber quality and yield.

4.
J Adv Res ; 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39106927

ABSTRACT

INTRODUCTION: Interspecific introgression between Gossypium hirsutum and G. barbadense allows breeding cotton with outstanding fiber length (FL). However, the dynamic gene regulatory network of FL-related genes has not been characterized, and the functional mechanism through which the hub gene GhTUB5 mediates fiber elongation has yet to be determined. METHODS: Coexpression analyses of 277 developing fiber transcriptomes integrated with QTL mapping using 250 introgression lines of different FL phenotypes were conducted to identify genes related to fiber elongation. The function of GhTUB5 was determined by ectopic expression of two TUB5 alleles in Arabidopsis and knockout of GhTUB5 in upland cotton. Yeast two-hybrid, split-luciferase and pull-down assays were conducted to screen for interacting proteins, and upstream genes were identified by yeast one-hybrid, dual-LUC and electrophoretic mobility shift assays. RESULTS: The 32,612, 30,837 and 30,277 genes expressed at 5, 10 and 15 days postanthesis (dpa) were grouped into 19 distinct coexpression modules, and 988 genes in the MEblack module were enriched in the cell wall process and exhibited significant associations with FL. A total of 20 FL-QTLs were identified, each explaining 3.34-16.04 % of the phenotypic variance in the FL. Furthermore, several FL-QTLs contained 15 genes that were differentially expressed in the MEblack module including the tubulin beta gene (TUB5). Compared with the wild type, the overexpression of GhTUB5 and GbTUB5 in Arabidopsis suppressed root cell length but promoted cellulose synthesis. Knockout of GhTUB5 resulted in longer fiber lines. Protein-based experiments revealed that GhTUB5 interacts with GhZFP6. Additionally, GhTUB5 was directly activated by GhHD-ZIP7, a homeobox-leucine zipper transcription factor, and its paralogous gene was previously reported to mediate fiber elongation. CONCLUSION: This study opens a new avenue to dissect functional mechanism of cotton fiber elongation. Our findings provide some molecular details on how GhTUB5 mediates the FL phenotype in cotton.

5.
Plants (Basel) ; 13(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39065521

ABSTRACT

Sphingolipids play an important role in cotton fiber development, but the regulatory mechanism is largely unclear. We found that serine palmitoyltransferase (SPT) enzyme inhibitors, myriocin and sphingosine (dihydrosphingosine (DHS) and phytosphingosine (PHS)), affected early fiber elongation in cotton, and we performed a sphingolipidomic and transcriptomic analysis of control and PHS-treated fibers. Myriocin inhibited fiber elongation, while DHS and PHS promoted it in a dose-effect manner. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found that contents of 22 sphingolipids in the PHS-treated fibers for 10 days were changed, of which the contents of 4 sphingolipids increased and 18 sphingolipids decreased. The transcriptome analysis identified 432 differentially expressed genes (238 up-regulated and 194 down-regulated) in the PHS-treated fibers. Among them, the phenylpropanoid biosynthesis pathway is the most significant enrichment. The expression levels of transcription factors such as MYB, ERF, LBD, and bHLH in the fibers also changed, and most of MYB and ERF were up-regulated. Auxin-related genes IAA, GH3 and BIG GRAIN 1 were up-regulated, while ABPs were down-regulated, and the contents of 3 auxin metabolites were decreased. Our results provide important sphingolipid metabolites and regulatory pathways that influence fiber elongation.

