ABSTRACT
Hemoglobin (Hb) is a hemeprotein found inside erythrocytes and is crucial in transporting oxygen and carbon dioxide in our bodies. In erythrocytes (Ery), the main energy source is glucose metabolized through glycolysis. However, a fraction of Hb can undergo glycation, in which a free amine group from the protein spontaneously binds to the carbonyl of glucose in the bloodstream, resulting in the formation of glycated hemoglobin (HbA1c), widely used as a marker for diabetes. Glycation leads to structural and conformational changes, compromising the function of proteins, and is intensified in the event of hyperglycemia. The main changes in Hb include structural alterations to the heme group, compromising its main function (oxygen transport). In addition, amyloid aggregates can form, which are strongly related to diabetic complications and neurodegenerative diseases. Therefore, this chapter discusses in vitro protocols for producing glycated Hb, as well as the main techniques and biophysical assays used to assess changes in the protein's structure before and after the glycation process. This more complete understanding of the effects of glycation on Hb is fundamental for understanding the complications associated with hyperglycemia and for developing more effective prevention and treatment strategies.
Subject(s)
Hemoglobins , Humans , Glycosylation , Hemoglobins/metabolism , Hemoglobins/chemistry , Glycated Hemoglobin/metabolism , Protein Conformation , AnimalsABSTRACT
Layered double hydroxides nanoparticles (LDH-NP) are increasingly studied for biomedical applications. Nevertheless, their interaction with biomolecules such as proteins needs further exploration for an effective application. In this work, the adsorption of bovine serum albumin (BSA) on LDH-NP and the conformation changes of the protein upon adsorption were characterized using fluorescence spectroscopy. First, the quenching of tryptophan residues of BSA by chloride-intercalated LDH-NP was explored and the BSA adsorption capacity of LDH-NP were determined. Then, the structural conformation of the protein was analyzed by fluorescence spectroscopy (including synchronous, polarization and quenching studies) at different surface coverages. Finally, the proclivity of adsorbed BSA molecules to assemble as amyloid fibril was evaluated. Due to the positive charging and low curvature of LDH-NP, BSA molecules were strongly adsorbed, which produced a quenching of the protein fluorescence and a large adsorption capacity. The effect on BSA conformation was dependent on surface coverage (SC): at low values ,t he tryptophan residues were in more hydrophobic environments and more accessible to quenchers than al high ones. At low SC, there is space between the BSA molecules to spread on the surface, which led to a conformation change. Contrarily, the native conformation around tryptophan residues of BSA was preserved at high SC due to the tight packing of the adsorbed protein molecules. As a result, BSA molecules are stabilized against the formation of amyloid fibrils at high SC, while at low SC they present a similar fibrillation than free BSA.
Subject(s)
Hydroxides , Serum Albumin, Bovine , Spectrometry, Fluorescence , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Hydroxides/chemistry , Cattle , Animals , Adsorption , Nanoparticles/chemistry , Tryptophan/chemistry , Tryptophan/metabolism , Hydrophobic and Hydrophilic Interactions , Amyloid/chemistry , Amyloid/metabolism , FluorescenceABSTRACT
Nitration of tyrosine residues in alpha-synuclein (a-syn) has been detected in different synucleinopathies, including Parkinson's disease. The potential role of 3-nitrotyrosine formation in a-syn, as an oxidative post-translational modification, is still elusive. In this work, we generated well-characterized tyrosine nitrated a-syn monomers and studied their capability to form oligomers and fibrils. We constructed tyrosine to phenylalanine mutants, containing a single tyrosine residue, a-syn mutant Y(125/133/136)F and Y(39/125/133)F) and assessed the impact in a-syn biophysical properties. Nitrated wild-type a-syn and the Y-F mutants, with one 3-nitrotyrosine residue in either the protein's N-terminal or C-terminal region, showed inhibition of fibril formation but retained the capacity of oligomer formation. The inhibition of a-syn fibrillation occurs even when an important amount of unmodified a-syn is still present. We characterized oligomers from both nitrated and non-nitrated forms of the wild-type protein and the mutant forms obtained. Our results indicate that the formation of 3-nitrotyrosine in a-syn could induce an off-pathway oligomer formation which may have an important impact in the development of synucleinopathies.