6.
Int J Biol Macromol ; 268(Pt 1): 131559, 2024 May.
Article in English | MEDLINE | ID: mdl-38631576

ABSTRACT

Expansins are important plant cell wall proteins. They can loosen and soften the cell walls and lead to wall extension and cell expansion. To investigate their role in wood formation and fiber elongation, the PagEXPA1 that highly expressed in cell differentiation and expansion tissues was cloned from 84K poplar (Populus alba × P. glandulosa). The subcellular localization showed that PagEXPA1 located in the cell wall and it was highly expressed in primary stems and young leaves. Compared with non-transgenic 84K poplar, overexpression of PagEXPA1 can promote plant-growth, lignification, and fiber cell elongation, while PagEXPA1 Cas9-editing mutant lines exhibited the opposite phenotype. Transcriptome analysis revealed that DEGs were mainly enriched in some important processes, which are associated with cell wall formation and cellulose synthesis. The protein interaction prediction and expression analysis showed that PagCDKB2:1 and PagEXPA1 might have an interaction relationship. The luciferase complementary assay and bimolecular fluorescence complementary assay validated that PagEXPA1 can combined with PagCDKB2;1. So they promoted the expansion of xylem vascular tissues and the development of poplar though participating in the regulation of cell division and differentiation by programming the cell-cycle. It provides good foundation for molecular breeding of fast-growing and high-quality poplar varieties.


Subject(s)
Cell Wall , Gene Expression Regulation, Plant , Plant Proteins , Populus , Populus/genetics , Populus/growth & development , Populus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Cell Wall/metabolism , Cell Wall/genetics , Plants, Genetically Modified , Gene Expression Profiling , Xylem/metabolism , Xylem/genetics , Plant Development/genetics , Wood/genetics , Wood/growth & development
7.
Plant J ; 118(2): 423-436, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38184843

ABSTRACT

Upland cotton, the mainly cultivated cotton species in the world, provides over 90% of natural raw materials (fibers) for the textile industry. The development of cotton fibers that are unicellular and highly elongated trichomes on seeds is a delicate and complex process. However, the regulatory mechanism of fiber development is still largely unclear in detail. In this study, we report that a homeodomain-leucine zipper (HD-ZIP) IV transcription factor, GhHOX4, plays an important role in fiber elongation. Overexpression of GhHOX4 in cotton resulted in longer fibers, while GhHOX4-silenced transgenic cotton displayed a "shorter fiber" phenotype compared with wild type. GhHOX4 directly activates two target genes, GhEXLB1D and GhXTH2D, for promoting fiber elongation. On the other hand, phosphatidic acid (PA), which is associated with cell signaling and metabolism, interacts with GhHOX4 to hinder fiber elongation. The basic amino acids KR-R-R in START domain of GhHOX4 protein are essential for its binding to PA that could alter the nuclear localization of GhHOX4 protein, thereby suppressing the transcriptional regulation of GhHOX4 to downstream genes in the transition from fiber elongation to secondary cell wall (SCW) thickening during fiber development. Thus, our data revealed that GhHOX4 positively regulates fiber elongation, while PA may function in the phase transition from fiber elongation to SCW formation by negatively modulating GhHOX4 in cotton.


Subject(s)
Gossypium , Transcription Factors , Gossypium/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Phosphatidic Acids/metabolism , Cotton Fiber , Gene Expression Regulation , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
8.
Plant J ; 117(3): 694-712, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37988560

ABSTRACT

Xyloglucan, an important hemicellulose, plays a crucial role in maintaining cell wall structure and cell elongation. However, the effects of xyloglucan on cotton fiber development are not well understood. GhMUR3 encodes a xyloglucan galactosyltransferase that is essential for xyloglucan synthesis and is highly expressed during fiber elongation. In this study, we report that GhMUR3 participates in cotton fiber development under the regulation of GhMYB30. Overexpression GhMUR3 affects the fiber elongation and cell wall thickening. Transcriptome showed that the expression of genes involved in secondary cell wall synthesis was prematurely activated in OE-MUR3 lines. In addition, GhMYB30 was identified as a key regulator of GhMUR3 by Y1H, Dual-Luc, and electrophoretic mobility shift assay (EMSA) assays. GhMYB30 directly bound the GhMUR3 promoter and activated GhMUR3 expression. Furthermore, DAP-seq of GhMYB30 was performed to identify its target genes in the whole genome. The results showed that many target genes were associated with fiber development, including cell wall synthesis-related genes, BR-related genes, reactive oxygen species pathway genes, and VLCFA synthesis genes. It was demonstrated that GhMYB30 may regulate fiber development through multiple pathways. Additionally, GhMYB46 was confirmed to be a target gene of GhMYB30 by EMSA, and GhMYB46 was significantly increased in GhMYB30-silenced lines, indicating that GhMYB30 inhibited GhMYB46 expression. Overall, these results revealed that GhMUR3 under the regulation of GhMYB30 and plays an essential role in cotton fiber elongation and secondary wall thickening. Additionally, GhMYB30 plays an important role in the regulation of fiber development and regulates fiber secondary wall synthesis by inhibiting the expression of GhMYB46.


Subject(s)
Cotton Fiber , Genes, Plant , Transcriptome , Carbohydrate Metabolism , Gossypium/genetics , Gene Expression Regulation, Plant , Cell Wall/metabolism
9.
Plant Physiol Biochem ; 201: 107759, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37321040

ABSTRACT

The Gossypium is a model genus for understanding polyploidy and the evolutionary pattern of inheritance. This study aimed to investigate the characteristics of SCPLs in different cotton species and their role in fiber development. A total of 891 genes from one typical monocot and ten dicot species were naturally divided into three classes based on phylogenetic analysis. The SCPL gene family in cotton has undergone intense purifying selection with some functional variation. Segmental duplication and whole genome duplication were shown to be the two main reasons for the increase in the number of genes during cotton evolution. The identification of Gh_SCPL genes exhibiting differential expression in particular tissues or response to environmental stimuli provides a new measure for the in-depth characterization of selected genes of importance. Ga09G1039 was involved in the developmental process of fibers and ovules, and it is significantly different from proteins from other cotton species in terms of phylogenetic, gene structure, conserved protein motifs and tertiary structure. Overexpression of Ga09G1039 significantly increased the length of stem trichomes. Ga09G1039 may be a serine carboxypeptidase protein with hydrolase activity, according to functional region, prokaryotic expression, and western blotting analysis. The results provide a comprehensive overview of the genetic basis of SCPLs in Gossypium and further our knowledge in understanding the key aspects of SCPLs in cotton with their potential role in fiber development and stress resistance.


Subject(s)
Gossypium , Plant Proteins , Gossypium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Multigene Family , Genome, Plant/genetics , Gene Expression Regulation, Plant , Cotton Fiber
10.
Plant J ; 115(4): 967-985, 2023 08.
Article in English | MEDLINE | ID: mdl-37158663

ABSTRACT

N6 -Methyladenosine (m6 A) is the most abundant methylation modification in eukaryotic mRNA. The discovery of the dynamic and reversible regulatory mechanism of m6 A has greatly promoted the development of m6 A-led epitranscriptomics. However, the characterization of m6 A in cotton fiber is still unknown. Here, we reveal the potential link between m6 A modification and cotton fiber elongation by parallel m6 A-immunoprecipitation-sequencing (m6 A-seq) and RNA-seq analysis of fibers from the short fiber mutants Ligonliness-2 (Li2 ) and wild-type (WT). This study demonstrated a higher level of m6 A in the Li2 mutant, with the enrichment of m6 A modifications in the stop codon, 3'-untranslated region and coding sequence regions than in WT cotton. In the correlation analysis between genes containing differential m6 A modifications and differentially expressed genes, we identified several genes that could potentially regulate fiber elongation, including cytoskeleton, microtubule binding, cell wall and transcription factors (TFs). We further confirmed that the methylation of m6 A affected the mRNA stability of these fiber elongation-related genes including the TF GhMYB44, which showed the highest expression level in the RNA-seq data and m6 A methylation in the m6 A-seq data. Next, the overexpression of GhMYB44 reduces fiber elongation, whereas the silencing of GhMYB44 produces longer fibers. In summary, these results uncover that m6 A methylation regulated the expression of genes related to fiber development by affecting mRNA's stability, ultimately affecting cotton fiber elongation.