Subject(s)
Parkinson Disease , Synucleinopathies , Humans , alpha-Synuclein/metabolism , Nitrates/metabolism , Parkinson Disease/metabolism , Tyrosine/metabolismABSTRACT
Bacterial surface proteins assembled into amyloids contribute to biofilm formation and host immune evasion. Streptococcus sanguinis, a pioneer colonizer of teeth commonly involved in cardiovascular infections, expresses about thirty-three proteins anchored to the cell wall by sortase A. Here, we characterized the production of amyloid in S. sanguinis strains differing in biofilm and immune evasion phenotypes and investigated the role of sortase A in amyloidogenesis. Amyloid was identified in biofilms formed by nine strains, using Congo red (CR) staining and cross-polarized light microscopy. Additionally, EGCG, an amyloid inhibitor, impaired biofilm maturation in a strain-specific fashion. The amounts of amyloid-like components quantified in culture fluids of nine strains using thioflavin T and fluorimetry negatively correlated with bacterial binding to complement-activating proteins (SAP, C1q), C3b deposition and rates of opsonophagocytosis in PMNs, implying amyloid production in immune evasion. The deletion of the sortase A gene (srtA) in strain SK36 compromised amyloid production and sucrose-independent biofilm maturation. The srtA mutant further showed increased susceptibility to C3b deposition and altered interactions with PMNs as well as reduced persistence in human blood. These findings highlight the contribution of amyloids to biofilm formation and host immune evasion in S. sanguinis strains, further indicating the participation of sortase A substrates in amyloidogenesis.
Subject(s)
Immune Evasion , Streptococcus sanguis , Humans , Streptococcus sanguis/genetics , Streptococcus sanguis/metabolism , Amyloid/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , BiofilmsABSTRACT
The capsid has a central role in viruses' life cycle. Although one of its major functions is to protect the viral genome, the capsid may be composed of elements that, at some point, promote interaction with host cells and trigger infection. Considering the scenario of multiple origins of viruses along the viral evolution, a substantial number of capsid shapes, sizes, and symmetries have been described. In this context, capsids of giant viruses (GV) that infect protists have drawn the attention of the scientific community, especially in the last 20 years, specifically for having bacterial-like dimensions with hundreds of different proteins and exclusive features. For instance, the surface fibrils present on the mimivirus capsid are one of the most intriguing features of the known virosphere. They are 150-nm-long structures attached to a 450-nm capsid, resulting in a particle with a hairy appearance. Surface fibrils have also been described in the capsids of other nucleocytoviruses, although they may differ substantially among them. In this mini review for non-experts, we compile the most important available information on surface fibrils of nucleocytoviruses, discussing their putative functions, composition, length, organization, and origins.
Subject(s)
Giant Viruses , Mimiviridae , Viruses , Capsid Proteins/analysis , Capsid Proteins/genetics , Capsid Proteins/metabolism , Capsid/chemistry , Capsid/metabolism , Giant Viruses/genetics , Mimiviridae/geneticsABSTRACT
Alzheimer's disease is characterized by the presence of senile plaques composed of ß-amyloid peptide (Aß) aggregates with toxic effects that are still not fully understood. Recently, it was discovered that Aß(1-42) fibrils possess catalytic activity on acetylcholine hydrolysis. Catalytic amyloids are an emerging and exciting field of research. In this study, we examined the catalytic activity of the fibrils formed by Aß(1-40), the most abundant Aß variant, on acetylcholine hydrolysis. Our findings reveal that Aß(1-40) fibrils exhibit moderate enzymatic activity, indicating that natural peptide aggregates could serve as biocatalysts and provide new insights into the potential role of Aß in neurological disorders.
Subject(s)
Acetylcholine , Alzheimer Disease , Humans , Hydrolysis , Amyloid beta-Peptides , Peptide Fragments/chemistry , AmyloidABSTRACT
Biofoams are a challenge for scientists in terms of innovation. Incorporation of cellulose fibrils (CF), might help improve the microstructure of foams, thus this study focuses on studying the impact of CF on the foaming properties and rheology of lentil protein (LP) foams at various pH and CF concentrations. Additionally, LP-CF mixtures were transformed into solid foams, and their microstructure, physical properties, and morphology were evaluated. CF concentration significantly impacted on LP-CF foam properties, primarily due to high viscosity values. Increased CF concentration resulted in improved FS values (up to 77 min) at all pH values. This is likely attributed to associative interactions and coacervates formation. Also, foam microstructure could be related to apparent viscosity, suggesting the role of viscosity in preserving the integrity of the wet foam structure during freezing and lyophilization processes. However, elevated viscosity values might negatively impact properties such as foaming capacity and produce denser microstructures. The microstructure and morphology analysis revealed that certain foams exhibited a sponge-like structure with open pores and semi-spherical shapes, supported by CF fibers extending and forming layers. However, the structure itself was irregular. While others exhibited non-uniform, irregular pore size, and shape, along with a denser structure. These findings contribute to understanding the behavior of LP-CF mixtures, although additional investigations on mechanical properties, biodegradability, and hydrophobicity are necessary to reach their full potential for various applications.
ABSTRACT
Among the most intriguing structural features in the known virosphere are mimivirus surface fibrils, proteinaceous filaments approximately 150 nm long, covering the mimivirus capsid surface. Fibrils are important to promote particle adhesion to host cells, triggering phagocytosis and cell infection. However, although mimiviruses are one of the most abundant viral entities in a plethora of biomes worldwide, there has been no comparative analysis on fibril organization and abundance among distinct mimivirus isolates. Here, we describe the isolation and characterization of Megavirus caiporensis, a novel lineage C mimivirus with surface fibrils organized as "clumps." This intriguing feature led us to expand our analyses to other mimivirus isolates. By employing a combined approach including electron microscopy, image processing, genomic sequencing, and viral prospection, we obtained evidence of at least three main patterns of surface fibrils that can be found in mimiviruses: (i) isolates containing particles with abundant fibrils, distributed homogeneously on the capsid surface; (ii) isolates with particles almost fibrilless; and (iii) isolates with particles containing fibrils in abundance, but organized as clumps, as observed in Megavirus caiporensis. A total of 15 mimivirus isolates were analyzed by microscopy, and their DNA polymerase subunit B genes were sequenced for phylogenetic analysis. We observed a unique match between evolutionarily-related viruses and their fibril profiles. Biological assays suggested that patterns of fibrils can influence viral entry in host cells. Our data contribute to the knowledge of mimivirus fibril organization and abundance, as well as raising questions on the evolution of those intriguing structures. IMPORTANCE Mimivirus fibrils are intriguing structures that have drawn attention since their discovery. Although still under investigation, the function of fibrils may be related to host cell adhesion. In this work, we isolated and characterized a new mimivirus, called Megavirus caiporensis, and we showed that mimivirus isolates can exhibit at least three different patterns related to fibril organization and abundance. In our study, evolutionarily-related viruses presented similar fibril profiles, and such fibrils may affect how those viruses trigger phagocytosis in amoebas. These data shed light on aspects of mimivirus particle morphology, virus-host interactions, and their evolution.