Subject(s)
Cotton Fiber , Gossypium , RNA-Seq , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gossypium/genetics , Gossypium/metabolism , Gene Expression Regulation, Plant/genetics
11.
Front Plant Sci ; 14: 1146802, 2023.
Article in English | MEDLINE | ID: mdl-36938017

ABSTRACT

Cotton fiber provides the predominant plant textile in the world, and it is also a model for plant cell wall biosynthesis. The development of the single-celled cotton fiber takes place across several overlapping but discrete stages, including fiber initiation, elongation, the transition from elongation to secondary cell wall formation, cell wall thickening, and maturation and cell death. During each stage, the developing fiber undergoes a complex restructuring of genome-wide gene expression change and physiological/biosynthetic processes, which ultimately generate a strikingly elongated and nearly pure cellulose product that forms the basis of the global cotton industry. Here, we provide an overview of this developmental process focusing both on its temporal as well as evolutionary dimensions. We suggest potential avenues for further improvement of cotton as a crop plant.

12.
Plant Sci ; 327: 111545, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36464024

ABSTRACT

Targeting proteins for Xklp2 (TPX2s) comprise a class of MAPs that are essential for plant growth and development by regulating the dynamic changes of microtubules (MTs) and proper formation of cytoskeleton. However, the function of TPX2 proteins in cotton fiber development remains poorly understood. Here, we identified the function of a fiber elongation-specific TPX2 protein, GhMAP20L5, in cotton. Suppressed GhMAP20L5 gene expression in cotton (GhMAP20L5i) significantly reduced fiber elongation rate, fiber length and lint percentage. GhMAP20L5i fibers had thinner and looser secondary cell walls (SCW), and incompact helix twists. GhMAP20L5 specifically interacted with the tubulin GhTUB13 on the cytoskeleton. Gene coexpression analysis showed that GhMAP20L5 involved in multiple pathways related to cytoskeleton establishment and fiber cell wall formation and affected cellulase genes expressions. In summary, our results revealed that GhMAP20L5 is important for fiber development by regulating cytoskeleton establishment and the cellulose deposition in cotton.


Subject(s)
Microtubule-Associated Proteins , Tubulin , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Tubulin/genetics , Tubulin/metabolism , Cotton Fiber , Cellulose/metabolism , Gossypium/genetics , Gossypium/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Cell Wall/metabolism
13.
Biomater Adv ; 136: 212786, 2022 May.
Article in English | MEDLINE | ID: mdl-35929319

ABSTRACT

With the increasing number of skin problems such as atopic dermatitis and the number of affected people, scientists are looking for alternative treatments to standard ointment or cream applications. Electrospun membranes are known for their high porosity and surface to volume area, which leads to a great loading capacity and their applications as skin patches. Polymer fibers are widely used for biomedical applications such as drug delivery systems or regenerative medicine. Importantly, fibrous meshes are used as oil reservoirs due to their excellent absorption properties. In our study, nano- and microfibers of poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (PVB) were electrospun. The biocompatibility of PVB fibers was confirmed with the keratinocytes culture studies, including cells' proliferation and replication tests. To verify the usability and stretchability of electrospun membranes, they were tested in two forms as-spun and elongated after uniaxially stretched. We examine oil transport through the patches for as-spun fibers and compare it with the numerical simulation of oil flow in the 3D reconstruction of nano- and microfiber networks. Evening primrose oil spreading and water vapor transmission rate (WVTR) tests were performed too. Finally, for skin hydration tests, manufactured materials loaded with evening primrose oil were applied to the forearm of volunteers for 6 h, showing increased skin moisture after using patches. This study clearly demonstrates that pore size and shape, together with fiber diameter, influence oil transport in the electrospun patches allowing to understand the key driving process of electrospun PVB patches for skin hydration applications. The oil release improves skin moisture and can be designed regarding the needs, by manufacturing different fibers' sizes and arrangements. The fibrous based patches loaded with oils are easy to handle and could remain on the altered skin for a long time and deliver the oil, therefore they are an ideal material for overnight bandages for skin treatment.


Subject(s)
Linoleic Acids , gamma-Linolenic Acid , Administration, Cutaneous , Humans , Oenothera biennis , Plant Oils
14.
Genes (Basel) ; 13(6)2022 05 26.
Article in English | MEDLINE | ID: mdl-35741716

ABSTRACT

Fiber length is an important indicator of cotton fiber quality, and the time and rate of cotton fiber cell elongation are key factors in determining the fiber length of mature cotton. To gain insight into the differences in fiber elongation mechanisms in the offspring of backcross populations of Sea Island cotton Xinhai 16 and land cotton Line 9, we selected two groups with significant differences in fiber length (long-fiber group L and short-fiber group S) at different fiber development stages 0, 5, 10 and 15 days post-anthesis (DPA) for transcriptome comparison. A total of 171.74 Gb of clean data was obtained by RNA-seq, and eight genes were randomly selected for qPCR validation. Data analysis identified 6055 differentially expressed genes (DEGs) between two groups of fibers, L and S, in four developmental periods, and gene ontology (GO) term analysis revealed that these DEGs were associated mainly with microtubule driving, reactive oxygen species, plant cell wall biosynthesis, and glycosyl compound hydrolase activity. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis indicated that plant hormone signaling, mitogen-activated protein kinase (MAPK) signaling, and starch and sucrose metabolism pathways were associated with fiber elongation. Subsequently, a sustained upregulation expression pattern, profile 19, was identified and analyzed using short time-series expression miner (STEM). An analysis of the weighted gene coexpression network module uncovered 21 genes closely related to fiber development, mainly involved in functions such as cell wall relaxation, microtubule formation, and cytoskeletal structure of the cell wall. This study helps to enhance the understanding of the Sea Island-Upland backcross population and identifies key genes for cotton fiber development, and these findings will provide a basis for future research on the molecular mechanisms of fiber length formation in cotton populations.


Subject(s)
Gene Expression Profiling , Transcriptome , Cotton Fiber , Gene Regulatory Networks , Gossypium/genetics , Phenotype
15.
Genes (Basel) ; 13(5)2022 04 28.
Article in English | MEDLINE | ID: mdl-35627169

ABSTRACT

Cotton is an important agro-industrial crop providing raw material for the textile industry. Fiber length is the key factor that directly affects fiber quality. ADC, arginine decarboxylase, is the key rate-limiting enzyme in the polyamine synthesis pathway; whereas, there is no experimental evidence that ADC is involved in fiber development in cotton yet. Our transcriptome analysis of the fiber initiation material of Gossypium arboreum L. showed that the expression profile of GaADC2 was induced significantly. Here, GhADC2, the allele of GaADC2 in tetraploid upland cotton Gossypium hirsutum L., exhibited up-regulated expression pattern during fiber elongation in cotton. Levels of polyamine are correlated with fiber elongation; especially, the amount of putrescine regulated by ADC was increased. Scanning electron microscopy showed that the fiber length was increased with exogenous addition of an ADC substrate or product putrescine; whereas, the fiber density was decreased with exogenous addition of an ADC specific inhibitor. Next, genome-wide transcriptome profiling of fiber elongation with exogenous putrescine addition was performed to determine the molecular basis in Gossypium hirsutum. A total of 3163 differentially expressed genes were detected, which mainly participated in phenylpropanoid biosynthesis, fatty acid elongation, and sesquiterpenoid and triterpenoid biosynthesis pathways. Genes encoding transcription factors MYB109, WRKY1, and TCP14 were enriched. Therefore, these results suggested the ADC2 and putrescine involvement in the development and fiber elongation of G. hirsutum, and provides a basis for cotton fiber development research in future.