Subject(s)
Mimiviridae , Capsid Proteins/genetics , Genome, Viral , Microscopy, Electron , Mimiviridae/genetics , Mimiviridae/ultrastructure , PhylogenyABSTRACT
Uncontrolled assembly/disassembly of physiologically formed liquid condensates is linked to irreversible aggregation. Hence, the quest for understanding protein-misfolding disease mechanism might lie in the studies of protein:nucleic acid coacervation. Several proteins with intrinsically disordered regions as well as nucleic acids undergo phase separation in the cellular context, and this process is key to physiological signaling and is related to pathologies. Phase separation is reproducible in vitro by mixing the target recombinant protein with specific nucleic acids at various stoichiometric ratios and then examined by microscopy and nanotracking methods presented herein. We describe protocols to qualitatively assess hallmarks of protein-rich condensates, characterize their structure using intrinsic and extrinsic dyes, quantify them, and analyze their morphology over time. Analysis by nanoparticle tracking provides information on the concentration and diameter of high-order protein oligomers formed in the presence of nucleic acid. Using the model protein (globular domain of recombinant murine PrP) and DNA aptamers (high-affinity oligonucleotides with 25 nucleotides in length), we provide examples of a systematic screening of liquid-liquid phase separation in vitro.
Subject(s)
Aptamers, Nucleotide , Intrinsically Disordered Proteins , Nanoparticles , Nucleic Acids , Mice , Animals , Microscopy , Recombinant Proteins , Intrinsically Disordered Proteins/chemistryABSTRACT
Alpha-synuclein (α-syn) is a small protein composed of 140 amino acids and belongs to the group of intrinsically disordered proteins. It is a soluble protein that is highly expressed in neurons and expressed at low levels in glial cells. The monomeric protein aggregation process induces the formation of oligomeric intermediates and proceeds towards fibrillar species. These α-syn conformational species have been detected in the extracellular space and mediate consequences on surrounding neurons and glial cells. In particular, higher-ordered α-syn aggregates are involved in microglial and oligodendrocyte activation, as well as in the induction of astrogliosis. These phenomena lead to mitochondrial dysfunction, reactive oxygen and nitrogen species formation, and the induction of an inflammatory response, associated with neuronal cell death. Several receptors participate in cell activation and/or in the uptake of α-syn, which can vary depending on the α-syn aggregated state and cell types. The receptors involved in this process are of outstanding relevance because they may constitute potential therapeutic targets for the treatment of PD and related synucleinopathies. This review article focuses on the mechanism associated with extracellular α-syn uptake in glial cells and the consequent glial cell activation that contributes to the neuronal death associated with synucleinopathies.
Subject(s)
Parkinson Disease , Synucleinopathies , Humans , Neuroglia/metabolism , Parkinson Disease/metabolism , Protein Aggregates/physiology , alpha-Synuclein/metabolismABSTRACT
The self-assembly of proteins is an essential process for a variety of cellular functions including cell respiration, mobility and division. On the other hand, protein or peptide misfolding and aggregation is related to the development of Parkinson's disease and Alzheimer's disease, among other aggregopathies. As a consequence, significant research efforts are directed towards the understanding of this process. In this review, we are focused on the use of UV-Visible Absorption Spectroscopy, Fluorescence Spectroscopy and Circular Dichroism to evaluate the self-organization of proteins and peptides in solution. These spectroscopic techniques are commonly available in most chemistry and biochemistry research laboratories, and together they are a powerful approach for initial as well as routine evaluation of protein and peptide self-assembly and aggregation under different environmental stimulus. Furthermore, these spectroscopic techniques are even suitable for studying complex systems like those in the food industry or pharmaceutical formulations, providing an overall idea of the folding, self-assembly, and aggregation processes, which is challenging to obtain with high-resolution methods. Here, we compiled and discussed selected examples, together with our results and those that helped us better to understand the process of protein and peptide aggregation. We put particular emphasis on the basic description of the methods as well as on the experimental considerations needed to obtain meaningful information, to help those who are just getting into this exciting area of research. Moreover, this review is particularly useful to those out of the field who would like to improve reproducibility in their cellular and biomedical experiments, especially while working with peptide and protein systems as an external stimulus. Our final aim is to show the power of these low-resolution techniques to improve our understanding of the self-assembly of peptides and proteins and translate this fundamental knowledge in biomedical research or food applications.