Subject(s)
Carboxy-Lyases , Gossypium , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Cotton Fiber , Putrescine/metabolism
16.
J Exp Bot ; 73(3): 711-726, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34636403

ABSTRACT

In plants, glucose (Glc) plays important roles, as a nutrient and signal molecule, in the regulation of growth and development. However, the function of Glc in fiber development of upland cotton (Gossypium hirsutum) is unclear. Here, using gas chromatography-mass spectrometry (GC-MS), we found that the Glc content in fibers was higher than that in ovules during the fiber elongation stage. In vitro ovule culture revealed that lower Glc concentrations promoted cotton fiber elongation, while higher concentrations had inhibitory effects. The hexokinase inhibitor N-acetylglucosamine (NAG) inhibited cotton fiber elongation in the cultured ovules, indicating that Glc-mediated fiber elongation depends on the Glc signal transduced by hexokinase. RNA sequencing (RNA-seq) analysis and hormone content detection showed that 150mM Glc significantly activated brassinosteroid (BR) biosynthesis, and the expression of signaling-related genes was also increased, which promoted fiber elongation. In vitro ovule culture clarified that BR induced cotton fiber elongation in a dose-dependent manner. In hormone recovery experiments, only BR compensated for the inhibitory effects of NAG on fiber elongation in a Glc-containing medium. However, the ovules cultured with the BR biosynthetic inhibitor brassinazole and from the BR-deficient cotton mutant pag1 had greatly reduced fiber elongation at all the Glc concentrations tested. This demonstrates that Glc does not compensate for the inhibition of fiber elongation caused by BR biosynthetic defects, suggesting that the BR signaling pathway works downstream of Glc during cotton fiber elongation. Altogether, our study showed that Glc plays an important role in cotton fibre elongation, and crosstalk occurs between Glc and BR signaling during modulation of fiber elongation.


Subject(s)
Brassinosteroids , Cotton Fiber , Brassinosteroids/metabolism , Gene Expression Regulation, Plant , Glucose/metabolism , Gossypium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
17.
J Integr Plant Biol ; 64(1): 39-55, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34796654

ABSTRACT

Cotton which produces natural fiber materials for the textile industry is one of the most important crops in the world. Class II KNOX proteins are often considered as transcription factors in regulating plant secondary cell wall (SCW) formation. However, the molecular mechanism of the KNOX transcription factor-regulated SCW synthesis in plants (especially in cotton) remains unclear in details so far. In this study, we show a cotton class II KNOX protein (GhKNL1) as a transcription repressor functioning in fiber development. The GhKNL1-silenced transgenic cotton produced longer fibers with thicker SCWs, whereas GhKNL1 dominant repression transgenic lines displayed the opposite fiber phenotype, compared with controls. Further experiments revealed that GhKNL1 could directly bind to promoters of GhCesA4-2/4-4/8-2 and GhMYB46 for modulating cellulose synthesis during fiber SCW development in cotton. On the other hand, GhKNL1 could also suppress expressions of GhEXPA2D/4A-1/4D-1/13A through binding to their promoters for regulating fiber elongation of cotton. Taken together, these data revealed GhKNL1 functions in fiber elongation and SCW formation by directly repressing expressions of its target genes related to cell elongation and cellulose synthesis. Thus, our data provide an effective clue for potentially improving fiber quality by genetic manipulation of GhKNL1 in cotton breeding.