Subject(s)
Peptides/chemistry , Proteins/chemistry , Circular Dichroism , Peptides/chemical synthesis , Protein Aggregates , Proteins/chemical synthesis , Spectrometry, Fluorescence , Spectrophotometry, UltravioletABSTRACT
The aggregation of α-synuclein (α-Syn) is a characteristic of Parkinson's disease (PD). α-Syn oligomerization/aggregation is accelerated by the serine peptidase, prolyl oligopeptidase (POP). Factors that affect POP conformation, including most of its inhibitors and an impairing mutation in its active site, influence the acceleration of α-Syn aggregation resulting from the interaction of these proteins. It is noteworthy, however, that α-Syn is not cleaved by POP. Prolyl endopeptidase-like (PREPL) protein is structurally related to the serine peptidases belonging to the POP family. Based on the α-Syn-POP studies and knowing that PREPL may contribute to the regulation of synaptic vesicle exocytosis, when this protein can encounter α-Syn, we investigated the α-Syn-PREPL interaction. The binding of these two human proteins was observed with an apparent affinity constant of about 5.7 µM and, as in the α-Syn assays with POP, the presence of PREPL accelerated the oligomerization/aggregation events, with no α-Syn cleavage. Furthermore, despite this lack of hydrolytic cleavage, the serine peptidase active site inhibitor phenylmethylsulfonyl fluoride (PMSF) abolished the enhancement of the α-Syn aggregation by PREPL. Therefore, given the attention to POP inhibitors as potential drugs to treat synucleinopathies, the present data point to PREPL as another potential target to be explored for this purpose.
Subject(s)
Phenylmethylsulfonyl Fluoride/pharmacology , Prolyl Oligopeptidases/antagonists & inhibitors , Protease Inhibitors/pharmacology , alpha-Synuclein/antagonists & inhibitors , Humans , Prolyl Oligopeptidases/chemistry , Prolyl Oligopeptidases/metabolism , Protein Aggregates/drug effects , alpha-Synuclein/chemistry , alpha-Synuclein/metabolismABSTRACT
O colágeno é sintetizado e segregado no espaço extracelular e organizados em fibrilas estriadas de acordo com o tipo de tecido. Utilizaram-se 24 coelhos brancos da raça Nova Zelândia, com idade de 12 meses e com 3,0kg de peso corporal, para avaliar a porcentagem de colágeno das feridas cutâneas tratadas com plasma rico em plaquetas de equino e pomada contendo gentamicina, sulfanilamida, sulfadiazina, ureia e vitamina A. Os animais foram separados em quatro grupos de igual número e submetidos à remoção de pele na região das linhas médias dorsal torácica (feridas tratadas) e lombar (feridas controle). As feridas torácicas foram tratadas com plasma rico em plaqueta de equino e pomada contendo gentamicina, sulfanilamida, sulfadiazina, ureia e vitamina A, e as do grupo controle somente com a pomada. Dos animais do grupo I, foi coletado tecido cutâneo, para a avaliação histológica e a ultraestrutural, com três dias de pós-operatório; dos animais do grupo II, com sete dias; do grupo III, com 14 dias; e do grupo IV, com 21 dias. Decorrido o período de avaliação de cada grupo, foi coletado fragmento de pele para avaliação da porcentagem de colágeno, bem como do diâmetro e da densidade da fibrila de colágeno por microscopia eletrônica de transmissão. O tratamento com PRP de equino associado à aplicação tópica da pomada mostrou-se eficaz na maturação das fibrilas colágenas e na antecipação do processo cicatricial.(AU)
Collagen is synthesized and secreted into the extracellular space and organized into striated fibrils according to the tissue type. This study evaluated the concentration of collagen in rabbit skin wounds treated with equine platelet-rich plasma (PRP) and ointment containing gentamicin, sulfanilamide, sulfadiazine, urea, and vitamin A. Twenty-four New Zealand white rabbits aged 2 to 12 months and weighing 3.0kg were included. The animals were allocated equally into four groups and the skin was removed from the thoracic dorsal midline (treated wound) and lumbar (control wound) regions. The thoracic wounds were treated with equine PRP and ointment containing gentamicin, sulfanilamide, sulfadiazine, urea, and vitamin A, and the control group was treated with the ointment alone. For histological and ultrastructural assessment, cutaneous tissue was collected on postoperative days 3 (group I), 7 (group II), 14 (group III), and 21 (group IV). After the evaluation period, in each group, a skin fragment was collected for analysis of the collagen concentration, as well as the collagen fibril diameter and density by transmission electron microscopy. The results indicated that treatment with equine PRP combined with topical application of the ointment was effective in facilitating the maturation of collagen fibrils and the wound healing process.(AU)
Subject(s)
Animals , Rabbits , Wound Healing/physiology , Wounds and Injuries/rehabilitation , Wounds and Injuries/veterinary , Collagen/ultrastructure , Platelet-Rich Plasma , Sulfadiazine/administration & dosage , Sulfanilamides/administration & dosage , Urea/administration & dosage , Vitamin A/administration & dosage , Gentamicins/administration & dosage , HorsesABSTRACT
O colágeno é sintetizado e segregado no espaço extracelular e organizados em fibrilas estriadas de acordo com o tipo de tecido. Utilizaram-se 24 coelhos brancos da raça Nova Zelândia, com idade de 12 meses e com 3,0kg de peso corporal, para avaliar a porcentagem de colágeno das feridas cutâneas tratadas com plasma rico em plaquetas de equino e pomada contendo gentamicina, sulfanilamida, sulfadiazina, ureia e vitamina A. Os animais foram separados em quatro grupos de igual número e submetidos à remoção de pele na região das linhas médias dorsal torácica (feridas tratadas) e lombar (feridas controle). As feridas torácicas foram tratadas com plasma rico em plaqueta de equino e pomada contendo gentamicina, sulfanilamida, sulfadiazina, ureia e vitamina A, e as do grupo controle somente com a pomada. Dos animais do grupo I, foi coletado tecido cutâneo, para a avaliação histológica e a ultraestrutural, com três dias de pós-operatório; dos animais do grupo II, com sete dias; do grupo III, com 14 dias; e do grupo IV, com 21 dias. Decorrido o período de avaliação de cada grupo, foi coletado fragmento de pele para avaliação da porcentagem de colágeno, bem como do diâmetro e da densidade da fibrila de colágeno por microscopia eletrônica de transmissão. O tratamento com PRP de equino associado à aplicação tópica da pomada mostrou-se eficaz na maturação das fibrilas colágenas e na antecipação do processo cicatricial.(AU)
Collagen is synthesized and secreted into the extracellular space and organized into striated fibrils according to the tissue type. This study evaluated the concentration of collagen in rabbit skin wounds treated with equine platelet-rich plasma (PRP) and ointment containing gentamicin, sulfanilamide, sulfadiazine, urea, and vitamin A. Twenty-four New Zealand white rabbits aged 2 to 12 months and weighing 3.0kg were included. The animals were allocated equally into four groups and the skin was removed from the thoracic dorsal midline (treated wound) and lumbar (control wound) regions. The thoracic wounds were treated with equine PRP and ointment containing gentamicin, sulfanilamide, sulfadiazine, urea, and vitamin A, and the control group was treated with the ointment alone. For histological and ultrastructural assessment, cutaneous tissue was collected on postoperative days 3 (group I), 7 (group II), 14 (group III), and 21 (group IV). After the evaluation period, in each group, a skin fragment was collected for analysis of the collagen concentration, as well as the collagen fibril diameter and density by transmission electron microscopy. The results indicated that treatment with equine PRP combined with topical application of the ointment was effective in facilitating the maturation of collagen fibrils and the wound healing process.(AU)
Subject(s)
Animals , Rabbits , Wound Healing/physiology , Wounds and Injuries/rehabilitation , Wounds and Injuries/veterinary , Collagen/ultrastructure , Platelet-Rich Plasma , Sulfadiazine/administration & dosage , Sulfanilamides/administration & dosage , Urea/administration & dosage , Vitamin A/administration & dosage , Gentamicins/administration & dosage , HorsesABSTRACT
The misfolding of protein and its assembly into amyloid fibrils with a characteristic ß-sheet-rich secondary structure, cause a lot of illnesses. Polyphenols have been extensively studied as a class of amyloid inhibitors, whose effect depends on the position and number of hydroxyl groups around the flavone backbone. In this study, we used bovine serum albumin (BSA) as an amyloid model to test the anti-amyloid effects of Avenanthramide-C (Avn-C), a molecule with a long aliphatic linker between two aromatic rings. We used spectroscopy techniques like thioflavin T fluorescence and circular dichroism, to follow the ß-sheet-rich aggregates of BSA upon incubation at 68 °C. Our results demonstrated that Avn-C shows higher inhibitory effect on BSA oligomerization at micromolar concentrations, than Epigallocatechin gallate (EGCG) and Curcumin, proving for the first time, that Avn-C can serve as potential molecule in preventing protein aggregation.