Subject(s)
Cotton Fiber , Gossypium , Cell Wall/metabolism , Gene Expression Regulation, Plant/genetics , Gossypium/genetics , Gossypium/metabolism , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism
18.
PeerJ ; 9: e11812, 2021.
Article in English | MEDLINE | ID: mdl-34327061

ABSTRACT

Upland cotton is the most widely planted for natural fiber around the world, and either lint percentage (LP) or fiber length (FL) is the crucial component tremendously affecting cotton yield and fiber quality, respectively. In this study, two lines MBZ70-053 and MBZ70-236 derived from G. hirsutum CCRI70 recombinant inbred line (RIL) population presenting different phenotypes in LP and FL traits were chosen to conduct RNA sequencing on ovule and fiber samples, aiming at exploring the differences of molecular and genetic mechanisms during cotton fiber initiation and elongation stages. As a result, 249/128, 369/206, 4296/1198 and 3547/2129 up-/down- regulated differentially expressed genes (DGEs) in L2 were obtained at -3, 0, 5 and 10 days post-anthesis (DPA), respectively. Seven gene expression profiles were discriminated using Short Time-series Expression Miner (STEM) analysis; seven modules and hub genes were identified using weighted gene co-expression network analysis. The DEGs were mainly enriched into energetic metabolism and accumulating as well as auxin signaling pathway in initiation and elongation stages, respectively. Meanwhile, 29 hub genes were identified as 14-3-3ω , TBL35, GhACS, PME3, GAMMA-TIP, PUM-7, etc., where the DEGs and hub genes revealed the genetic and molecular mechanisms and differences during cotton fiber development.

19.
BMC Genomics ; 22(1): 202, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33752589

ABSTRACT

BACKGROUND: Cotton fiber is a model system for studying plant cell development. At present, the functions of many transcription factors in cotton fiber development have been elucidated, however, the roles of auxin response factor (ARF) genes in cotton fiber development need be further explored. RESULTS: Here, we identify auxin response factor (ARF) genes in three cotton species: the tetraploid upland cotton G. hirsutum, which has 73 ARF genes, and its putative extent parental diploids G. arboreum and G. raimondii, which have 36 and 35 ARFs, respectively. Ka and Ks analyses revealed that in G. hirsutum ARF genes have undergone asymmetric evolution in the two subgenomes. The cotton ARFs can be classified into four phylogenetic clades and are actively expressed in young tissues. We demonstrate that GhARF2b, a homolog of the Arabidopsis AtARF2, was preferentially expressed in developing ovules and fibers. Overexpression of GhARF2b by a fiber specific promoter inhibited fiber cell elongation but promoted initiation and, conversely, its downregulation by RNAi resulted in fewer but longer fiber. We show that GhARF2b directly interacts with GhHOX3 and represses the transcriptional activity of GhHOX3 on target genes. CONCLUSION: Our results uncover an important role of the ARF factor in modulating cotton fiber development at the early stage.


Subject(s)
Gene Expression Regulation, Plant , Indoleacetic Acids , Cotton Fiber , Diploidy , Gossypium/genetics , Gossypium/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism
20.
Annu Rev Plant Biol ; 72: 437-462, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33428477

ABSTRACT

Cotton is not only the world's most important natural fiber crop, but it is also an ideal system in which to study genome evolution, polyploidization, and cell elongation. With the assembly of five different cotton genomes, a cotton-specific whole-genome duplication with an allopolyploidization process that combined the A- and D-genomes became evident. All existing A-genomes seemed to originate from the A0-genome as a common ancestor, and several transposable element bursts contributed to A-genome size expansion and speciation. The ethylene production pathway is shown to regulate fiber elongation. A tip-biased diffuse growth mode and several regulatory mechanisms, including plant hormones, transcription factors, and epigenetic modifications, are involved in fiber development. Finally, we describe the involvement of the gossypol biosynthetic pathway in the manipulation of herbivorous insects, the role of GoPGF in gland formation, and host-induced gene silencing for pest and disease control. These new genes, modules, and pathways will accelerate the genetic improvement of cotton.


Subject(s)
Gossypium , Transcription Factors , Genome, Plant
SELECTION OF CITATIONS
SEARCH DETAIL