Subject(s)
Amyloid/biosynthesis , Protein Aggregates/drug effects , Protein Aggregation, Pathological/prevention & control , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , ortho-Aminobenzoates/pharmacology , Animals , Cattle , Molecular Structure , ortho-Aminobenzoates/chemistryABSTRACT
Brain Expressed X-linked (BEX) protein family consists of five members in humans and is highly expressed during neuronal development. They are known to participate in cell cycle and in signaling pathways involved in neurodegeneration and cancer. BEX3 possess a conserved leucine-rich nuclear export signal and experimental data confirmed BEX3 nucleocytoplasmic shuttling. Previous data revealed that mouse BEX3 auto-associates in an oligomer rich in intrinsic disorder. In this work, we show that human BEX3 (hBEX3) has well-defined three-dimensional structure in the presence of small fragments of tRNA (tRFs). Conversely, the nucleic acids-free purified hBEX3 presented disordered structure. Small-angle X-ray scattering data revealed that in the presence of tRFs, hBEX3 adopts compact globular fold, which is very distinct from the elongated high-order oligomer formed by the pure protein. Furthermore, microscopy showed that hBEX3 undergoes condensation in micron-sized protein-rich droplets in vitro. In the presence of tRFs, biomolecular condensates were smaller and in higher number, showing acridine orange green fluorescence emission, which corroborated with the presence of base-paired nucleic acids. Additionally, we found that over time hBEX3 transits from liquid condensates to aggregates that are reversible upon temperature increment and dissolved by 1,6-hexanediol. hBEX3 assemblies display different morphology in the presence of the tRFs that seems to protect from amyloid formation. Collectively, our findings support a role for tRFs in hBEX3 disorder-to-order transition and modulation of phase transitions. Moreover, hBEX3 aggregation-prone features and the specificity in interaction with tRNA fragments advocate paramount importance toward understanding BEX family involvement in neurodevelopment and cell death.
Subject(s)
Apoptosis Regulatory Proteins/chemistry , Gene Expression Regulation , RNA, Bacterial/genetics , RNA, Transfer/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Escherichia coli/genetics , Humans , Phase Transition , Protein Conformation , RNA, Bacterial/chemistry , RNA, Transfer/chemistryABSTRACT
GRASP55, one of the two human GRASP proteins, has been implicated in the organization of Golgi stacks and in unconventional protein secretion. However, the detailed molecular mechanisms supporting GRASP55 participation in those processes remain mostly unclear. We have shown that GRASP55 exists as monomers in solution, which transitions to amorphous aggregates with increasing temperatures. Here, we further investigated the formation of higher order structures of GRASP55 by exploring its amyloid fibrillation at 37 °C. Sequence-based AGGRESCAN analysis revealed that GRASP55 has ten aggregation "hot spots", preferentially concentrated in its N-terminal half. Congo Red, ThT, and circular dichroism assays suggested GRASP55 formed amyloid-like fibrils in a time-dependent manner at 37 °C. Dynamic light scattering showed the mean hydrodynamic radius of GRASP55 amyloid-like fibrils increased with increasing incubation times at 37 °C. Transmission electron microscopy and intrinsic fluorescence lifetime imaging showed that, upon increasing incubation time at 37 °C, GRASP55 yielded amyloid-like fibrils in a nucleation-dependent process via a sequence of events: lag-phase (monomers to oligomers), growth phase (oligomers to organized protofibrils), and plateau phase (protofibrils to amyloid-like fibrils). The insights gained herein may help in better understanding the mechanisms of GRASP55 amyloid fibrillation in vivo and its potential association with neurological disorders.
Subject(s)
Amyloid/chemistry , Golgi Apparatus/physiology , Golgi Matrix Proteins/chemistry , Benzothiazoles/chemistry , Circular Dichroism , Computational Biology , Congo Red/chemistry , Humans , Hydrodynamics , Kinetics , Light , Microscopy, Electron, Transmission , Nervous System Diseases/physiopathology , Protein Conformation , Protein Domains , Recombinant Proteins/chemistry , Scattering, Radiation , TemperatureABSTRACT
Protein functionalized cellulose fibrils were isolated from the tunic of Pyura chilensis and subsequently used to produce protein functionalized cellulose membranes. Bleached cellulose membranes were also obtained and used as reference material. FTIR and Raman spectroscopy demonstrated that the membranes are mostly constituted of cellulose along with the presence of residual proteins and pigments. Protein functionalized cellulose membranes were found to possess â¼3.1% of protein at their surface as measured by X-ray photoelectron spectroscopy. Powder X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis were used to identify and semiquantify the amount of residual sand grains present within the structure of the membranes. The presence of residual proteins was found not to significantly affect the tensile mechanical properties of the membranes. Streaming ζ-potential was used to assess surface charges of the membranes. Below pH 4, nonbleached cellulose membranes possessed highly negative surfaces charges and also significantly less negative surface charges at physiological pH when compared to bleached cellulose membranes. No significant difference was found with respect to growth kinetics of myoblasts at the surface of the membranes for cell culturing times of 48 and 72 h. After 48 h of culture, protein functionalized cellulose-based membranes that possess â¼3.1% of proteins at their surface (H1) were, however, found to promote higher cell density, cell spreading, and more orientated shape cell morphology when compared to the other cellulose-based membranes (H3 and B) evaluated in the present study.
ABSTRACT
BACKGROUND: Amyloidosis is defined as a generic term given to a series of proteins/ polypeptides in the form of amyloid fibrils that are deposited in the tissues and give rise to a set of clinical disorders. OBJECTIVES: This work developed an approach to first examine chain association propensities of several amyloidogenic peptides: SNNFGAILSS from the islet amyloid polypeptide (coded IAPP), NAGDVAFV from the protein responsible for corneal amyloidosis (coded Lactoferrin), and (1-42) ß-amyloid (coded Amyloid). METHODS: Fmoc-synthesis protocol was applied for the synthesis of IAPP and Lactoferrin whereas Amyloid was synthesized through the Boc-chemistry as early detailed. RESULTS AND CONCLUSION: The fluorescence and light scattering experiments results indicated that Amyloid revealed a surprising reduction in the aggregation process as a function of time (decrease of about 20-30% in 3 days) through both methods. In contrast, the aggregation intensity of IAPP increased around 35% after 3 days via a light scattering procedure. These findings are very relevant for interpretation of the aggregation phenomenon of amyloidogenic peptides. The final part of this work proposed rules for dissolution of aggregated structures based on the Lewis acid and Lewis base properties of solvents. Very low solubility values (6 to 15%) were measured for peptides in water but with increased to around 90% in strong nucleophilic or strong electrophilic organic solvents. However, care should be taken when strong nucleophilic solvents such as DMSO are mixed with the strong electrophilic such as water. Both solvent molecules tend to attract each other rather than to dissolve peptide chains thus lowering the capacity of this type of solution for fibril dissolution.